250 lines
11 KiB
Python
250 lines
11 KiB
Python
"""
|
||
######################## multi-dataset train lenet example ########################
|
||
This example is a multi-dataset training tutorial. If it is a single dataset, please refer to the single dataset
|
||
training tutorial train.py. This example cannot be used for a single dataset!
|
||
"""
|
||
"""
|
||
######################## Instructions for using the training environment ########################
|
||
1、(1)The structure of the dataset uploaded for multi-dataset training in this example
|
||
MNISTData.zip
|
||
├── test
|
||
│ ├── t10k-images-idx3-ubyte
|
||
│ └── t10k-labels-idx1-ubyte
|
||
└── train
|
||
├── train-images-idx3-ubyte
|
||
└── train-labels-idx1-ubyte
|
||
|
||
checkpoint_lenet-1_1875.zip
|
||
├── checkpoint_lenet-1_1875.ckpt
|
||
|
||
(2)The dataset structure in the training image for multiple datasets in this example
|
||
workroot
|
||
├── MNISTData
|
||
| ├── test
|
||
| └── train
|
||
└── checkpoint_lenet-1_1875
|
||
├── checkpoint_lenet-1_1875.ckpt
|
||
|
||
2、Multi-dataset training requires predefined functions
|
||
(1)Defines whether the task is a training environment or a debugging environment.
|
||
def WorkEnvironment(environment):
|
||
if environment == 'train':
|
||
workroot = '/home/work/user-job-dir' #The training task uses this parameter to represent the local path of the training image
|
||
elif environment == 'debug':
|
||
workroot = '/home/ma-user/work' #The debug task uses this parameter to represent the local path of the debug image
|
||
print('current work mode:' + environment + ', workroot:' + workroot)
|
||
return workroot
|
||
|
||
(2)Copy multiple datasets from obs to training image
|
||
def MultiObsToEnv(multi_data_url, workroot):
|
||
multi_data_json = json.loads(multi_data_url) #Parse multi_data_url
|
||
for i in range(len(multi_data_json)):
|
||
path = workroot + "/" + multi_data_json[i]["dataset_name"]
|
||
if not os.path.exists(path):
|
||
os.makedirs(path)
|
||
try:
|
||
mox.file.copy_parallel(multi_data_json[i]["dataset_url"], path)
|
||
print("Successfully Download {} to {}".format(multi_data_json[i]["dataset_url"],
|
||
path))
|
||
except Exception as e:
|
||
print('moxing download {} to {} failed: '.format(
|
||
multi_data_json[i]["dataset_url"], path) + str(e))
|
||
return
|
||
|
||
***The input and output of the MultiObsToEnv function in this example:
|
||
Input for multi_data_url:
|
||
[
|
||
{
|
||
"dataset_url": "s3://test-opendata/attachment/e/a/eae3a316-42d6-4a43-a484-1fa573eab388e
|
||
ae3a316-42d6-4a43-a484-1fa573eab388/", #obs path of the dataset
|
||
"dataset_name": "MNIST_Data" #the name of the dataset
|
||
},
|
||
{
|
||
"dataset_url": "s3://test-opendata/attachment/2/c/2c59be66-64ec-41ca-b311-f51a486eabf82c
|
||
59be66-64ec-41ca-b311-f51a486eabf8/",
|
||
"dataset_name": "checkpoint_lenet-1_1875"
|
||
}
|
||
]
|
||
Purpose of multi_data_url:
|
||
The purpose of the MultiObsToEnv function is to copy multiple datasets from obs to the training image
|
||
and build the dataset path in the training image.
|
||
For example, the path of the MNIST_Data dataset in this example is /home/work/user-job-dir/MNISTData,
|
||
The path to the checkpoint_lenet-1_1875 dataset is /home/work/user-job-dir/checkpoint_lenet-1_1875
|
||
|
||
(3)Copy the output model to obs.
|
||
def EnvToObs(train_dir, obs_train_url):
|
||
try:
|
||
mox.file.copy_parallel(train_dir, obs_train_url)
|
||
print("Successfully Upload {} to {}".format(train_dir,
|
||
obs_train_url))
|
||
except Exception as e:
|
||
print('moxing upload {} to {} failed: '.format(train_dir,
|
||
obs_train_url) + str(e))
|
||
return
|
||
|
||
3、4 parameters need to be defined
|
||
--data_url is the first dataset you selected on the Qizhi platform
|
||
--multi_data_url is the multi-dataset you selected on the Qizhi platform
|
||
|
||
--data_url,--multi_data_url,--train_url,--device_target,These 4 parameters must be defined first in a multi-dataset task,
|
||
otherwise an error will be reported.
|
||
There is no need to add these parameters to the running parameters of the Qizhi platform,
|
||
because they are predefined in the background, you only need to define them in your code
|
||
|
||
4、How the dataset is used
|
||
Multi-datasets use multi_data_url as input, workroot + dataset name + file or folder name in the dataset as the
|
||
calling path of the dataset in the training image.
|
||
For example, the calling path of the train folder in the MNIST_Data dataset in this example is
|
||
workroot + "/MNIST_Data" +"/train"
|
||
|
||
For details, please refer to the following sample code.
|
||
"""
|
||
|
||
import os
|
||
import argparse
|
||
|
||
import moxing as mox
|
||
from config import mnist_cfg as cfg
|
||
from dataset_distributed import create_dataset_parallel
|
||
from dataset import create_dataset
|
||
from lenet import LeNet5
|
||
import json
|
||
import mindspore.nn as nn
|
||
from mindspore import context
|
||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
||
from mindspore.train import Model
|
||
from mindspore.nn.metrics import Accuracy
|
||
from mindspore.common import set_seed
|
||
from mindspore import load_checkpoint, load_param_into_net
|
||
from mindspore.context import ParallelMode
|
||
from mindspore.communication.management import init, get_rank, get_group_size
|
||
import mindspore.ops as ops
|
||
|
||
# set device_id and init
|
||
device_id = int(os.getenv('ASCEND_DEVICE_ID'))
|
||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||
context.set_context(device_id=device_id)
|
||
init()
|
||
|
||
### Defines whether the task is a training environment or a debugging environment ###
|
||
def WorkEnvironment(environment):
|
||
if environment == 'train':
|
||
workroot = '/home/work/user-job-dir'
|
||
elif environment == 'debug':
|
||
workroot = '/home/ma-user/work'
|
||
print('current work mode:' + environment + ', workroot:' + workroot)
|
||
return workroot
|
||
|
||
### Copy multiple datasets from obs to training image ###
|
||
def MultiObsToEnv(multi_data_url, workroot):
|
||
multi_data_json = json.loads(multi_data_url)
|
||
for i in range(len(multi_data_json)):
|
||
path = workroot + "/" + multi_data_json[i]["dataset_name"]
|
||
if not os.path.exists(path):
|
||
os.makedirs(path)
|
||
try:
|
||
mox.file.copy_parallel(multi_data_json[i]["dataset_url"], path)
|
||
print("Successfully Download {} to {}".format(multi_data_json[i]["dataset_url"],
|
||
path))
|
||
except Exception as e:
|
||
print('moxing download {} to {} failed: '.format(
|
||
multi_data_json[i]["dataset_url"], path) + str(e))
|
||
return
|
||
### Copy the output model to obs ###
|
||
def EnvToObs(train_dir, obs_train_url):
|
||
try:
|
||
mox.file.copy_parallel(train_dir, obs_train_url)
|
||
print("Successfully Upload {} to {}".format(train_dir,
|
||
obs_train_url))
|
||
except Exception as e:
|
||
print('moxing upload {} to {} failed: '.format(train_dir,
|
||
obs_train_url) + str(e))
|
||
return
|
||
|
||
|
||
parser = argparse.ArgumentParser(description='MindSpore Lenet Example')
|
||
### --data_url,--multi_data_url,--train_url,--device_target,These 4 parameters must be defined first in a multi-dataset,
|
||
### otherwise an error will be reported.
|
||
### There is no need to add these parameters to the running parameters of the Qizhi platform,
|
||
### because they are predefined in the background, you only need to define them in your code.
|
||
parser.add_argument('--data_url',
|
||
help='path to training/inference dataset folder',
|
||
default= WorkEnvironment('train') + '/data/')
|
||
|
||
parser.add_argument('--multi_data_url',
|
||
help='path to multi dataset',
|
||
default= WorkEnvironment('train'))
|
||
|
||
parser.add_argument('--train_url',
|
||
help='model folder to save/load',
|
||
default= WorkEnvironment('train') + '/model/')
|
||
|
||
parser.add_argument(
|
||
'--device_target',
|
||
type=str,
|
||
default="Ascend",
|
||
choices=['Ascend', 'CPU'],
|
||
help='device where the code will be implemented (default: Ascend),if to use the CPU on the Qizhi platform:device_target=CPU')
|
||
|
||
parser.add_argument('--epoch_size',
|
||
type=int,
|
||
default=5,
|
||
help='Training epochs.')
|
||
set_seed(114514)
|
||
if __name__ == "__main__":
|
||
args = parser.parse_args()
|
||
# After defining the training environment, first execute the WorkEnv function and the GetMultiDataPath function to
|
||
# copy multiple datasets from obs to the training image
|
||
environment = 'train'
|
||
workroot = WorkEnvironment(environment)
|
||
MultiObsToEnv(args.multi_data_url, workroot)
|
||
|
||
### Define the output path in the training image
|
||
train_dir = workroot + '/model'
|
||
if not os.path.exists(train_dir):
|
||
os.makedirs(train_dir)
|
||
|
||
### Copy the dataset from obs to the training image ###
|
||
context.reset_auto_parallel_context()
|
||
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True)
|
||
ds_train = create_dataset_parallel(os.path.join(workroot + "/MNISTData", "train"),
|
||
cfg.batch_size)
|
||
if ds_train.get_dataset_size() == 0:
|
||
raise ValueError(
|
||
"Please check dataset size > 0 and batch_size <= dataset size")
|
||
network = LeNet5(cfg.num_classes)
|
||
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
|
||
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
|
||
|
||
### Load the trained model:workroot + "/checkpoint_lenet-1_1875"+"/checkpoint_lenet-1_1875.ckpt"
|
||
load_param_into_net(network, load_checkpoint(os.path.join(workroot + "/checkpoint_lenet-1_1875",
|
||
"checkpoint_lenet-1_1875.ckpt")))
|
||
|
||
if args.device_target != "Ascend":
|
||
model = Model(network,net_loss,net_opt,metrics={"accuracy": Accuracy()})
|
||
else:
|
||
model = Model(network, net_loss,net_opt,metrics={"accuracy": Accuracy()},amp_level="O2")
|
||
|
||
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
|
||
keep_checkpoint_max=cfg.keep_checkpoint_max)
|
||
#Note that this method saves the model file on each card. You need to specify the save path on each card.
|
||
# In the example, get_rank() is added to distinguish different paths.
|
||
ckpoint_cb = ModelCheckpoint(prefix="data_parallel",
|
||
directory=train_dir + "/" + str(get_rank()) + "/",
|
||
config=config_ck)
|
||
print("============== Starting Training ==============")
|
||
epoch_size = cfg['epoch_size']
|
||
if (args.epoch_size):
|
||
epoch_size = args.epoch_size
|
||
print('epoch_size is: ', epoch_size)
|
||
|
||
model.train(epoch_size,
|
||
ds_train,
|
||
callbacks=[time_cb, ckpoint_cb,
|
||
LossMonitor()])
|
||
###Copy the trained model data from the local running environment back to obs,
|
||
###and download it in the training task corresponding to the Qizhi platform
|
||
EnvToObs(train_dir, args.train_url)
|
||
|