casibase/object/vector_embedding.go

207 lines
5.8 KiB
Go

// Copyright 2023 The casbin Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package object
import (
"context"
"fmt"
"path/filepath"
"strings"
"time"
"github.com/casbin/casibase/embedding"
"github.com/casbin/casibase/model"
"github.com/casbin/casibase/storage"
"github.com/casbin/casibase/txt"
"github.com/casbin/casibase/util"
"golang.org/x/time/rate"
)
func filterTextFiles(files []*storage.Object) []*storage.Object {
fileTypes := txt.GetSupportedFileTypes()
fileTypeMap := map[string]bool{}
for _, fileType := range fileTypes {
fileTypeMap[fileType] = true
}
res := []*storage.Object{}
for _, file := range files {
ext := filepath.Ext(file.Key)
if fileTypeMap[ext] {
res = append(res, file)
}
}
return res
}
func addEmbeddedVector(embeddingProviderObj embedding.EmbeddingProvider, text string, storeName string, fileName string, index int, embeddingProviderName string, modelSubType string) (bool, error) {
data, err := queryVectorSafe(embeddingProviderObj, text)
if err != nil {
return false, err
}
displayName := text
if len(text) > 25 {
displayName = text[:25]
}
size, err := model.GetTokenSize(modelSubType, text)
if err != nil {
return false, err
}
vector := &Vector{
Owner: "admin",
Name: fmt.Sprintf("vector_%s", util.GetRandomName()),
CreatedTime: util.GetCurrentTime(),
DisplayName: displayName,
Store: storeName,
Provider: embeddingProviderName,
File: fileName,
Index: index,
Text: text,
Size: size,
Data: data,
Dimension: len(data),
}
return AddVector(vector)
}
func addVectorsForStore(storageProviderObj storage.StorageProvider, embeddingProviderObj embedding.EmbeddingProvider, prefix string, storeName string, embeddingProviderName string, modelSubType string) (bool, error) {
var affected bool
files, err := storageProviderObj.ListObjects(prefix)
if err != nil {
return false, err
}
files = filterTextFiles(files)
timeLimiter := rate.NewLimiter(rate.Every(time.Minute), 3)
for _, file := range files {
var text string
fileExt := filepath.Ext(file.Key)
text, err = txt.GetParsedTextFromUrl(file.Url, fileExt)
if err != nil {
return false, err
}
textSections := txt.GetTextSections(text)
for i, textSection := range textSections {
var vector *Vector
vector, err = getVectorByIndex("admin", storeName, file.Key, i)
if err != nil {
return false, err
}
if vector != nil {
fmt.Printf("[%d/%d] Generating embedding for store: [%s]'s text section: %s\n", i+1, len(textSections), storeName, "Skipped due to already exists")
continue
}
if timeLimiter.Allow() {
fmt.Printf("[%d/%d] Generating embedding for store: [%s]'s text section: %s\n", i+1, len(textSections), storeName, textSection)
affected, err = addEmbeddedVector(embeddingProviderObj, textSection, storeName, file.Key, i, embeddingProviderName, modelSubType)
} else {
err = timeLimiter.Wait(context.Background())
if err != nil {
return false, err
}
fmt.Printf("[%d/%d] Generating embedding for store: [%s]'s text section: %s\n", i+1, len(textSections), storeName, textSection)
affected, err = addEmbeddedVector(embeddingProviderObj, textSection, storeName, file.Key, i, embeddingProviderName, modelSubType)
}
}
}
return affected, err
}
func getRelatedVectors(owner string) ([]*Vector, error) {
vectors, err := GetVectors(owner)
if err != nil {
return nil, err
}
if len(vectors) == 0 {
return nil, fmt.Errorf("no knowledge vectors found")
}
return vectors, nil
}
func queryVectorWithContext(embeddingProvider embedding.EmbeddingProvider, text string, timeout int) ([]float32, error) {
ctx, cancel := context.WithTimeout(context.Background(), time.Duration(30+timeout*2)*time.Second)
defer cancel()
return embeddingProvider.QueryVector(text, ctx)
}
func queryVectorSafe(embeddingProvider embedding.EmbeddingProvider, text string) ([]float32, error) {
var res []float32
var err error
for i := 0; i < 10; i++ {
res, err = queryVectorWithContext(embeddingProvider, text, i)
if err != nil {
if i > 0 {
fmt.Printf("\tFailed (%d): %s\n", i+1, err.Error())
}
} else {
break
}
}
if err != nil {
return nil, err
} else {
return res, nil
}
}
func GetNearestKnowledge(embeddingProvider *Provider, embeddingProviderObj embedding.EmbeddingProvider, owner string, text string) (string, []VectorScore, error) {
qVector, err := queryVectorSafe(embeddingProviderObj, text)
if err != nil {
return "", nil, err
}
if qVector == nil || len(qVector) == 0 {
return "", nil, fmt.Errorf("no qVector found")
}
searchProvider, err := GetSearchProvider("Default", owner)
if err != nil {
return "", nil, err
}
vectors, err := searchProvider.Search(qVector)
if err != nil {
return "", nil, err
}
vectorScores := []VectorScore{}
texts := []string{}
for _, vector := range vectors {
if embeddingProvider.Name != vector.Provider {
return "", nil, fmt.Errorf("The store's embedding provider: [%s] should equal to vector's embedding provider: [%s], vector = %v", embeddingProvider.Name, vector.Provider, vector)
}
vectorScores = append(vectorScores, VectorScore{
Vector: vector.Name,
Score: vector.Score,
})
texts = append(texts, vector.Text)
}
res := strings.Join(texts, "\n\n")
return res, vectorScores, nil
}