92 lines
3.7 KiB
Python
92 lines
3.7 KiB
Python
|
||
"""
|
||
使用注意事项:
|
||
1、本示例需要用户定义的参数有--multi_data_url,--pretrain_url,--result_url,这3个参数任务中必须定义
|
||
具体的含义如下:
|
||
--multi_data_url是启智平台上选择的数据集的obs路径
|
||
--pretrain_url是启智平台上选择的预训练模型文件的obs路径
|
||
--result_url是训练结果回传到启智平台的obs路径
|
||
2、用户需要调用OpenI.py下的DatasetToEnv,PretrainToEnv,UploadToOpenI等函数,来实现数据集、预训练模型文件、训练结果的拷贝和回传
|
||
"""
|
||
|
||
import os
|
||
import argparse
|
||
import mindspore.nn as nn
|
||
import numpy as np
|
||
from mindspore import context
|
||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||
from mindspore.train import Model
|
||
from mindspore import Tensor
|
||
from dataset import create_dataset
|
||
from config import mnist_cfg as cfg
|
||
from lenet import LeNet5
|
||
|
||
from openi import openi_multidataset_to_env as DatasetToEnv
|
||
from openi import env_to_openi
|
||
from openi import pretrain_to_env
|
||
|
||
|
||
parser = argparse.ArgumentParser(description='MindSpore Lenet Example')
|
||
parser.add_argument('--multi_data_url',
|
||
type=str,
|
||
default= '[{}]',
|
||
help='path where the dataset is saved')
|
||
parser.add_argument('--pretrain_url',
|
||
help='model to save/load',
|
||
default= '[{}]')
|
||
parser.add_argument('--result_url',
|
||
help='result folder to save/load',
|
||
default= '')
|
||
parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'],
|
||
help='device where the code will be implemented (default: Ascend)')
|
||
|
||
if __name__ == "__main__":
|
||
args, unknown = parser.parse_known_args()
|
||
|
||
###Initialize the data and result directories in the inference image###
|
||
data_dir = '/cache/data'
|
||
pretrain_dir = '/cache/pretrain'
|
||
result_dir = '/cache/result'
|
||
if not os.path.exists(data_dir):
|
||
os.makedirs(data_dir)
|
||
if not os.path.exists(pretrain_dir):
|
||
os.makedirs(pretrain_dir)
|
||
if not os.path.exists(result_dir):
|
||
os.makedirs(result_dir)
|
||
|
||
###拷贝数据集到训练环境
|
||
DatasetToEnv(args.multi_data_url, data_dir)
|
||
|
||
###拷贝预训练模型文件到训练环境
|
||
pretrain_to_env(args.pretrain_url, pretrain_dir)
|
||
|
||
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
|
||
network = LeNet5(cfg.num_classes)
|
||
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||
repeat_size = cfg.epoch_size
|
||
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
|
||
model = Model(network, net_loss, net_opt, metrics={"Accuracy"})
|
||
|
||
print("============== Starting Testing ==============")
|
||
|
||
param_dict = load_checkpoint(os.path.join(pretrain_dir, "checkpoint_lenet-1_1875.ckpt"))
|
||
load_param_into_net(network, param_dict)
|
||
ds_test = create_dataset(os.path.join(data_dir + "/MNISTData", "test"), batch_size=1).create_dict_iterator()
|
||
data = next(ds_test)
|
||
images = data["image"].asnumpy()
|
||
labels = data["label"].asnumpy()
|
||
print('Tensor:', Tensor(data['image']))
|
||
output = model.predict(Tensor(data['image']))
|
||
predicted = np.argmax(output.asnumpy(), axis=1)
|
||
pred = np.argmax(output.asnumpy(), axis=1)
|
||
print('predicted:', predicted)
|
||
print('pred:', pred)
|
||
|
||
print(f'Predicted: "{predicted[0]}", Actual: "{labels[0]}"')
|
||
filename = 'result.txt'
|
||
file_path = os.path.join(result_dir, filename)
|
||
with open(file_path, 'a+') as file:
|
||
file.write(" {}: {:.2f} \n".format("Predicted", predicted[0]))
|
||
|
||
###上传训练结果到启智平台
|
||
env_to_openi(result_dir, args.result_url) |