158 lines
6.9 KiB
Python
158 lines
6.9 KiB
Python
"""
|
|
######################## multi-dataset inference lenet example ########################
|
|
This example is a single-dataset inference tutorial.
|
|
|
|
######################## Instructions for using the inference environment ########################
|
|
1、Inference task requires predefined functions
|
|
(1)Copy multi dataset from obs to inference image.
|
|
function MultiObsToEnv(obs_data_url, data_dir)
|
|
|
|
(2)Copy ckpt file from obs to inference image.
|
|
function ObsUrlToEnv(obs_ckpt_url, ckpt_url)
|
|
|
|
(3)Copy the output result to obs.
|
|
function EnvToObs(train_dir, obs_train_url)
|
|
|
|
3、5 parameters need to be defined.
|
|
--data_url is the first dataset you selected on the Qizhi platform
|
|
--multi_data_url is the multi dataset you selected on the Qizhi platform
|
|
--ckpt_url is the weight file you choose on the Qizhi platform
|
|
--result_url is the output
|
|
|
|
--data_url,--multi_data_url,--ckpt_url,--result_url,--device_target,These 5 parameters must be defined first in a single dataset,
|
|
otherwise an error will be reported.
|
|
There is no need to add these parameters to the running parameters of the Qizhi platform,
|
|
because they are predefined in the background, you only need to define them in your code.
|
|
|
|
4、How the dataset is used
|
|
Multi-datasets use multi_data_url as input, data_dir + dataset name + file or folder name in the dataset as the
|
|
calling path of the dataset in the inference image.
|
|
For example, the calling path of the test folder in the MNIST_Data dataset in this example is
|
|
data_dir + "/MNIST_Data" +"/test"
|
|
|
|
For details, please refer to the following sample code.
|
|
"""
|
|
|
|
import os
|
|
import argparse
|
|
import moxing as mox
|
|
import mindspore.nn as nn
|
|
from mindspore import context
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
from mindspore.train import Model
|
|
from mindspore.nn.metrics import Accuracy
|
|
from mindspore import Tensor
|
|
import numpy as np
|
|
from glob import glob
|
|
from dataset import create_dataset
|
|
from config import mnist_cfg as cfg
|
|
from lenet import LeNet5
|
|
import json
|
|
|
|
### Copy multiple datasets from obs to inference image ###
|
|
def MultiObsToEnv(multi_data_url, data_dir):
|
|
#--multi_data_url is json data, need to do json parsing for multi_data_url
|
|
multi_data_json = json.loads(multi_data_url)
|
|
for i in range(len(multi_data_json)):
|
|
path = data_dir + "/" + multi_data_json[i]["dataset_name"]
|
|
if not os.path.exists(path):
|
|
os.makedirs(path)
|
|
try:
|
|
mox.file.copy_parallel(multi_data_json[i]["dataset_url"], path)
|
|
print("Successfully Download {} to {}".format(multi_data_json[i]["dataset_url"],path))
|
|
except Exception as e:
|
|
print('moxing download {} to {} failed: '.format(
|
|
multi_data_json[i]["dataset_url"], path) + str(e))
|
|
return
|
|
### Copy ckpt file from obs to inference image###
|
|
### To operate on folders, use mox.file.copy_parallel. If copying a file.
|
|
### Please use mox.file.copy to operate the file, this operation is to operate the file
|
|
def ObsUrlToEnv(obs_ckpt_url, ckpt_url):
|
|
try:
|
|
mox.file.copy(obs_ckpt_url, ckpt_url)
|
|
print("Successfully Download {} to {}".format(obs_ckpt_url,ckpt_url))
|
|
except Exception as e:
|
|
print('moxing download {} to {} failed: '.format(obs_ckpt_url, ckpt_url) + str(e))
|
|
return
|
|
### Copy the output result to obs###
|
|
def EnvToObs(train_dir, obs_train_url):
|
|
try:
|
|
mox.file.copy_parallel(train_dir, obs_train_url)
|
|
print("Successfully Upload {} to {}".format(train_dir,obs_train_url))
|
|
except Exception as e:
|
|
print('moxing upload {} to {} failed: '.format(train_dir,obs_train_url) + str(e))
|
|
return
|
|
|
|
|
|
|
|
### --data_url,--multi_data_url,--ckpt_url,--result_url,--device_target,These 5 parameters must be defined first in a multi dataset inference task,
|
|
### otherwise an error will be reported.
|
|
### There is no need to add these parameters to the running parameters of the Qizhi platform,
|
|
### because they are predefined in the background, you only need to define them in your code.
|
|
parser = argparse.ArgumentParser(description='MindSpore Lenet Example')
|
|
parser.add_argument('--data_url',
|
|
type=str,
|
|
default= '/cache/data1/',
|
|
help='path where the dataset is saved')
|
|
parser.add_argument('--multi_data_url',
|
|
type=str,
|
|
default= '/cache/data/',
|
|
help='path where the dataset is saved')
|
|
parser.add_argument('--ckpt_url',
|
|
help='model to save/load',
|
|
default= '/cache/checkpoint.ckpt')
|
|
parser.add_argument('--result_url',
|
|
help='result folder to save/load',
|
|
default= '/cache/result/')
|
|
parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'],
|
|
help='device where the code will be implemented (default: Ascend)')
|
|
|
|
if __name__ == "__main__":
|
|
args, unknown = parser.parse_known_args()
|
|
|
|
###Initialize the data and result directories in the inference image###
|
|
data_dir = '/cache/data'
|
|
result_dir = '/cache/result'
|
|
ckpt_url = '/cache/checkpoint.ckpt'
|
|
if not os.path.exists(data_dir):
|
|
os.makedirs(data_dir)
|
|
if not os.path.exists(result_dir):
|
|
os.makedirs(result_dir)
|
|
|
|
###Copy multiple dataset from obs to inference image
|
|
MultiObsToEnv(args.multi_data_url, data_dir)
|
|
|
|
###Copy ckpt file from obs to inference image
|
|
ObsUrlToEnv(args.ckpt_url, ckpt_url)
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
|
|
network = LeNet5(cfg.num_classes)
|
|
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
|
repeat_size = cfg.epoch_size
|
|
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
|
|
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
|
|
|
|
print("============== Starting Testing ==============")
|
|
|
|
param_dict = load_checkpoint(os.path.join(ckpt_url))
|
|
load_param_into_net(network, param_dict)
|
|
ds_test = create_dataset(os.path.join(data_dir + "/MNISTData", "test"), batch_size=1).create_dict_iterator()
|
|
data = next(ds_test)
|
|
images = data["image"].asnumpy()
|
|
labels = data["label"].asnumpy()
|
|
print('Tensor:', Tensor(data['image']))
|
|
output = model.predict(Tensor(data['image']))
|
|
predicted = np.argmax(output.asnumpy(), axis=1)
|
|
pred = np.argmax(output.asnumpy(), axis=1)
|
|
print('predicted:', predicted)
|
|
print('pred:', pred)
|
|
|
|
print(f'Predicted: "{predicted[0]}", Actual: "{labels[0]}"')
|
|
filename = 'result.txt'
|
|
file_path = os.path.join(result_dir, filename)
|
|
with open(file_path, 'a+') as file:
|
|
file.write(" {}: {:.2f} \n".format("Predicted", predicted[0]))
|
|
|
|
###Copy result data from the local running environment back to obs,
|
|
###and download it in the inference task corresponding to the Qizhi platform
|
|
EnvToObs(result_dir, args.result_url) |