649 lines
21 KiB
Python
649 lines
21 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import division
|
|
|
|
import os
|
|
import cv2
|
|
import math
|
|
import numpy as np
|
|
import PIL
|
|
from PIL import Image, ImageDraw, ImageFile
|
|
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
|
|
|
def imagedraw_textsize_c(draw, text):
|
|
if int(PIL.__version__.split('.')[0]) < 10:
|
|
tw, th = draw.textsize(text)
|
|
else:
|
|
left, top, right, bottom = draw.textbbox((0, 0), text)
|
|
tw, th = right - left, bottom - top
|
|
|
|
return tw, th
|
|
|
|
|
|
def visualize_box_mask(im, results, labels, threshold=0.5):
|
|
"""
|
|
Args:
|
|
im (str/np.ndarray): path of image/np.ndarray read by cv2
|
|
results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
|
|
matix element:[class, score, x_min, y_min, x_max, y_max]
|
|
MaskRCNN's results include 'masks': np.ndarray:
|
|
shape:[N, im_h, im_w]
|
|
labels (list): labels:['class1', ..., 'classn']
|
|
threshold (float): Threshold of score.
|
|
Returns:
|
|
im (PIL.Image.Image): visualized image
|
|
"""
|
|
if isinstance(im, str):
|
|
im = Image.open(im).convert('RGB')
|
|
elif isinstance(im, np.ndarray):
|
|
im = Image.fromarray(im)
|
|
if 'masks' in results and 'boxes' in results and len(results['boxes']) > 0:
|
|
im = draw_mask(
|
|
im, results['boxes'], results['masks'], labels, threshold=threshold)
|
|
if 'boxes' in results and len(results['boxes']) > 0:
|
|
im = draw_box(im, results['boxes'], labels, threshold=threshold)
|
|
if 'segm' in results:
|
|
im = draw_segm(
|
|
im,
|
|
results['segm'],
|
|
results['label'],
|
|
results['score'],
|
|
labels,
|
|
threshold=threshold)
|
|
return im
|
|
|
|
|
|
def get_color_map_list(num_classes):
|
|
"""
|
|
Args:
|
|
num_classes (int): number of class
|
|
Returns:
|
|
color_map (list): RGB color list
|
|
"""
|
|
color_map = num_classes * [0, 0, 0]
|
|
for i in range(0, num_classes):
|
|
j = 0
|
|
lab = i
|
|
while lab:
|
|
color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
|
|
color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
|
|
color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
|
|
j += 1
|
|
lab >>= 3
|
|
color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
|
|
return color_map
|
|
|
|
|
|
def draw_mask(im, np_boxes, np_masks, labels, threshold=0.5):
|
|
"""
|
|
Args:
|
|
im (PIL.Image.Image): PIL image
|
|
np_boxes (np.ndarray): shape:[N,6], N: number of box,
|
|
matix element:[class, score, x_min, y_min, x_max, y_max]
|
|
np_masks (np.ndarray): shape:[N, im_h, im_w]
|
|
labels (list): labels:['class1', ..., 'classn']
|
|
threshold (float): threshold of mask
|
|
Returns:
|
|
im (PIL.Image.Image): visualized image
|
|
"""
|
|
color_list = get_color_map_list(len(labels))
|
|
w_ratio = 0.4
|
|
alpha = 0.7
|
|
im = np.array(im).astype('float32')
|
|
clsid2color = {}
|
|
expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
|
|
np_boxes = np_boxes[expect_boxes, :]
|
|
np_masks = np_masks[expect_boxes, :, :]
|
|
im_h, im_w = im.shape[:2]
|
|
np_masks = np_masks[:, :im_h, :im_w]
|
|
for i in range(len(np_masks)):
|
|
clsid, score = int(np_boxes[i][0]), np_boxes[i][1]
|
|
mask = np_masks[i]
|
|
if clsid not in clsid2color:
|
|
clsid2color[clsid] = color_list[clsid]
|
|
color_mask = clsid2color[clsid]
|
|
for c in range(3):
|
|
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
|
|
idx = np.nonzero(mask)
|
|
color_mask = np.array(color_mask)
|
|
im[idx[0], idx[1], :] *= 1.0 - alpha
|
|
im[idx[0], idx[1], :] += alpha * color_mask
|
|
return Image.fromarray(im.astype('uint8'))
|
|
|
|
|
|
def draw_box(im, np_boxes, labels, threshold=0.5):
|
|
"""
|
|
Args:
|
|
im (PIL.Image.Image): PIL image
|
|
np_boxes (np.ndarray): shape:[N,6], N: number of box,
|
|
matix element:[class, score, x_min, y_min, x_max, y_max]
|
|
labels (list): labels:['class1', ..., 'classn']
|
|
threshold (float): threshold of box
|
|
Returns:
|
|
im (PIL.Image.Image): visualized image
|
|
"""
|
|
draw_thickness = min(im.size) // 320
|
|
draw = ImageDraw.Draw(im)
|
|
clsid2color = {}
|
|
color_list = get_color_map_list(len(labels))
|
|
expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
|
|
np_boxes = np_boxes[expect_boxes, :]
|
|
|
|
for dt in np_boxes:
|
|
clsid, bbox, score = int(dt[0]), dt[2:], dt[1]
|
|
if clsid not in clsid2color:
|
|
clsid2color[clsid] = color_list[clsid]
|
|
color = tuple(clsid2color[clsid])
|
|
|
|
if len(bbox) == 4:
|
|
xmin, ymin, xmax, ymax = bbox
|
|
print('class_id:{:d}, confidence:{:.4f}, left_top:[{:.2f},{:.2f}],'
|
|
'right_bottom:[{:.2f},{:.2f}]'.format(
|
|
int(clsid), score, xmin, ymin, xmax, ymax))
|
|
# draw bbox
|
|
draw.line(
|
|
[(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
|
|
(xmin, ymin)],
|
|
width=draw_thickness,
|
|
fill=color)
|
|
elif len(bbox) == 8:
|
|
x1, y1, x2, y2, x3, y3, x4, y4 = bbox
|
|
draw.line(
|
|
[(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)],
|
|
width=2,
|
|
fill=color)
|
|
xmin = min(x1, x2, x3, x4)
|
|
ymin = min(y1, y2, y3, y4)
|
|
|
|
# draw label
|
|
text = "{} {:.4f}".format(labels[clsid], score)
|
|
tw, th = imagedraw_textsize_c(draw, text)
|
|
draw.rectangle(
|
|
[(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
|
|
draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
|
|
return im
|
|
|
|
|
|
def draw_segm(im,
|
|
np_segms,
|
|
np_label,
|
|
np_score,
|
|
labels,
|
|
threshold=0.5,
|
|
alpha=0.7):
|
|
"""
|
|
Draw segmentation on image
|
|
"""
|
|
mask_color_id = 0
|
|
w_ratio = .4
|
|
color_list = get_color_map_list(len(labels))
|
|
im = np.array(im).astype('float32')
|
|
clsid2color = {}
|
|
np_segms = np_segms.astype(np.uint8)
|
|
for i in range(np_segms.shape[0]):
|
|
mask, score, clsid = np_segms[i], np_score[i], np_label[i]
|
|
if score < threshold:
|
|
continue
|
|
|
|
if clsid not in clsid2color:
|
|
clsid2color[clsid] = color_list[clsid]
|
|
color_mask = clsid2color[clsid]
|
|
for c in range(3):
|
|
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
|
|
idx = np.nonzero(mask)
|
|
color_mask = np.array(color_mask)
|
|
idx0 = np.minimum(idx[0], im.shape[0] - 1)
|
|
idx1 = np.minimum(idx[1], im.shape[1] - 1)
|
|
im[idx0, idx1, :] *= 1.0 - alpha
|
|
im[idx0, idx1, :] += alpha * color_mask
|
|
sum_x = np.sum(mask, axis=0)
|
|
x = np.where(sum_x > 0.5)[0]
|
|
sum_y = np.sum(mask, axis=1)
|
|
y = np.where(sum_y > 0.5)[0]
|
|
x0, x1, y0, y1 = x[0], x[-1], y[0], y[-1]
|
|
cv2.rectangle(im, (x0, y0), (x1, y1),
|
|
tuple(color_mask.astype('int32').tolist()), 1)
|
|
bbox_text = '%s %.2f' % (labels[clsid], score)
|
|
t_size = cv2.getTextSize(bbox_text, 0, 0.3, thickness=1)[0]
|
|
cv2.rectangle(im, (x0, y0), (x0 + t_size[0], y0 - t_size[1] - 3),
|
|
tuple(color_mask.astype('int32').tolist()), -1)
|
|
cv2.putText(
|
|
im,
|
|
bbox_text, (x0, y0 - 2),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.3, (0, 0, 0),
|
|
1,
|
|
lineType=cv2.LINE_AA)
|
|
return Image.fromarray(im.astype('uint8'))
|
|
|
|
|
|
def get_color(idx):
|
|
idx = idx * 3
|
|
color = ((37 * idx) % 255, (17 * idx) % 255, (29 * idx) % 255)
|
|
return color
|
|
|
|
|
|
def visualize_pose(imgfile,
|
|
results,
|
|
visual_thresh=0.6,
|
|
save_name='pose.jpg',
|
|
save_dir='output',
|
|
returnimg=False,
|
|
ids=None):
|
|
try:
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib
|
|
plt.switch_backend('agg')
|
|
except Exception as e:
|
|
print('Matplotlib not found, please install matplotlib.'
|
|
'for example: `pip install matplotlib`.')
|
|
raise e
|
|
skeletons, scores = results['keypoint']
|
|
skeletons = np.array(skeletons)
|
|
kpt_nums = 17
|
|
if len(skeletons) > 0:
|
|
kpt_nums = skeletons.shape[1]
|
|
if kpt_nums == 17: #plot coco keypoint
|
|
EDGES = [(0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (6, 8),
|
|
(7, 9), (8, 10), (5, 11), (6, 12), (11, 13), (12, 14),
|
|
(13, 15), (14, 16), (11, 12)]
|
|
else: #plot mpii keypoint
|
|
EDGES = [(0, 1), (1, 2), (3, 4), (4, 5), (2, 6), (3, 6), (6, 7), (7, 8),
|
|
(8, 9), (10, 11), (11, 12), (13, 14), (14, 15), (8, 12),
|
|
(8, 13)]
|
|
NUM_EDGES = len(EDGES)
|
|
|
|
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
|
|
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
|
|
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
|
|
cmap = matplotlib.cm.get_cmap('hsv')
|
|
plt.figure()
|
|
|
|
img = cv2.imread(imgfile) if type(imgfile) == str else imgfile
|
|
|
|
color_set = results['colors'] if 'colors' in results else None
|
|
|
|
if 'bbox' in results and ids is None:
|
|
bboxs = results['bbox']
|
|
for j, rect in enumerate(bboxs):
|
|
xmin, ymin, xmax, ymax = rect
|
|
color = colors[0] if color_set is None else colors[color_set[j] %
|
|
len(colors)]
|
|
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 1)
|
|
|
|
canvas = img.copy()
|
|
for i in range(kpt_nums):
|
|
for j in range(len(skeletons)):
|
|
if skeletons[j][i, 2] < visual_thresh:
|
|
continue
|
|
if ids is None:
|
|
color = colors[i] if color_set is None else colors[color_set[j]
|
|
%
|
|
len(colors)]
|
|
else:
|
|
color = get_color(ids[j])
|
|
|
|
cv2.circle(
|
|
canvas,
|
|
tuple(skeletons[j][i, 0:2].astype('int32')),
|
|
2,
|
|
color,
|
|
thickness=-1)
|
|
|
|
to_plot = cv2.addWeighted(img, 0.3, canvas, 0.7, 0)
|
|
fig = matplotlib.pyplot.gcf()
|
|
|
|
stickwidth = 2
|
|
|
|
for i in range(NUM_EDGES):
|
|
for j in range(len(skeletons)):
|
|
edge = EDGES[i]
|
|
if skeletons[j][edge[0], 2] < visual_thresh or skeletons[j][edge[
|
|
1], 2] < visual_thresh:
|
|
continue
|
|
|
|
cur_canvas = canvas.copy()
|
|
X = [skeletons[j][edge[0], 1], skeletons[j][edge[1], 1]]
|
|
Y = [skeletons[j][edge[0], 0], skeletons[j][edge[1], 0]]
|
|
mX = np.mean(X)
|
|
mY = np.mean(Y)
|
|
length = ((X[0] - X[1])**2 + (Y[0] - Y[1])**2)**0.5
|
|
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
|
|
polygon = cv2.ellipse2Poly((int(mY), int(mX)),
|
|
(int(length / 2), stickwidth),
|
|
int(angle), 0, 360, 1)
|
|
if ids is None:
|
|
color = colors[i] if color_set is None else colors[color_set[j]
|
|
%
|
|
len(colors)]
|
|
else:
|
|
color = get_color(ids[j])
|
|
cv2.fillConvexPoly(cur_canvas, polygon, color)
|
|
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
|
|
if returnimg:
|
|
return canvas
|
|
save_name = os.path.join(
|
|
save_dir, os.path.splitext(os.path.basename(imgfile))[0] + '_vis.jpg')
|
|
plt.imsave(save_name, canvas[:, :, ::-1])
|
|
print("keypoint visualize image saved to: " + save_name)
|
|
plt.close()
|
|
|
|
|
|
def visualize_attr(im, results, boxes=None, is_mtmct=False):
|
|
if isinstance(im, str):
|
|
im = Image.open(im)
|
|
im = np.ascontiguousarray(np.copy(im))
|
|
im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
|
|
else:
|
|
im = np.ascontiguousarray(np.copy(im))
|
|
|
|
im_h, im_w = im.shape[:2]
|
|
text_scale = max(0.5, im.shape[0] / 3000.)
|
|
text_thickness = 1
|
|
|
|
line_inter = im.shape[0] / 40.
|
|
for i, res in enumerate(results):
|
|
if boxes is None:
|
|
text_w = 3
|
|
text_h = 1
|
|
elif is_mtmct:
|
|
box = boxes[i] # multi camera, bbox shape is x,y, w,h
|
|
text_w = int(box[0]) + 3
|
|
text_h = int(box[1])
|
|
else:
|
|
box = boxes[i] # single camera, bbox shape is 0, 0, x,y, w,h
|
|
text_w = int(box[2]) + 3
|
|
text_h = int(box[3])
|
|
for text in res:
|
|
text_h += int(line_inter)
|
|
text_loc = (text_w, text_h)
|
|
cv2.putText(
|
|
im,
|
|
text,
|
|
text_loc,
|
|
cv2.FONT_ITALIC,
|
|
text_scale, (0, 255, 255),
|
|
thickness=text_thickness)
|
|
return im
|
|
|
|
|
|
def visualize_action(im,
|
|
mot_boxes,
|
|
action_visual_collector=None,
|
|
action_text="",
|
|
video_action_score=None,
|
|
video_action_text=""):
|
|
im = cv2.imread(im) if isinstance(im, str) else im
|
|
im_h, im_w = im.shape[:2]
|
|
|
|
text_scale = max(1, im.shape[1] / 400.)
|
|
text_thickness = 2
|
|
|
|
if action_visual_collector:
|
|
id_action_dict = {}
|
|
for collector, action_type in zip(action_visual_collector, action_text):
|
|
id_detected = collector.get_visualize_ids()
|
|
for pid in id_detected:
|
|
id_action_dict[pid] = id_action_dict.get(pid, [])
|
|
id_action_dict[pid].append(action_type)
|
|
for mot_box in mot_boxes:
|
|
# mot_box is a format with [mot_id, class, score, xmin, ymin, w, h]
|
|
if mot_box[0] in id_action_dict:
|
|
text_position = (int(mot_box[3] + mot_box[5] * 0.75),
|
|
int(mot_box[4] - 10))
|
|
display_text = ', '.join(id_action_dict[mot_box[0]])
|
|
cv2.putText(im, display_text, text_position,
|
|
cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 0, 255), 2)
|
|
|
|
if video_action_score:
|
|
cv2.putText(
|
|
im,
|
|
video_action_text + ': %.2f' % video_action_score,
|
|
(int(im_w / 2), int(15 * text_scale) + 5),
|
|
cv2.FONT_ITALIC,
|
|
text_scale, (0, 0, 255),
|
|
thickness=text_thickness)
|
|
|
|
return im
|
|
|
|
|
|
def visualize_vehicleplate(im, results, boxes=None):
|
|
if isinstance(im, str):
|
|
im = Image.open(im)
|
|
im = np.ascontiguousarray(np.copy(im))
|
|
im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
|
|
else:
|
|
im = np.ascontiguousarray(np.copy(im))
|
|
|
|
im_h, im_w = im.shape[:2]
|
|
text_scale = max(1.0, im.shape[0] / 400.)
|
|
text_thickness = 2
|
|
|
|
line_inter = im.shape[0] / 40.
|
|
for i, res in enumerate(results):
|
|
if boxes is None:
|
|
text_w = 3
|
|
text_h = 1
|
|
else:
|
|
box = boxes[i]
|
|
text = res
|
|
if text == "":
|
|
continue
|
|
text_w = int(box[2])
|
|
text_h = int(box[5] + box[3])
|
|
text_loc = (text_w, text_h)
|
|
cv2.putText(
|
|
im,
|
|
"LP: " + text,
|
|
text_loc,
|
|
cv2.FONT_ITALIC,
|
|
text_scale, (0, 255, 255),
|
|
thickness=text_thickness)
|
|
return im
|
|
|
|
|
|
def draw_press_box_lanes(im, np_boxes, labels, threshold=0.5):
|
|
"""
|
|
Args:
|
|
im (PIL.Image.Image): PIL image
|
|
np_boxes (np.ndarray): shape:[N,6], N: number of box,
|
|
matix element:[class, score, x_min, y_min, x_max, y_max]
|
|
labels (list): labels:['class1', ..., 'classn']
|
|
threshold (float): threshold of box
|
|
Returns:
|
|
im (PIL.Image.Image): visualized image
|
|
"""
|
|
|
|
if isinstance(im, str):
|
|
im = Image.open(im).convert('RGB')
|
|
elif isinstance(im, np.ndarray):
|
|
im = Image.fromarray(im)
|
|
|
|
draw_thickness = min(im.size) // 320
|
|
draw = ImageDraw.Draw(im)
|
|
clsid2color = {}
|
|
color_list = get_color_map_list(len(labels))
|
|
|
|
if np_boxes.shape[1] == 7:
|
|
np_boxes = np_boxes[:, 1:]
|
|
|
|
expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
|
|
np_boxes = np_boxes[expect_boxes, :]
|
|
|
|
for dt in np_boxes:
|
|
clsid, bbox, score = int(dt[0]), dt[2:], dt[1]
|
|
if clsid not in clsid2color:
|
|
clsid2color[clsid] = color_list[clsid]
|
|
color = tuple(clsid2color[clsid])
|
|
|
|
if len(bbox) == 4:
|
|
xmin, ymin, xmax, ymax = bbox
|
|
# draw bbox
|
|
draw.line(
|
|
[(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
|
|
(xmin, ymin)],
|
|
width=draw_thickness,
|
|
fill=(0, 0, 255))
|
|
elif len(bbox) == 8:
|
|
x1, y1, x2, y2, x3, y3, x4, y4 = bbox
|
|
draw.line(
|
|
[(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)],
|
|
width=2,
|
|
fill=color)
|
|
xmin = min(x1, x2, x3, x4)
|
|
ymin = min(y1, y2, y3, y4)
|
|
|
|
# draw label
|
|
text = "{}".format(labels[clsid])
|
|
tw, th = imagedraw_textsize_c(draw, text)
|
|
draw.rectangle(
|
|
[(xmin + 1, ymax - th), (xmin + tw + 1, ymax)], fill=color)
|
|
draw.text((xmin + 1, ymax - th), text, fill=(0, 0, 255))
|
|
return im
|
|
|
|
|
|
def visualize_vehiclepress(im, results, threshold=0.5):
|
|
results = np.array(results)
|
|
labels = ['violation']
|
|
im = draw_press_box_lanes(im, results, labels, threshold=threshold)
|
|
return im
|
|
|
|
|
|
def visualize_lane(im, lanes):
|
|
if isinstance(im, str):
|
|
im = Image.open(im).convert('RGB')
|
|
elif isinstance(im, np.ndarray):
|
|
im = Image.fromarray(im)
|
|
|
|
draw_thickness = min(im.size) // 320
|
|
draw = ImageDraw.Draw(im)
|
|
|
|
if len(lanes) > 0:
|
|
for lane in lanes:
|
|
draw.line(
|
|
[(lane[0], lane[1]), (lane[2], lane[3])],
|
|
width=draw_thickness,
|
|
fill=(0, 0, 255))
|
|
|
|
return im
|
|
|
|
|
|
def visualize_vehicle_retrograde(im, mot_res, vehicle_retrograde_res):
|
|
if isinstance(im, str):
|
|
im = Image.open(im).convert('RGB')
|
|
elif isinstance(im, np.ndarray):
|
|
im = Image.fromarray(im)
|
|
|
|
draw_thickness = min(im.size) // 320
|
|
draw = ImageDraw.Draw(im)
|
|
|
|
lane = vehicle_retrograde_res['fence_line']
|
|
if lane is not None:
|
|
draw.line(
|
|
[(lane[0], lane[1]), (lane[2], lane[3])],
|
|
width=draw_thickness,
|
|
fill=(0, 0, 0))
|
|
|
|
mot_id = vehicle_retrograde_res['output']
|
|
if mot_id is None or len(mot_id) == 0:
|
|
return im
|
|
|
|
if mot_res is None:
|
|
return im
|
|
np_boxes = mot_res['boxes']
|
|
|
|
if np_boxes is not None:
|
|
for dt in np_boxes:
|
|
if dt[0] not in mot_id:
|
|
continue
|
|
bbox = dt[3:]
|
|
if len(bbox) == 4:
|
|
xmin, ymin, xmax, ymax = bbox
|
|
# draw bbox
|
|
draw.line(
|
|
[(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
|
|
(xmin, ymin)],
|
|
width=draw_thickness,
|
|
fill=(0, 255, 0))
|
|
|
|
# draw label
|
|
text = "retrograde"
|
|
tw, th = imagedraw_textsize_c(draw, text)
|
|
draw.rectangle(
|
|
[(xmax + 1, ymin - th), (xmax + tw + 1, ymin)],
|
|
fill=(0, 255, 0))
|
|
draw.text((xmax + 1, ymin - th), text, fill=(0, 255, 0))
|
|
|
|
return im
|
|
|
|
|
|
COLORS = [
|
|
(255, 0, 0),
|
|
(0, 255, 0),
|
|
(0, 0, 255),
|
|
(255, 255, 0),
|
|
(255, 0, 255),
|
|
(0, 255, 255),
|
|
(128, 255, 0),
|
|
(255, 128, 0),
|
|
(128, 0, 255),
|
|
(255, 0, 128),
|
|
(0, 128, 255),
|
|
(0, 255, 128),
|
|
(128, 255, 255),
|
|
(255, 128, 255),
|
|
(255, 255, 128),
|
|
(60, 180, 0),
|
|
(180, 60, 0),
|
|
(0, 60, 180),
|
|
(0, 180, 60),
|
|
(60, 0, 180),
|
|
(180, 0, 60),
|
|
(255, 0, 0),
|
|
(0, 255, 0),
|
|
(0, 0, 255),
|
|
(255, 255, 0),
|
|
(255, 0, 255),
|
|
(0, 255, 255),
|
|
(128, 255, 0),
|
|
(255, 128, 0),
|
|
(128, 0, 255),
|
|
]
|
|
|
|
|
|
def imshow_lanes(img, lanes, show=False, out_file=None, width=4):
|
|
lanes_xys = []
|
|
for _, lane in enumerate(lanes):
|
|
xys = []
|
|
for x, y in lane:
|
|
if x <= 0 or y <= 0:
|
|
continue
|
|
x, y = int(x), int(y)
|
|
xys.append((x, y))
|
|
lanes_xys.append(xys)
|
|
lanes_xys.sort(key=lambda xys: xys[0][0] if len(xys) > 0 else 0)
|
|
|
|
for idx, xys in enumerate(lanes_xys):
|
|
for i in range(1, len(xys)):
|
|
cv2.line(img, xys[i - 1], xys[i], COLORS[idx], thickness=width)
|
|
|
|
if show:
|
|
cv2.imshow('view', img)
|
|
cv2.waitKey(0)
|
|
|
|
if out_file:
|
|
if not os.path.exists(os.path.dirname(out_file)):
|
|
os.makedirs(os.path.dirname(out_file))
|
|
cv2.imwrite(out_file, img) |