229 lines
10 KiB
Python
229 lines
10 KiB
Python
"""
|
||
######################## Attention! ########################
|
||
智算网络需要在代码里使用mox拷贝数据集并解压,请参考函数C2netMultiObsToEnv;
|
||
不管是单数据集还是多数据集,在智算网络中都使用multi_data_url参数进行传递!
|
||
The intelligent computing network needs to use mox to copy the dataset and decompress it in the code,
|
||
please refer to the function C2netMultiObsToEnv()
|
||
|
||
######################## multi-dataset train lenet example ########################
|
||
This example is a multi-dataset training tutorial. If it is a single dataset, please refer to the single dataset
|
||
training tutorial train.py. This example cannot be used for a single dataset!
|
||
"""
|
||
"""
|
||
######################## Instructions for using the training environment ########################
|
||
1、(1)The structure of the dataset uploaded for multi-dataset training in this example
|
||
MNISTData.zip
|
||
├── test
|
||
└── train
|
||
|
||
checkpoint_lenet-1_1875.zip
|
||
├── checkpoint_lenet-1_1875.ckpt
|
||
|
||
(2)The dataset structure in the training image for multiple datasets in this example
|
||
workroot
|
||
├── MNISTData
|
||
| ├── test
|
||
| └── train
|
||
└── checkpoint_lenet-1_1875
|
||
├── checkpoint_lenet-1_1875.ckpt
|
||
|
||
2、Multi-dataset training requires predefined functions
|
||
(1)Copy multi-dataset from obs to training image and unzip
|
||
function C2netMultiObsToEnv(multi_data_url, data_dir)
|
||
|
||
(2)Copy the output to obs
|
||
function EnvToObs(train_dir, obs_train_url)
|
||
|
||
(2)Download the input from Qizhi And Init
|
||
function DownloadFromQizhi(multi_data_url, data_dir)
|
||
|
||
(2)Upload the output to Qizhi
|
||
function UploadToQizhi(train_dir, obs_train_url)
|
||
|
||
3、4 parameters need to be defined
|
||
--multi_data_url is the multi-dataset you selected on the Qizhi platform
|
||
|
||
--multi_data_url,--train_url,--device_target,These 3 parameters must be defined first in a multi-dataset task,
|
||
otherwise an error will be reported.
|
||
There is no need to add these parameters to the running parameters of the Qizhi platform,
|
||
because they are predefined in the background, you only need to define them in your code
|
||
|
||
4、How the dataset is used
|
||
Multi-datasets use multi_data_url as input, data_dir + dataset name + file or folder name in the dataset as the
|
||
calling path of the dataset in the training image.
|
||
For example, the calling path of the train folder in the MNIST_Data dataset in this example is
|
||
data_dir + "/MNIST_Data" +"/train"
|
||
|
||
For details, please refer to the following sample code.
|
||
"""
|
||
|
||
import os
|
||
import argparse
|
||
|
||
import moxing as mox
|
||
from config import mnist_cfg as cfg
|
||
from dataset import create_dataset
|
||
from dataset_distributed import create_dataset_parallel
|
||
from lenet import LeNet5
|
||
import json
|
||
import mindspore.nn as nn
|
||
from mindspore import context
|
||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
||
from mindspore.train import Model
|
||
from mindspore.nn.metrics import Accuracy
|
||
from mindspore import load_checkpoint, load_param_into_net
|
||
from mindspore.context import ParallelMode
|
||
from mindspore.communication.management import init, get_rank
|
||
import time
|
||
|
||
### Copy multiple datasets from obs to training image and unzip###
|
||
def C2netMultiObsToEnv(multi_data_url, data_dir):
|
||
#--multi_data_url is json data, need to do json parsing for multi_data_url
|
||
multi_data_json = json.loads(multi_data_url)
|
||
for i in range(len(multi_data_json)):
|
||
zipfile_path = data_dir + "/" + multi_data_json[i]["dataset_name"]
|
||
try:
|
||
mox.file.copy(multi_data_json[i]["dataset_url"], zipfile_path)
|
||
print("Successfully Download {} to {}".format(multi_data_json[i]["dataset_url"],zipfile_path))
|
||
#get filename and unzip the dataset
|
||
filename = os.path.splitext(multi_data_json[i]["dataset_name"])[0]
|
||
filePath = data_dir + "/" + filename
|
||
if not os.path.exists(filePath):
|
||
os.makedirs(filePath)
|
||
os.system("unzip {} -d {}".format(zipfile_path, filePath))
|
||
|
||
except Exception as e:
|
||
print('moxing download {} to {} failed: '.format(
|
||
multi_data_json[i]["dataset_url"], zipfile_path) + str(e))
|
||
#Set a cache file to determine whether the data has been copied to obs.
|
||
#If this file exists during multi-card training, there is no need to copy the dataset multiple times.
|
||
f = open("/cache/download_input.txt", 'w')
|
||
f.close()
|
||
try:
|
||
if os.path.exists("/cache/download_input.txt"):
|
||
print("download_input succeed")
|
||
except Exception as e:
|
||
print("download_input failed")
|
||
return
|
||
### Copy the output model to obs ###
|
||
def EnvToObs(train_dir, obs_train_url):
|
||
try:
|
||
mox.file.copy_parallel(train_dir, obs_train_url)
|
||
print("Successfully Upload {} to {}".format(train_dir,
|
||
obs_train_url))
|
||
except Exception as e:
|
||
print('moxing upload {} to {} failed: '.format(train_dir,
|
||
obs_train_url) + str(e))
|
||
return
|
||
def DownloadFromQizhi(multi_data_url, data_dir):
|
||
device_num = int(os.getenv('RANK_SIZE'))
|
||
if device_num == 1:
|
||
C2netMultiObsToEnv(multi_data_url,data_dir)
|
||
context.set_context(mode=context.GRAPH_MODE,device_target=args.device_target)
|
||
if device_num > 1:
|
||
# set device_id and init for multi-card training
|
||
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=int(os.getenv('ASCEND_DEVICE_ID')))
|
||
context.reset_auto_parallel_context()
|
||
context.set_auto_parallel_context(device_num = device_num, parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True, parameter_broadcast=True)
|
||
init()
|
||
#Copying obs data does not need to be executed multiple times, just let the 0th card copy the data
|
||
local_rank=int(os.getenv('RANK_ID'))
|
||
if local_rank%8==0:
|
||
C2netMultiObsToEnv(multi_data_url,data_dir)
|
||
#If the cache file does not exist, it means that the copy data has not been completed,
|
||
#and Wait for 0th card to finish copying data
|
||
while not os.path.exists("/cache/download_input.txt"):
|
||
time.sleep(1)
|
||
return
|
||
def UploadToQizhi(train_dir, obs_train_url):
|
||
device_num = int(os.getenv('RANK_SIZE'))
|
||
local_rank=int(os.getenv('RANK_ID'))
|
||
if device_num == 1:
|
||
EnvToObs(train_dir, obs_train_url)
|
||
if device_num > 1:
|
||
if local_rank%8==0:
|
||
EnvToObs(train_dir, obs_train_url)
|
||
return
|
||
|
||
parser = argparse.ArgumentParser(description='MindSpore Lenet Example')
|
||
### --multi_data_url,--train_url,--device_target,These 3 parameters must be defined first in a multi-dataset,
|
||
### otherwise an error will be reported.
|
||
### There is no need to add these parameters to the running parameters of the Qizhi platform,
|
||
### because they are predefined in the background, you only need to define them in your code.
|
||
|
||
parser.add_argument('--multi_data_url',
|
||
help='path to multi dataset',
|
||
default= '/cache/data/')
|
||
|
||
parser.add_argument('--train_url',
|
||
help='model folder to save/load',
|
||
default= '/cache/output/')
|
||
|
||
parser.add_argument(
|
||
'--device_target',
|
||
type=str,
|
||
default="Ascend",
|
||
choices=['Ascend', 'CPU'],
|
||
help='device where the code will be implemented (default: Ascend),if to use the CPU on the Qizhi platform:device_target=CPU')
|
||
|
||
parser.add_argument('--epoch_size',
|
||
type=int,
|
||
default=5,
|
||
help='Training epochs.')
|
||
|
||
if __name__ == "__main__":
|
||
args, unknown = parser.parse_known_args()
|
||
data_dir = '/cache/data'
|
||
train_dir = '/cache/output'
|
||
try:
|
||
if not os.path.exists(data_dir):
|
||
os.makedirs(data_dir)
|
||
if not os.path.exists(train_dir):
|
||
os.makedirs(train_dir)
|
||
except Exception as e:
|
||
print("path already exists")
|
||
###Initialize and copy data to training image
|
||
DownloadFromQizhi(args.multi_data_url, data_dir)
|
||
###The dataset path is used here:data_dir + "/MNIST_Data" +"/train"
|
||
device_num = int(os.getenv('RANK_SIZE'))
|
||
if device_num == 1:
|
||
ds_train = create_dataset(os.path.join(data_dir + "/MNISTData", "train"), cfg.batch_size)
|
||
if device_num > 1:
|
||
ds_train = create_dataset_parallel(os.path.join(data_dir + "/MNISTData", "train"), cfg.batch_size)
|
||
if ds_train.get_dataset_size() == 0:
|
||
raise ValueError(
|
||
"Please check dataset size > 0 and batch_size <= dataset size")
|
||
network = LeNet5(cfg.num_classes)
|
||
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
|
||
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
|
||
|
||
if args.device_target != "Ascend":
|
||
model = Model(network,net_loss,net_opt,metrics={"accuracy": Accuracy()})
|
||
else:
|
||
model = Model(network, net_loss,net_opt,metrics={"accuracy": Accuracy()},amp_level="O2")
|
||
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
|
||
keep_checkpoint_max=cfg.keep_checkpoint_max)
|
||
#Note that this method saves the model file on each card. You need to specify the save path on each card.
|
||
# In this example, get_rank() is added to distinguish different paths.
|
||
if device_num == 1:
|
||
outputDirectory = train_dir
|
||
if device_num > 1:
|
||
outputDirectory = train_dir + "/" + str(get_rank()) + "/"
|
||
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet",
|
||
directory=outputDirectory,
|
||
config=config_ck)
|
||
print("============== Starting Training ==============")
|
||
epoch_size = cfg['epoch_size']
|
||
if (args.epoch_size):
|
||
epoch_size = args.epoch_size
|
||
print('epoch_size is: ', epoch_size)
|
||
# set callback functions
|
||
callback =[time_cb,LossMonitor()]
|
||
local_rank=int(os.getenv('RANK_ID'))
|
||
# for data parallel, only save checkpoint on rank 0
|
||
if local_rank==0 :
|
||
callback.append(ckpoint_cb)
|
||
model.train(epoch_size,
|
||
ds_train,
|
||
callbacks=callback) |