573 lines
20 KiB
ReStructuredText
573 lines
20 KiB
ReStructuredText
Example
|
|
====================================================
|
|
|
|
Here we provide a very simple script for supervised finetuning, which is revised from the training
|
|
script in ```Fastchat`` <https://github.com/lm-sys/FastChat>`__. The
|
|
script is used to finetune Qwen with Hugging Face Trainer. You can check
|
|
the script
|
|
`here <https://github.com/QwenLM/Qwen1.5/blob/main/finetune.py>`__. This
|
|
script for supervised finetuning (SFT) has the following features:
|
|
|
|
- Support single-GPU and multi-GPU training;
|
|
- Support full-parameter tuning,
|
|
`LoRA <https://arxiv.org/abs/2106.09685>`__, and
|
|
`Q-LoRA <https://arxiv.org/abs/2305.14314>`__.
|
|
|
|
In the following, we introduce more details about the usage of the
|
|
script.
|
|
|
|
Installation
|
|
------------
|
|
|
|
Before you start, make sure you have installed the following packages:
|
|
|
|
.. code:: bash
|
|
|
|
pip install peft deepspeed optimum accelerate
|
|
|
|
Data Preparation
|
|
----------------
|
|
|
|
For data preparation, we advise you to organize the data in a jsonl
|
|
file, where each line is a dictionary as demonstrated below:
|
|
|
|
.. code:: json
|
|
|
|
{
|
|
"type": "chatml",
|
|
"messages": [
|
|
{
|
|
"role": "system",
|
|
"content": "You are a helpful assistant."
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": "Tell me something about large language models."
|
|
},
|
|
{
|
|
"role": "assistant",
|
|
"content": "Large language models are a type of language model that is trained on a large corpus of text data. They are capable of generating human-like text and are used in a variety of natural language processing tasks..."
|
|
}
|
|
],
|
|
"source": "unknown"
|
|
}
|
|
|
|
.. code:: json
|
|
|
|
{
|
|
"type": "chatml",
|
|
"messages": [
|
|
{
|
|
"role": "system",
|
|
"content": "You are a helpful assistant."
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": "What is your name?"
|
|
},
|
|
{
|
|
"role": "assistant",
|
|
"content": "My name is Qwen."
|
|
}
|
|
],
|
|
"source": "self-made"
|
|
}
|
|
|
|
Above are two examples of each data sample in the dataset. Each sample
|
|
is a JSON object with the following fields: ``type``, ``messages`` and
|
|
``source``. ``messages`` is required while the others are optional for
|
|
you to label your data format and data source. The ``messages`` field is
|
|
a list of JSON objects, each of which has two fields: ``role`` and
|
|
``content``. ``role`` can be ``system``, ``user``, or ``assistant``.
|
|
``content`` is the text of the message. ``source`` is the source of the
|
|
data, which can be ``self-made``, ``alpaca``, ``open-hermes``, or any
|
|
other string.
|
|
|
|
To make the jsonl file, you can use ``json`` to save a list of
|
|
dictionaries to the jsonl file:
|
|
|
|
.. code:: python
|
|
|
|
import json
|
|
|
|
with open('data.jsonl', 'w') as f:
|
|
for sample in samples:
|
|
f.write(json.dumps(sample) + '\n')
|
|
|
|
Quickstart
|
|
----------
|
|
|
|
For you to start finetuning quickly, we directly provide a shell script
|
|
for you to run without paying attention to details. You need
|
|
different hyperparameters for different types of training, e.g.,
|
|
single-GPU / multi-GPU training, full-parameter tuning, LoRA, or Q-LoRA.
|
|
|
|
|
|
|
|
.. code:: bash
|
|
|
|
cd examples/sft
|
|
bash finetune.sh -m <model_path> -d <data_path> --deepspeed <config_path> [--use_lora True] [--q_lora True]
|
|
|
|
|
|
Specify the ``<model_path>`` for your model, ``<data_path>`` for your
|
|
data, and ``<config_path>`` for your deepspeed configuration.
|
|
If you use LoRA or Q-LoRA, just add ``--use_lora True`` or
|
|
``--q_lora True`` based on your requirements.
|
|
This is the simplest way to start finetuning. If you want to change more
|
|
hyperparameters, you can dive into the script and modify those
|
|
parameters.
|
|
|
|
Advanced Usages
|
|
---------------
|
|
|
|
In this section, we introduce the details of the scripts, including the
|
|
core python script as well as the corresponding shell script.
|
|
|
|
Shell Script
|
|
~~~~~~~~~~~~~
|
|
|
|
Before we introduce the python code, we provide a brief introduction to
|
|
the shell script with commands. We provide some guidance inside the
|
|
shell script and here we take ``finetune.sh`` as an example.
|
|
|
|
To set up the environment variables for distributed training (or
|
|
single-GPU training), specify the following variables:
|
|
``GPUS_PER_NODE``, ``NNODES``, ``NODE_RANK``, ``MASTER_ADDR``, and
|
|
``MASTER_PORT``. No need to worry too much about them as we provide the
|
|
default settings for you. In the command, you can pass in the argument
|
|
``-m`` and ``-d`` to specify the model path and data path, respectively.
|
|
You can also pass in the argument ``--deepspeed`` to specify the
|
|
deepspeed configuration file. We provide two configuration files for
|
|
ZeRO2 and ZeRO3, and you can choose one based on your requirements. In
|
|
most cases, we recommend using ZeRO3 for multi-GPU training except for
|
|
Q-LoRA, where we recommend using ZeRO2.
|
|
|
|
There are a series of hyperparameters to tune. Passing in ``--bf16`` or
|
|
``--fp16`` to specify the precision for mixed precision training.
|
|
The other significant hyperparameters include:
|
|
|
|
- ``--output_dir``: the path of your output models or adapters.
|
|
- ``--num_train_epochs``: the number of training epochs.
|
|
- ``--gradient_accumulation_steps``: the number of gradient
|
|
accumulation steps.
|
|
- ``--per_device_train_batch_size``: the batch size per GPU for
|
|
training, and the total batch size is equalt to
|
|
``per_device_train_batch_size`` :math:`\times` ``number_of_gpus``
|
|
:math:`\times` ``gradient_accumulation_steps``.
|
|
- ``--learning_rate``: the learning rate.
|
|
- ``--warmup_steps``: the number of warmup steps.
|
|
- ``--lr_scheduler_type``: the type of learning rate scheduler.
|
|
- ``--weight_decay``: the value of weight decay.
|
|
- ``--adam_beta2``: the value of :math:`\beta_2` in Adam.
|
|
- ``--model_max_length``: the maximum sequence length.
|
|
- ``--use_lora``: whether to use LoRA. Adding ``--q_lora`` can enable
|
|
Q-LoRA.
|
|
- ``--gradient_checkpointing``: whether to use gradient checkpointing.
|
|
|
|
Python Script
|
|
~~~~~~~~~~~~~
|
|
|
|
In this script, we mainly use ``trainer`` from HF and ``peft`` to train
|
|
our models. We also use ``deepspeed`` to accelerate the training
|
|
process. The script is very simple and easy to understand.
|
|
|
|
.. code:: python
|
|
|
|
@dataclass
|
|
@dataclass
|
|
class ModelArguments:
|
|
model_name_or_path: Optional[str] = field(default="Qwen/Qwen-7B")
|
|
|
|
|
|
@dataclass
|
|
class DataArguments:
|
|
data_path: str = field(
|
|
default=None, metadata={"help": "Path to the training data."}
|
|
)
|
|
eval_data_path: str = field(
|
|
default=None, metadata={"help": "Path to the evaluation data."}
|
|
)
|
|
lazy_preprocess: bool = False
|
|
|
|
|
|
@dataclass
|
|
class TrainingArguments(transformers.TrainingArguments):
|
|
cache_dir: Optional[str] = field(default=None)
|
|
optim: str = field(default="adamw_torch")
|
|
model_max_length: int = field(
|
|
default=8192,
|
|
metadata={
|
|
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
|
|
},
|
|
)
|
|
use_lora: bool = False
|
|
|
|
|
|
@dataclass
|
|
class LoraArguments:
|
|
lora_r: int = 64
|
|
lora_alpha: int = 16
|
|
lora_dropout: float = 0.05
|
|
lora_target_modules: List[str] = field(
|
|
default_factory=lambda: [
|
|
"q_proj",
|
|
"k_proj",
|
|
"v_proj",
|
|
"o_proj",
|
|
"up_proj",
|
|
"gate_proj",
|
|
"down_proj",
|
|
]
|
|
)
|
|
lora_weight_path: str = ""
|
|
lora_bias: str = "none"
|
|
q_lora: bool = False
|
|
|
|
The classes for arguments allow you to specify hyperparameters for
|
|
model, data, training, and additionally LoRA if you use LoRA or Q-LoRA
|
|
to train your model. Specifically, ``model-max-length`` is a key
|
|
hyperparameter that determines your maximum sequence length of your
|
|
training data.
|
|
|
|
``LoRAArguments`` includes the hyperparameters for LoRA or Q-LoRA:
|
|
|
|
- ``lora_r``: the rank for LoRA;
|
|
- ``lora_alpha``: the alpha value for LoRA;
|
|
- ``lora_dropout``: the dropout rate for LoRA;
|
|
- ``lora_target_modules``: the target modules for LoRA. By default we
|
|
tune all linear layers;
|
|
- ``lora_weight_path``: the path to the weight file for LoRA;
|
|
- ``lora_bias``: the bias for LoRA;
|
|
- ``q_lora``: whether to use Q-LoRA.
|
|
|
|
|
|
.. code:: python
|
|
|
|
def maybe_zero_3(param):
|
|
if hasattr(param, "ds_id"):
|
|
assert param.ds_status == ZeroParamStatus.NOT_AVAILABLE
|
|
with zero.GatheredParameters([param]):
|
|
param = param.data.detach().cpu().clone()
|
|
else:
|
|
param = param.detach().cpu().clone()
|
|
return param
|
|
|
|
|
|
# Borrowed from peft.utils.get_peft_model_state_dict
|
|
def get_peft_state_maybe_zero_3(named_params, bias):
|
|
if bias == "none":
|
|
to_return = {k: t for k, t in named_params if "lora_" in k}
|
|
elif bias == "all":
|
|
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
|
|
elif bias == "lora_only":
|
|
to_return = {}
|
|
maybe_lora_bias = {}
|
|
lora_bias_names = set()
|
|
for k, t in named_params:
|
|
if "lora_" in k:
|
|
to_return[k] = t
|
|
bias_name = k.split("lora_")[0] + "bias"
|
|
lora_bias_names.add(bias_name)
|
|
elif "bias" in k:
|
|
maybe_lora_bias[k] = t
|
|
for k, t in maybe_lora_bias:
|
|
if bias_name in lora_bias_names:
|
|
to_return[bias_name] = t
|
|
else:
|
|
raise NotImplementedError
|
|
to_return = {k: maybe_zero_3(v) for k, v in to_return.items()}
|
|
return to_return
|
|
|
|
|
|
def safe_save_model_for_hf_trainer(
|
|
trainer: transformers.Trainer, output_dir: str, bias="none"
|
|
):
|
|
"""Collects the state dict and dump to disk."""
|
|
# check if zero3 mode enabled
|
|
if deepspeed.is_deepspeed_zero3_enabled():
|
|
state_dict = trainer.model_wrapped._zero3_consolidated_16bit_state_dict()
|
|
else:
|
|
if trainer.args.use_lora:
|
|
state_dict = get_peft_state_maybe_zero_3(
|
|
trainer.model.named_parameters(), bias
|
|
)
|
|
else:
|
|
state_dict = trainer.model.state_dict()
|
|
if trainer.args.should_save and trainer.args.local_rank == 0:
|
|
trainer._save(output_dir, state_dict=state_dict)
|
|
|
|
The method ``safe_save_model_for_hf_trainer``, which uses
|
|
``get_peft_state_maybe_zero_3``, helps tackle the problems in saving
|
|
models trained either with or without ZeRO3.
|
|
|
|
.. code:: python
|
|
|
|
def preprocess(
|
|
messages,
|
|
tokenizer: transformers.PreTrainedTokenizer,
|
|
max_len: int,
|
|
) -> Dict:
|
|
"""Preprocesses the data for supervised fine-tuning."""
|
|
|
|
texts = []
|
|
for i, msg in enumerate(messages):
|
|
texts.append(
|
|
tokenizer.apply_chat_template(
|
|
msg,
|
|
tokenize=True,
|
|
add_generation_prompt=False,
|
|
padding=True,
|
|
max_length=max_len,
|
|
truncation=True,
|
|
)
|
|
)
|
|
input_ids = torch.tensor(texts, dtype=torch.int)
|
|
target_ids = input_ids.clone()
|
|
target_ids[target_ids == tokenizer.pad_token_id] = IGNORE_TOKEN_ID
|
|
attention_mask = input_ids.ne(tokenizer.pad_token_id)
|
|
|
|
return dict(
|
|
input_ids=input_ids, target_ids=target_ids, attention_mask=attention_mask
|
|
)
|
|
|
|
For data preprocessing, we use ``preprocess`` to organize the data.
|
|
Specifically, we apply our ChatML template to the texts. If you prefer
|
|
other chat templates, you can use others, e.g., by still applying
|
|
``apply_chat_template()`` with another tokenizer. The chat template is
|
|
stored in the ``tokenizer_config.json`` in the HF repo. Additionally, we
|
|
pad the sequence of each sample to the maximum length for training.
|
|
|
|
.. code:: python
|
|
|
|
class SupervisedDataset(Dataset):
|
|
"""Dataset for supervised fine-tuning."""
|
|
|
|
def __init__(
|
|
self, raw_data, tokenizer: transformers.PreTrainedTokenizer, max_len: int
|
|
):
|
|
super(SupervisedDataset, self).__init__()
|
|
|
|
rank0_print("Formatting inputs...")
|
|
messages = [example["messages"] for example in raw_data]
|
|
data_dict = preprocess(messages, tokenizer, max_len)
|
|
|
|
self.input_ids = data_dict["input_ids"]
|
|
self.target_ids = data_dict["target_ids"]
|
|
self.attention_mask = data_dict["attention_mask"]
|
|
|
|
def __len__(self):
|
|
return len(self.input_ids)
|
|
|
|
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
|
return dict(
|
|
input_ids=self.input_ids[i],
|
|
labels=self.labels[i],
|
|
attention_mask=self.attention_mask[i],
|
|
)
|
|
|
|
|
|
class LazySupervisedDataset(Dataset):
|
|
"""Dataset for supervised fine-tuning."""
|
|
|
|
def __init__(
|
|
self, raw_data, tokenizer: transformers.PreTrainedTokenizer, max_len: int
|
|
):
|
|
super(LazySupervisedDataset, self).__init__()
|
|
self.tokenizer = tokenizer
|
|
self.max_len = max_len
|
|
|
|
rank0_print("Formatting inputs...Skip in lazy mode")
|
|
self.tokenizer = tokenizer
|
|
self.raw_data = raw_data
|
|
self.cached_data_dict = {}
|
|
|
|
def __len__(self):
|
|
return len(self.raw_data)
|
|
|
|
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
|
if i in self.cached_data_dict:
|
|
return self.cached_data_dict[i]
|
|
|
|
ret = preprocess([self.raw_data[i]["messages"]], self.tokenizer, self.max_len)
|
|
ret = dict(
|
|
input_ids=ret["input_ids"][0],
|
|
labels=ret["target_ids"][0],
|
|
attention_mask=ret["attention_mask"][0],
|
|
)
|
|
self.cached_data_dict[i] = ret
|
|
|
|
return ret
|
|
|
|
|
|
def make_supervised_data_module(
|
|
tokenizer: transformers.PreTrainedTokenizer,
|
|
data_args,
|
|
max_len,
|
|
) -> Dict:
|
|
"""Make dataset and collator for supervised fine-tuning."""
|
|
dataset_cls = (
|
|
LazySupervisedDataset if data_args.lazy_preprocess else SupervisedDataset
|
|
)
|
|
rank0_print("Loading data...")
|
|
|
|
train_data = []
|
|
with open(data_args.data_path, "r") as f:
|
|
for line in f:
|
|
train_data.append(json.loads(line))
|
|
train_dataset = dataset_cls(train_data, tokenizer=tokenizer, max_len=max_len)
|
|
|
|
if data_args.eval_data_path:
|
|
eval_data = []
|
|
with open(data_args.eval_data_path, "r") as f:
|
|
for line in f:
|
|
eval_data.append(json.loads(line))
|
|
eval_dataset = dataset_cls(eval_data, tokenizer=tokenizer, max_len=max_len)
|
|
else:
|
|
eval_dataset = None
|
|
|
|
return dict(train_dataset=train_dataset, eval_dataset=eval_dataset)
|
|
|
|
Then we utilize ``make_supervised_data_module`` by using
|
|
``SupervisedDataset`` or ``LazySupervisedDataset`` to build the dataset.
|
|
|
|
.. code:: python
|
|
|
|
def train():
|
|
global local_rank
|
|
|
|
parser = transformers.HfArgumentParser(
|
|
(ModelArguments, DataArguments, TrainingArguments, LoraArguments)
|
|
)
|
|
(
|
|
model_args,
|
|
data_args,
|
|
training_args,
|
|
lora_args,
|
|
) = parser.parse_args_into_dataclasses()
|
|
|
|
# This serves for single-gpu qlora.
|
|
if (
|
|
getattr(training_args, "deepspeed", None)
|
|
and int(os.environ.get("WORLD_SIZE", 1)) == 1
|
|
):
|
|
training_args.distributed_state.distributed_type = DistributedType.DEEPSPEED
|
|
|
|
local_rank = training_args.local_rank
|
|
|
|
device_map = None
|
|
world_size = int(os.environ.get("WORLD_SIZE", 1))
|
|
ddp = world_size != 1
|
|
if lora_args.q_lora:
|
|
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} if ddp else "auto"
|
|
if len(training_args.fsdp) > 0 or deepspeed.is_deepspeed_zero3_enabled():
|
|
logging.warning("FSDP or ZeRO3 is incompatible with QLoRA.")
|
|
|
|
model_load_kwargs = {
|
|
"low_cpu_mem_usage": not deepspeed.is_deepspeed_zero3_enabled(),
|
|
}
|
|
|
|
compute_dtype = (
|
|
torch.float16
|
|
if training_args.fp16
|
|
else (torch.bfloat16 if training_args.bf16 else torch.float32)
|
|
)
|
|
|
|
# Load model and tokenizer
|
|
config = transformers.AutoConfig.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
cache_dir=training_args.cache_dir,
|
|
)
|
|
config.use_cache = False
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
config=config,
|
|
cache_dir=training_args.cache_dir,
|
|
device_map=device_map,
|
|
quantization_config=BitsAndBytesConfig(
|
|
load_in_4bit=True,
|
|
bnb_4bit_use_double_quant=True,
|
|
bnb_4bit_quant_type="nf4",
|
|
bnb_4bit_compute_dtype=compute_dtype,
|
|
)
|
|
if training_args.use_lora and lora_args.q_lora
|
|
else None,
|
|
**model_load_kwargs,
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
cache_dir=training_args.cache_dir,
|
|
model_max_length=training_args.model_max_length,
|
|
padding_side="right",
|
|
use_fast=False,
|
|
)
|
|
|
|
if training_args.use_lora:
|
|
lora_config = LoraConfig(
|
|
r=lora_args.lora_r,
|
|
lora_alpha=lora_args.lora_alpha,
|
|
target_modules=lora_args.lora_target_modules,
|
|
lora_dropout=lora_args.lora_dropout,
|
|
bias=lora_args.lora_bias,
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
if lora_args.q_lora:
|
|
model = prepare_model_for_kbit_training(
|
|
model, use_gradient_checkpointing=training_args.gradient_checkpointing
|
|
)
|
|
|
|
model = get_peft_model(model, lora_config)
|
|
|
|
# Print peft trainable params
|
|
model.print_trainable_parameters()
|
|
|
|
if training_args.gradient_checkpointing:
|
|
model.enable_input_require_grads()
|
|
|
|
# Load data
|
|
data_module = make_supervised_data_module(
|
|
tokenizer=tokenizer, data_args=data_args, max_len=training_args.model_max_length
|
|
)
|
|
|
|
# Start trainer
|
|
trainer = Trainer(
|
|
model=model, tokenizer=tokenizer, args=training_args, **data_module
|
|
)
|
|
|
|
# `not training_args.use_lora` is a temporary workaround for the issue that there are problems with
|
|
# loading the checkpoint when using LoRA with DeepSpeed.
|
|
# Check this issue https://github.com/huggingface/peft/issues/746 for more information.
|
|
if (
|
|
list(pathlib.Path(training_args.output_dir).glob("checkpoint-*"))
|
|
and not training_args.use_lora
|
|
):
|
|
trainer.train(resume_from_checkpoint=True)
|
|
else:
|
|
trainer.train()
|
|
trainer.save_state()
|
|
|
|
safe_save_model_for_hf_trainer(
|
|
trainer=trainer, output_dir=training_args.output_dir, bias=lora_args.lora_bias
|
|
)
|
|
|
|
The ``train`` method is the key to the training. In general, it loads
|
|
the tokenizer and model with ``AutoTokenizer.from_pretrained()`` and
|
|
``AutoModelForCausalLM.from_pretrained()``. If we use LoRA, the method
|
|
will initialize LoRA configuration with ``LoraConfig``. If we apply
|
|
Q-LoRA, we should use ``prepare_model_for_kbit_training``. Note that for
|
|
now it still does not support resume for LoRA. Then we leave the
|
|
following efforts to ``trainer`` and have a cup of coffee!
|
|
|
|
Next Step
|
|
---------
|
|
|
|
Now, you are able to use a very simple script to perform different types
|
|
of SFT. Alternatively, you can use more advanced training libraries,
|
|
such as
|
|
`Axolotl <https://github.com/OpenAccess-AI-Collective/axolotl>`__ or
|
|
`LLaMA-Factory <https://github.com/hiyouga/LLaMA-Factory>`__, to enjoy
|
|
more functionalities. To take a step forward, after SFT, you can
|
|
consider RLHF to align your model to human preferences! Stay tuned for
|
|
our next tutorial on RLHF!
|