增加智算网络多卡数据并行训练示例
This commit is contained in:
parent
470e237653
commit
70e7a12085
|
@ -0,0 +1,96 @@
|
|||
"""
|
||||
######################## train lenet dataparallel example ########################
|
||||
train lenet and get network model files(.ckpt)
|
||||
|
||||
The training of the intelligent computing network currently supports single dataset training, and does not require
|
||||
the obs copy process.It only needs to define two parameters and then call it directly:
|
||||
train_dir = '/cache/output' #The location of the output
|
||||
data_dir = '/cache/dataset' #The location of the dataset
|
||||
|
||||
"""
|
||||
|
||||
import os
|
||||
import argparse
|
||||
from dataset_distributed import create_dataset_parallel
|
||||
import moxing as mox
|
||||
from config import mnist_cfg as cfg
|
||||
from lenet import LeNet5
|
||||
import mindspore.nn as nn
|
||||
from mindspore import context
|
||||
from mindspore.common import set_seed
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
||||
from mindspore.train import Model
|
||||
from mindspore.nn.metrics import Accuracy
|
||||
from mindspore.context import ParallelMode
|
||||
from mindspore.communication.management import init, get_rank, get_group_size
|
||||
import mindspore.ops as ops
|
||||
|
||||
|
||||
# set device_id and init
|
||||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
context.set_context(device_id=device_id)
|
||||
init()
|
||||
|
||||
parser = argparse.ArgumentParser(description='MindSpore Lenet Example')
|
||||
|
||||
parser.add_argument(
|
||||
'--device_target',
|
||||
type=str,
|
||||
default="Ascend",
|
||||
choices=['Ascend', 'CPU'],
|
||||
help='device where the code will be implemented (default: Ascend),if to use the CPU on the Qizhi platform:device_target=CPU')
|
||||
|
||||
parser.add_argument('--epoch_size',
|
||||
type=int,
|
||||
default=5,
|
||||
help='Training epochs.')
|
||||
set_seed(114514)
|
||||
if __name__ == "__main__":
|
||||
args = parser.parse_args()
|
||||
|
||||
###define two parameters and then call it directly###
|
||||
train_dir = '/cache/output'
|
||||
data_dir = '/cache/dataset'
|
||||
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True)
|
||||
ds_train = create_dataset_parallel(os.path.join(data_dir, "train"),
|
||||
cfg.batch_size)
|
||||
if ds_train.get_dataset_size() == 0:
|
||||
raise ValueError(
|
||||
"Please check dataset size > 0 and batch_size <= dataset size")
|
||||
network = LeNet5(cfg.num_classes)
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
|
||||
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
|
||||
|
||||
if args.device_target != "Ascend":
|
||||
model = Model(network,
|
||||
net_loss,
|
||||
net_opt,
|
||||
metrics={"accuracy": Accuracy()})
|
||||
else:
|
||||
model = Model(network,
|
||||
net_loss,
|
||||
net_opt,
|
||||
metrics={"accuracy": Accuracy()},
|
||||
amp_level="O2")
|
||||
|
||||
config_ck = CheckpointConfig(
|
||||
save_checkpoint_steps=cfg.save_checkpoint_steps,
|
||||
keep_checkpoint_max=cfg.keep_checkpoint_max)
|
||||
#Note that this method saves the model file on each card. You need to specify the save path on each card.
|
||||
# In the example, get_rank() is added to distinguish different paths.
|
||||
ckpoint_cb = ModelCheckpoint(prefix="data_parallel",
|
||||
directory=train_dir + "/" + str(get_rank()) + "/",
|
||||
config=config_ck)
|
||||
print("============== Starting Training ==============")
|
||||
epoch_size = cfg['epoch_size']
|
||||
if (args.epoch_size):
|
||||
epoch_size = args.epoch_size
|
||||
print('epoch_size is: ', epoch_size)
|
||||
|
||||
model.train(epoch_size,ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()], dataset_sink_mode=False)
|
||||
|
||||
|
Loading…
Reference in New Issue