casibase/object/vector_embedding.go

185 lines
4.1 KiB
Go

// Copyright 2023 The casbin Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package object
import (
"context"
"fmt"
"io"
"net/http"
"path/filepath"
"time"
"github.com/casbin/casibase/ai"
"github.com/casbin/casibase/storage"
"github.com/casbin/casibase/util"
"golang.org/x/time/rate"
)
func filterTextFiles(files []*storage.Object) []*storage.Object {
extSet := map[string]bool{
".txt": true,
".md": true,
".docx": true,
".doc": false,
".pdf": true,
}
var res []*storage.Object
for _, file := range files {
ext := filepath.Ext(file.Key)
if extSet[ext] {
res = append(res, file)
}
}
return res
}
func getFilteredFileObjects(provider string, prefix string) ([]*storage.Object, error) {
files, err := storage.ListObjects(provider, prefix)
if err != nil {
return nil, err
}
return filterTextFiles(files), nil
}
func getObjectFile(object *storage.Object) (io.ReadCloser, error) {
resp, err := http.Get(object.Url)
if err != nil {
return nil, err
}
if resp.StatusCode != http.StatusOK {
resp.Body.Close()
return nil, fmt.Errorf("HTTP request failed with status code: %d", resp.StatusCode)
}
return resp.Body, nil
}
func addEmbeddedVector(authToken string, text string, storeName string, fileName string) (bool, error) {
embedding, err := ai.GetEmbeddingSafe(authToken, text)
if err != nil {
return false, err
}
displayName := text
if len(text) > 25 {
displayName = text[:25]
}
vector := &Vector{
Owner: "admin",
Name: fmt.Sprintf("vector_%s", util.GetRandomName()),
CreatedTime: util.GetCurrentTime(),
DisplayName: displayName,
Store: storeName,
File: fileName,
Text: text,
Data: embedding,
}
return AddVector(vector)
}
func addVectorsForStore(authToken string, provider string, key string, storeName string) (bool, error) {
timeLimiter := rate.NewLimiter(rate.Every(time.Minute), 3)
objs, err := getFilteredFileObjects(provider, key)
if err != nil {
return false, err
}
if len(objs) == 0 {
return false, nil
}
for _, obj := range objs {
f, err := getObjectFile(obj)
if err != nil {
return false, err
}
defer f.Close()
filename := obj.Key
text, err := ai.ReadFileToString(f, filename)
if err != nil {
return false, err
}
textSections := ai.SplitText(text)
for _, textSection := range textSections {
if timeLimiter.Allow() {
ok, err := addEmbeddedVector(authToken, textSection, storeName, obj.Key)
if err != nil {
return false, err
}
if !ok {
return false, nil
}
} else {
err := timeLimiter.Wait(context.Background())
if err != nil {
return false, err
}
ok, err := addEmbeddedVector(authToken, textSection, storeName, obj.Key)
if err != nil {
return false, err
}
if !ok {
return false, nil
}
}
}
}
return true, nil
}
func getRelatedVectors(owner string) ([]*Vector, error) {
vectors, err := GetVectors(owner)
if err != nil {
return nil, err
}
if len(vectors) == 0 {
return nil, fmt.Errorf("no knowledge vectors found")
}
return vectors, nil
}
func GetNearestVectorText(authToken string, owner string, question string) (string, error) {
qVector, err := ai.GetEmbeddingSafe(authToken, question)
if err != nil {
return "", err
}
if qVector == nil {
return "", fmt.Errorf("no qVector found")
}
vectors, err := getRelatedVectors(owner)
if err != nil {
return "", err
}
var nVectors [][]float32
for _, candidate := range vectors {
nVectors = append(nVectors, candidate.Data)
}
i := ai.GetNearestVectorIndex(qVector, nVectors)
return vectors[i].Text, nil
}