97 lines
3.8 KiB
Python
97 lines
3.8 KiB
Python
"""
|
||
######################## train lenet dataparallel example ########################
|
||
train lenet and get network model files(.ckpt)
|
||
|
||
The training of the intelligent computing network currently supports single dataset training, and does not require
|
||
the obs copy process.It only needs to define two parameters and then call it directly:
|
||
train_dir = '/cache/output' #The location of the output
|
||
data_dir = '/cache/dataset' #The location of the dataset
|
||
|
||
"""
|
||
|
||
import os
|
||
import argparse
|
||
from dataset_distributed import create_dataset_parallel
|
||
import moxing as mox
|
||
from config import mnist_cfg as cfg
|
||
from lenet import LeNet5
|
||
import mindspore.nn as nn
|
||
from mindspore import context
|
||
from mindspore.common import set_seed
|
||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
||
from mindspore.train import Model
|
||
from mindspore.nn.metrics import Accuracy
|
||
from mindspore.context import ParallelMode
|
||
from mindspore.communication.management import init, get_rank, get_group_size
|
||
import mindspore.ops as ops
|
||
|
||
|
||
# set device_id and init
|
||
device_id = int(os.getenv('DEVICE_ID'))
|
||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||
context.set_context(device_id=device_id)
|
||
init()
|
||
|
||
parser = argparse.ArgumentParser(description='MindSpore Lenet Example')
|
||
|
||
parser.add_argument(
|
||
'--device_target',
|
||
type=str,
|
||
default="Ascend",
|
||
choices=['Ascend', 'CPU'],
|
||
help='device where the code will be implemented (default: Ascend),if to use the CPU on the Qizhi platform:device_target=CPU')
|
||
|
||
parser.add_argument('--epoch_size',
|
||
type=int,
|
||
default=5,
|
||
help='Training epochs.')
|
||
set_seed(114514)
|
||
if __name__ == "__main__":
|
||
args = parser.parse_args()
|
||
|
||
###define two parameters and then call it directly###
|
||
train_dir = '/cache/output'
|
||
data_dir = '/cache/dataset'
|
||
|
||
context.reset_auto_parallel_context()
|
||
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True)
|
||
ds_train = create_dataset_parallel(os.path.join(data_dir, "train"),
|
||
cfg.batch_size)
|
||
if ds_train.get_dataset_size() == 0:
|
||
raise ValueError(
|
||
"Please check dataset size > 0 and batch_size <= dataset size")
|
||
network = LeNet5(cfg.num_classes)
|
||
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
|
||
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
|
||
|
||
if args.device_target != "Ascend":
|
||
model = Model(network,
|
||
net_loss,
|
||
net_opt,
|
||
metrics={"accuracy": Accuracy()})
|
||
else:
|
||
model = Model(network,
|
||
net_loss,
|
||
net_opt,
|
||
metrics={"accuracy": Accuracy()},
|
||
amp_level="O2")
|
||
|
||
config_ck = CheckpointConfig(
|
||
save_checkpoint_steps=cfg.save_checkpoint_steps,
|
||
keep_checkpoint_max=cfg.keep_checkpoint_max)
|
||
#Note that this method saves the model file on each card. You need to specify the save path on each card.
|
||
# In the example, get_rank() is added to distinguish different paths.
|
||
ckpoint_cb = ModelCheckpoint(prefix="data_parallel",
|
||
directory=train_dir + "/" + str(get_rank()) + "/",
|
||
config=config_ck)
|
||
print("============== Starting Training ==============")
|
||
epoch_size = cfg['epoch_size']
|
||
if (args.epoch_size):
|
||
epoch_size = args.epoch_size
|
||
print('epoch_size is: ', epoch_size)
|
||
|
||
model.train(epoch_size,ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()], dataset_sink_mode=False)
|
||
|
||
|