138 lines
5.6 KiB
Python
138 lines
5.6 KiB
Python
#####################################################################################################
|
|
# 继续训练功能:修改训练任务时,若勾选复用上次结果,则可在新训练任务的输出路径中读取到上次结果
|
|
#
|
|
# 示例用法
|
|
# - 增加两个训练参数
|
|
# 'ckpt_save_name' 此次任务的输出文件名,用于保存此次训练的模型文件名称(不带后缀)
|
|
# 'ckpt_load_name' 上一次任务的输出文件名,用于加载上一次输出的模型文件名称(不带后缀),首次训练默认为空,则不读取任何文件
|
|
# - 训练代码中判断 'ckpt_load_name' 是否为空,若不为空,则为继续训练任务
|
|
#####################################################################################################
|
|
|
|
|
|
import os
|
|
import argparse
|
|
from config import mnist_cfg as cfg
|
|
from dataset import create_dataset
|
|
from dataset_distributed import create_dataset_parallel
|
|
from lenet import LeNet5
|
|
import mindspore.nn as nn
|
|
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
|
from mindspore import load_checkpoint, load_param_into_net
|
|
from mindspore.train import Model
|
|
from mindspore.nn.metrics import Accuracy
|
|
from mindspore.communication.management import get_rank
|
|
|
|
from openi import obs_copy_file
|
|
from openi import obs_copy_folder
|
|
from openi import openi_multidataset_to_env
|
|
|
|
parser = argparse.ArgumentParser(description='MindSpore Lenet Example')
|
|
parser.add_argument('--multi_data_url',
|
|
help='path to training/inference dataset folder',
|
|
default= '[{}]')
|
|
|
|
parser.add_argument('--train_url',
|
|
help='output folder to save/load',
|
|
default= '')
|
|
|
|
parser.add_argument(
|
|
'--device_target',
|
|
type=str,
|
|
default="Ascend",
|
|
choices=['Ascend', 'CPU'],
|
|
help='device where the code will be implemented (default: Ascend),if to use the CPU on the Qizhi platform:device_target=CPU')
|
|
|
|
parser.add_argument('--epoch_size',
|
|
type=int,
|
|
default=5,
|
|
help='Training epochs.')
|
|
|
|
### continue task parameters
|
|
parser.add_argument('--ckpt_load_name',
|
|
help='model name to save/load',
|
|
default= '')
|
|
|
|
parser.add_argument('--ckpt_save_name',
|
|
help='model name to save/load',
|
|
default= 'checkpoint')
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args, unknown = parser.parse_known_args()
|
|
data_dir = '/cache/data'
|
|
base_path = '/cache/output'
|
|
|
|
try:
|
|
if not os.path.exists(data_dir):
|
|
os.makedirs(data_dir)
|
|
if not os.path.exists(base_path):
|
|
os.makedirs(base_path)
|
|
except Exception as e:
|
|
print("path already exists")
|
|
|
|
openi_multidataset_to_env(args.multi_data_url, data_dir)
|
|
|
|
device_num = int(os.getenv('RANK_SIZE'))
|
|
if device_num == 1:
|
|
ds_train = create_dataset(os.path.join(data_dir + "/MNISTData", "train"), cfg.batch_size)
|
|
if device_num > 1:
|
|
ds_train = create_dataset_parallel(os.path.join(data_dir + "/MNISTData", "train"), cfg.batch_size)
|
|
if ds_train.get_dataset_size() == 0:
|
|
raise ValueError("Please check dataset size > 0 and batch_size <= dataset size")
|
|
|
|
network = LeNet5(cfg.num_classes)
|
|
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
|
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
|
|
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
|
|
|
|
### 继续训练模型加载
|
|
if args.ckpt_load_name:
|
|
obs_copy_folder(args.train_url, base_path)
|
|
load_path = "{}/{}.ckpt".format(base_path,args.ckpt_load_name)
|
|
param_dict = load_checkpoint(load_path)
|
|
load_param_into_net(network, param_dict)
|
|
print("Successfully load ckpt file:{}, saved_net_work:{}".format(load_path,param_dict))
|
|
### 保存已有模型名避免重复回传结果
|
|
outputFiles = os.listdir(base_path)
|
|
|
|
if args.device_target != "Ascend":
|
|
model = Model(network,
|
|
net_loss,
|
|
net_opt,
|
|
metrics={"accuracy": Accuracy()})
|
|
else:
|
|
model = Model(network,
|
|
net_loss,
|
|
net_opt,
|
|
metrics={"accuracy": Accuracy()},
|
|
amp_level="O2")
|
|
|
|
config_ck = CheckpointConfig(
|
|
save_checkpoint_steps=cfg.save_checkpoint_steps,
|
|
keep_checkpoint_max=cfg.keep_checkpoint_max)
|
|
#Note that this method saves the model file on each card. You need to specify the save path on each card.
|
|
# In this example, get_rank() is added to distinguish different paths.
|
|
if device_num == 1:
|
|
save_path = base_path + "/"
|
|
if device_num > 1:
|
|
save_path = base_path + "/" + str(get_rank()) + "/"
|
|
ckpoint_cb = ModelCheckpoint(prefix=args.ckpt_save_name,
|
|
directory=save_path,
|
|
config=config_ck)
|
|
print("============== Starting Training ==============")
|
|
epoch_size = cfg['epoch_size']
|
|
if (args.epoch_size):
|
|
epoch_size = args.epoch_size
|
|
print('epoch_size is: ', epoch_size)
|
|
model.train(epoch_size,
|
|
ds_train,
|
|
callbacks=[time_cb, ckpoint_cb,
|
|
LossMonitor()])
|
|
|
|
### 将训练容器中的新输出模型 回传到启智社区
|
|
outputFilesNew = os.listdir(base_path)
|
|
new_models = [i for i in outputFilesNew if i not in outputFiles]
|
|
for n in new_models:
|
|
ckpt_url = base_path + "/" + n
|
|
obs_ckpt_url = args.train_url + "/" + n
|
|
obs_copy_file(ckpt_url, obs_ckpt_url) |