156 lines
6.8 KiB
Python
156 lines
6.8 KiB
Python
"""
|
||
######################## inference lenet example ########################
|
||
inference lenet according to model file
|
||
"""
|
||
|
||
"""
|
||
######################## 推理环境使用说明 ########################
|
||
1、在推理环境中,需要将数据集从obs拷贝到推理镜像中,推理完以后,需要将输出的结果拷贝到obs.
|
||
(1)将数据集从obs拷贝到推理镜像中:
|
||
obs_data_url = args.data_url
|
||
args.data_url = '/home/work/user-job-dir/data/'
|
||
if not os.path.exists(args.data_url):
|
||
os.mkdir(args.data_url)
|
||
try:
|
||
mox.file.copy_parallel(obs_data_url, args.data_url)
|
||
print("Successfully Download {} to {}".format(obs_data_url,
|
||
args.data_url))
|
||
except Exception as e:
|
||
print('moxing download {} to {} failed: '.format(
|
||
obs_data_url, args.data_url) + str(e))
|
||
|
||
(2)将模型文件从obs拷贝到推理镜像中:
|
||
obs_ckpt_url = args.ckpt_url
|
||
args.ckpt_url = '/home/work/user-job-dir/checkpoint.ckpt'
|
||
try:
|
||
mox.file.copy(obs_ckpt_url, args.ckpt_url)
|
||
print("Successfully Download {} to {}".format(obs_ckpt_url,
|
||
args.ckpt_url))
|
||
except Exception as e:
|
||
print('moxing download {} to {} failed: '.format(
|
||
obs_ckpt_url, args.ckpt_url) + str(e))
|
||
|
||
(3)将输出的结果拷贝回obs:
|
||
obs_result_url = args.result_url
|
||
args.result_url = '/home/work/user-job-dir/result/'
|
||
if not os.path.exists(args.result_url):
|
||
os.mkdir(args.result_url)
|
||
try:
|
||
mox.file.copy_parallel(args.result_url, obs_result_url)
|
||
print("Successfully Upload {} to {}".format(args.result_url, obs_result_url))
|
||
except Exception as e:
|
||
print('moxing upload {} to {} failed: '.format(args.result_url, obs_result_url) + str(e))
|
||
详细代码可参考以下示例代码:
|
||
"""
|
||
|
||
import os
|
||
import argparse
|
||
import moxing as mox
|
||
import mindspore.nn as nn
|
||
from mindspore import context
|
||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||
from mindspore.train import Model
|
||
from mindspore.nn.metrics import Accuracy
|
||
from mindspore import Tensor
|
||
import numpy as np
|
||
from glob import glob
|
||
from dataset import create_dataset
|
||
from config import mnist_cfg as cfg
|
||
from lenet import LeNet5
|
||
|
||
if __name__ == "__main__":
|
||
parser = argparse.ArgumentParser(description='MindSpore Lenet Example')
|
||
parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'],
|
||
help='device where the code will be implemented (default: Ascend)')
|
||
parser.add_argument('--data_url',
|
||
type=str,
|
||
default="./Data",
|
||
help='path where the dataset is saved')
|
||
parser.add_argument('--ckpt_url',
|
||
help='model to save/load',
|
||
default='./ckpt_url')
|
||
parser.add_argument('--result_url',
|
||
help='result folder to save/load',
|
||
default='./result')
|
||
|
||
args = parser.parse_args()
|
||
|
||
#将数据集从obs拷贝到推理镜像中:
|
||
obs_data_url = args.data_url
|
||
args.data_url = '/home/work/user-job-dir/data/'
|
||
if not os.path.exists(args.data_url):
|
||
os.mkdir(args.data_url)
|
||
try:
|
||
mox.file.copy_parallel(obs_data_url, args.data_url)
|
||
print("Successfully Download {} to {}".format(obs_data_url,
|
||
args.data_url))
|
||
except Exception as e:
|
||
print('moxing download {} to {} failed: '.format(
|
||
obs_data_url, args.data_url) + str(e))
|
||
|
||
#对文件夹进行操作,请使用mox.file.copy_parallel。如果拷贝一个文件。请使用mox.file.copy对文件操作,本次操作是对文件进行操作
|
||
#将模型文件从obs拷贝到推理镜像中:
|
||
obs_ckpt_url = args.ckpt_url
|
||
args.ckpt_url = '/home/work/user-job-dir/checkpoint.ckpt'
|
||
try:
|
||
mox.file.copy(obs_ckpt_url, args.ckpt_url)
|
||
print("Successfully Download {} to {}".format(obs_ckpt_url,
|
||
args.ckpt_url))
|
||
except Exception as e:
|
||
print('moxing download {} to {} failed: '.format(
|
||
obs_ckpt_url, args.ckpt_url) + str(e))
|
||
|
||
#设置输出路径result_url
|
||
obs_result_url = args.result_url
|
||
args.result_url = '/home/work/user-job-dir/result/'
|
||
if not os.path.exists(args.result_url):
|
||
os.mkdir(args.result_url)
|
||
|
||
args.dataset_path = args.data_url
|
||
args.save_checkpoint_path = args.ckpt_url
|
||
|
||
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
|
||
|
||
network = LeNet5(cfg.num_classes)
|
||
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||
repeat_size = cfg.epoch_size
|
||
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
|
||
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
|
||
|
||
print("============== Starting Testing ==============")
|
||
args.load_ckpt_url = os.path.join(args.save_checkpoint_path)
|
||
print("args.load_ckpt_url is:{}", args.load_ckpt_url )
|
||
param_dict = load_checkpoint(args.load_ckpt_url )
|
||
load_param_into_net(network, param_dict)
|
||
# 定义测试数据集,batch_size设置为1,则取出一张图片
|
||
ds_test = create_dataset(os.path.join(args.dataset_path, "test"), batch_size=1).create_dict_iterator()
|
||
data = next(ds_test)
|
||
|
||
# images为测试图片,labels为测试图片的实际分类
|
||
images = data["image"].asnumpy()
|
||
labels = data["label"].asnumpy()
|
||
print('Tensor:', Tensor(data['image']))
|
||
|
||
# 使用函数model.predict预测image对应分类
|
||
output = model.predict(Tensor(data['image']))
|
||
predicted = np.argmax(output.asnumpy(), axis=1)
|
||
pred = np.argmax(output.asnumpy(), axis=1)
|
||
print('predicted:', predicted)
|
||
print('pred:', pred)
|
||
|
||
# 输出预测分类与实际分类,并输出到result_url
|
||
print(f'Predicted: "{predicted[0]}", Actual: "{labels[0]}"')
|
||
filename = 'result.txt'
|
||
file_path = os.path.join(args.result_url, filename)
|
||
with open(file_path, 'a+') as file:
|
||
file.write(" {}: {:.2f} \n".format("Predicted", predicted[0]))
|
||
|
||
# Upload results to obs
|
||
######################## 将输出的结果拷贝到obs(固定写法) ########################
|
||
# 把推理后的结果从本地的运行环境拷贝回obs,在启智平台相对应的推理任务中会提供下载
|
||
try:
|
||
mox.file.copy_parallel(args.result_url, obs_result_url)
|
||
print("Successfully Upload {} to {}".format(args.result_url, obs_result_url))
|
||
except Exception as e:
|
||
print('moxing upload {} to {} failed: '.format(args.result_url, obs_result_url) + str(e))
|
||
######################## 将输出的模型拷贝到obs ######################## |