211 lines
8.9 KiB
Python
211 lines
8.9 KiB
Python
#####################################################################################################
|
|
# 继续训练功能:修改训练任务时,若勾选复用上次结果,则可在新训练任务的输出路径中读取到上次结果
|
|
#
|
|
# 示例用法
|
|
# - 增加两个训练参数
|
|
# 'ckpt_save_name' 此次任务的输出文件名,用于保存此次训练的模型文件名称(不带后缀)
|
|
# 'ckpt_load_name' 上一次任务的输出文件名,用于加载上一次输出的模型文件名称(不带后缀),首次训练默认为空,则不读取任何文件
|
|
# - 训练代码中判断 'ckpt_load_name' 是否为空,若不为空,则为继续训练任务
|
|
#####################################################################################################
|
|
|
|
|
|
import os
|
|
import argparse
|
|
import moxing as mox
|
|
from config import mnist_cfg as cfg
|
|
from dataset import create_dataset
|
|
from dataset_distributed import create_dataset_parallel
|
|
from lenet import LeNet5
|
|
import mindspore.nn as nn
|
|
from mindspore import context
|
|
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
|
from mindspore import load_checkpoint, load_param_into_net
|
|
from mindspore.train import Model
|
|
from mindspore.nn.metrics import Accuracy
|
|
from mindspore.context import ParallelMode
|
|
from mindspore.communication.management import init, get_rank
|
|
import mindspore.ops as ops
|
|
import time
|
|
|
|
### Copy single dataset from obs to training image###
|
|
def ObsToEnv(obs_data_url, data_dir):
|
|
try:
|
|
mox.file.copy_parallel(obs_data_url, data_dir)
|
|
print("Successfully Download {} to {}".format(obs_data_url, data_dir))
|
|
except Exception as e:
|
|
print('moxing download {} to {} failed: '.format(obs_data_url, data_dir) + str(e))
|
|
#Set a cache file to determine whether the data has been copied to obs.
|
|
#If this file exists during multi-card training, there is no need to copy the dataset multiple times.
|
|
f = open("/cache/download_input.txt", 'w')
|
|
f.close()
|
|
try:
|
|
if os.path.exists("/cache/download_input.txt"):
|
|
print("download_input succeed")
|
|
except Exception as e:
|
|
print("download_input failed")
|
|
return
|
|
|
|
### Copy the output to obs###
|
|
def EnvToObs(train_dir, obs_train_url):
|
|
try:
|
|
mox.file.copy_parallel(train_dir, obs_train_url)
|
|
print("Successfully Upload {} to {}".format(train_dir,obs_train_url))
|
|
except Exception as e:
|
|
print('moxing upload {} to {} failed: '.format(train_dir,obs_train_url) + str(e))
|
|
return
|
|
|
|
def EnvUrlToObs(ckpt_url, obs_ckpt_url):
|
|
try:
|
|
mox.file.copy(ckpt_url, obs_ckpt_url)
|
|
print("Successfully Download {} to {}".format(ckpt_url,obs_ckpt_url))
|
|
except Exception as e:
|
|
print('moxing download {} to {} failed: '.format(ckpt_url, obs_ckpt_url) + str(e))
|
|
return
|
|
|
|
def DownloadFromQizhi(obs_data_url, data_dir):
|
|
device_num = int(os.getenv('RANK_SIZE'))
|
|
if device_num == 1:
|
|
ObsToEnv(obs_data_url,data_dir)
|
|
context.set_context(mode=context.GRAPH_MODE,device_target=args.device_target)
|
|
if device_num > 1:
|
|
# set device_id and init for multi-card training
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=int(os.getenv('ASCEND_DEVICE_ID')))
|
|
context.reset_auto_parallel_context()
|
|
context.set_auto_parallel_context(device_num = device_num, parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True, parameter_broadcast=True)
|
|
init()
|
|
#Copying obs data does not need to be executed multiple times, just let the 0th card copy the data
|
|
local_rank=int(os.getenv('RANK_ID'))
|
|
if local_rank%8==0:
|
|
ObsToEnv(obs_data_url,data_dir)
|
|
#If the cache file does not exist, it means that the copy data has not been completed,
|
|
#and Wait for 0th card to finish copying data
|
|
while not os.path.exists("/cache/download_input.txt"):
|
|
time.sleep(1)
|
|
return
|
|
|
|
def UploadToQizhi(train_dir, obs_train_url):
|
|
device_num = int(os.getenv('RANK_SIZE'))
|
|
local_rank=int(os.getenv('RANK_ID'))
|
|
if device_num == 1:
|
|
EnvToObs(train_dir, obs_train_url)
|
|
if device_num > 1:
|
|
if local_rank%8==0:
|
|
EnvToObs(train_dir, obs_train_url)
|
|
return
|
|
|
|
### --data_url,--train_url,--device_target,These 3 parameters must be defined first in a single dataset,
|
|
### otherwise an error will be reported.
|
|
###There is no need to add these parameters to the running parameters of the Qizhi platform,
|
|
###because they are predefined in the background, you only need to define them in your code.
|
|
parser = argparse.ArgumentParser(description='MindSpore Lenet Example')
|
|
parser.add_argument('--data_url',
|
|
help='path to training/inference dataset folder',
|
|
default= '/cache/data/')
|
|
|
|
parser.add_argument('--train_url',
|
|
help='output folder to save/load',
|
|
default= '/cache/output/')
|
|
|
|
parser.add_argument(
|
|
'--device_target',
|
|
type=str,
|
|
default="Ascend",
|
|
choices=['Ascend', 'CPU'],
|
|
help='device where the code will be implemented (default: Ascend),if to use the CPU on the Qizhi platform:device_target=CPU')
|
|
|
|
parser.add_argument('--epoch_size',
|
|
type=int,
|
|
default=5,
|
|
help='Training epochs.')
|
|
|
|
### continue task parameters
|
|
parser.add_argument('--ckpt_load_name',
|
|
help='model name to save/load',
|
|
default= '')
|
|
|
|
parser.add_argument('--ckpt_save_name',
|
|
help='model name to save/load',
|
|
default= 'checkpoint')
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args, unknown = parser.parse_known_args()
|
|
data_dir = '/cache/data'
|
|
base_path = '/cache/output'
|
|
|
|
try:
|
|
if not os.path.exists(data_dir):
|
|
os.makedirs(data_dir)
|
|
if not os.path.exists(base_path):
|
|
os.makedirs(base_path)
|
|
except Exception as e:
|
|
print("path already exists")
|
|
|
|
###Initialize and copy data to training image
|
|
###Copy data from obs to training image
|
|
DownloadFromQizhi(args.data_url, data_dir)
|
|
###The dataset path is used here:data_dir +"/train"
|
|
device_num = int(os.getenv('RANK_SIZE'))
|
|
if device_num == 1:
|
|
ds_train = create_dataset(os.path.join(data_dir, "train"), cfg.batch_size)
|
|
if device_num > 1:
|
|
ds_train = create_dataset_parallel(os.path.join(data_dir, "train"), cfg.batch_size)
|
|
if ds_train.get_dataset_size() == 0:
|
|
raise ValueError("Please check dataset size > 0 and batch_size <= dataset size")
|
|
|
|
network = LeNet5(cfg.num_classes)
|
|
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
|
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
|
|
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
|
|
|
|
### 继续训练模型加载
|
|
if args.ckpt_load_name:
|
|
ObsToEnv(args.train_url, base_path)
|
|
load_path = "{}/{}.ckpt".format(base_path,args.ckpt_load_name)
|
|
param_dict = load_checkpoint(load_path)
|
|
load_param_into_net(network, param_dict)
|
|
print("Successfully load ckpt file:{}, saved_net_work:{}".format(load_path,param_dict))
|
|
### 保存已有模型名避免重复回传结果
|
|
outputFiles = os.listdir(base_path)
|
|
|
|
if args.device_target != "Ascend":
|
|
model = Model(network,
|
|
net_loss,
|
|
net_opt,
|
|
metrics={"accuracy": Accuracy()})
|
|
else:
|
|
model = Model(network,
|
|
net_loss,
|
|
net_opt,
|
|
metrics={"accuracy": Accuracy()},
|
|
amp_level="O2")
|
|
|
|
config_ck = CheckpointConfig(
|
|
save_checkpoint_steps=cfg.save_checkpoint_steps,
|
|
keep_checkpoint_max=cfg.keep_checkpoint_max)
|
|
#Note that this method saves the model file on each card. You need to specify the save path on each card.
|
|
# In this example, get_rank() is added to distinguish different paths.
|
|
if device_num == 1:
|
|
save_path = base_path + "/"
|
|
if device_num > 1:
|
|
save_path = base_path + "/" + str(get_rank()) + "/"
|
|
ckpoint_cb = ModelCheckpoint(prefix=args.ckpt_save_name,
|
|
directory=save_path,
|
|
config=config_ck)
|
|
print("============== Starting Training ==============")
|
|
epoch_size = cfg['epoch_size']
|
|
if (args.epoch_size):
|
|
epoch_size = args.epoch_size
|
|
print('epoch_size is: ', epoch_size)
|
|
model.train(epoch_size,
|
|
ds_train,
|
|
callbacks=[time_cb, ckpoint_cb,
|
|
LossMonitor()])
|
|
|
|
### 将训练容器中的新输出模型 回传到启智社区
|
|
outputFilesNew = os.listdir(base_path)
|
|
new_models = [i for i in outputFilesNew if i not in outputFiles]
|
|
for n in new_models:
|
|
ckpt_url = base_path + "/" + n
|
|
obs_ckpt_url = args.train_url + "/" + n
|
|
EnvUrlToObs(ckpt_url, obs_ckpt_url) |