1267 lines
50 KiB
Python
1267 lines
50 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import yaml
|
|
import glob
|
|
import json
|
|
from pathlib import Path
|
|
from functools import reduce
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import math
|
|
import paddle
|
|
from paddle.inference import Config
|
|
from paddle.inference import create_predictor
|
|
|
|
import sys
|
|
# add deploy path of PaddleDetection to sys.path
|
|
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
|
|
sys.path.insert(0, parent_path)
|
|
|
|
from benchmark_utils import PaddleInferBenchmark
|
|
from picodet_postprocess import PicoDetPostProcess
|
|
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize, WarpAffine, Pad, decode_image, CULaneResize
|
|
from keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop
|
|
from clrnet_postprocess import CLRNetPostProcess
|
|
from visualize import visualize_box_mask, imshow_lanes
|
|
from utils import argsparser, Timer, get_current_memory_mb, multiclass_nms, coco_clsid2catid
|
|
|
|
# Global dictionary
|
|
SUPPORT_MODELS = {
|
|
'YOLO', 'PPYOLOE', 'RCNN', 'SSD', 'Face', 'FCOS', 'SOLOv2', 'TTFNet',
|
|
'S2ANet', 'JDE', 'FairMOT', 'DeepSORT', 'GFL', 'PicoDet', 'CenterNet',
|
|
'TOOD', 'RetinaNet', 'StrongBaseline', 'STGCN', 'YOLOX', 'YOLOF', 'PPHGNet',
|
|
'PPLCNet', 'DETR', 'CenterTrack', 'CLRNet'
|
|
}
|
|
|
|
|
|
def bench_log(detector, img_list, model_info, batch_size=1, name=None):
|
|
mems = {
|
|
'cpu_rss_mb': detector.cpu_mem / len(img_list),
|
|
'gpu_rss_mb': detector.gpu_mem / len(img_list),
|
|
'gpu_util': detector.gpu_util * 100 / len(img_list)
|
|
}
|
|
perf_info = detector.det_times.report(average=True)
|
|
data_info = {
|
|
'batch_size': batch_size,
|
|
'shape': "dynamic_shape",
|
|
'data_num': perf_info['img_num']
|
|
}
|
|
log = PaddleInferBenchmark(detector.config, model_info, data_info,
|
|
perf_info, mems)
|
|
log(name)
|
|
|
|
|
|
class Detector(object):
|
|
"""
|
|
Args:
|
|
pred_config (object): config of model, defined by `Config(model_dir)`
|
|
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
|
|
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
|
|
run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
|
|
batch_size (int): size of pre batch in inference
|
|
trt_min_shape (int): min shape for dynamic shape in trt
|
|
trt_max_shape (int): max shape for dynamic shape in trt
|
|
trt_opt_shape (int): opt shape for dynamic shape in trt
|
|
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
|
|
calibration, trt_calib_mode need to set True
|
|
cpu_threads (int): cpu threads
|
|
enable_mkldnn (bool): whether to open MKLDNN
|
|
enable_mkldnn_bfloat16 (bool): whether to turn on mkldnn bfloat16
|
|
output_dir (str): The path of output
|
|
threshold (float): The threshold of score for visualization
|
|
delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT.
|
|
Used by action model.
|
|
"""
|
|
|
|
def __init__(self,
|
|
model_dir,
|
|
device='CPU',
|
|
run_mode='paddle',
|
|
batch_size=1,
|
|
trt_min_shape=1,
|
|
trt_max_shape=1280,
|
|
trt_opt_shape=640,
|
|
trt_calib_mode=False,
|
|
cpu_threads=1,
|
|
enable_mkldnn=False,
|
|
enable_mkldnn_bfloat16=False,
|
|
output_dir='output',
|
|
threshold=0.5,
|
|
delete_shuffle_pass=False,
|
|
use_fd_format=False):
|
|
self.pred_config = self.set_config(
|
|
model_dir, use_fd_format=use_fd_format)
|
|
self.predictor, self.config = load_predictor(
|
|
model_dir,
|
|
self.pred_config.arch,
|
|
run_mode=run_mode,
|
|
batch_size=batch_size,
|
|
min_subgraph_size=self.pred_config.min_subgraph_size,
|
|
device=device,
|
|
use_dynamic_shape=self.pred_config.use_dynamic_shape,
|
|
trt_min_shape=trt_min_shape,
|
|
trt_max_shape=trt_max_shape,
|
|
trt_opt_shape=trt_opt_shape,
|
|
trt_calib_mode=trt_calib_mode,
|
|
cpu_threads=cpu_threads,
|
|
enable_mkldnn=enable_mkldnn,
|
|
enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
|
|
delete_shuffle_pass=delete_shuffle_pass)
|
|
self.det_times = Timer()
|
|
self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
|
|
self.batch_size = batch_size
|
|
self.output_dir = output_dir
|
|
self.threshold = threshold
|
|
self.device = device
|
|
|
|
def set_config(self, model_dir, use_fd_format):
|
|
return PredictConfig(model_dir, use_fd_format=use_fd_format)
|
|
|
|
def preprocess(self, image_list):
|
|
preprocess_ops = []
|
|
for op_info in self.pred_config.preprocess_infos:
|
|
new_op_info = op_info.copy()
|
|
op_type = new_op_info.pop('type')
|
|
preprocess_ops.append(eval(op_type)(**new_op_info))
|
|
|
|
input_im_lst = []
|
|
input_im_info_lst = []
|
|
for im_path in image_list:
|
|
im, im_info = preprocess(im_path, preprocess_ops)
|
|
input_im_lst.append(im)
|
|
input_im_info_lst.append(im_info)
|
|
inputs = create_inputs(input_im_lst, input_im_info_lst)
|
|
input_names = self.predictor.get_input_names()
|
|
for i in range(len(input_names)):
|
|
input_tensor = self.predictor.get_input_handle(input_names[i])
|
|
if input_names[i] == 'x':
|
|
input_tensor.copy_from_cpu(inputs['image'])
|
|
else:
|
|
input_tensor.copy_from_cpu(inputs[input_names[i]])
|
|
|
|
return inputs
|
|
|
|
def postprocess(self, inputs, result):
|
|
# postprocess output of predictor
|
|
np_boxes_num = result['boxes_num']
|
|
assert isinstance(np_boxes_num, np.ndarray), \
|
|
'`np_boxes_num` should be a `numpy.ndarray`'
|
|
|
|
result = {k: v for k, v in result.items() if v is not None}
|
|
return result
|
|
|
|
def filter_box(self, result, threshold):
|
|
np_boxes_num = result['boxes_num']
|
|
boxes = result['boxes']
|
|
start_idx = 0
|
|
filter_boxes = []
|
|
filter_num = []
|
|
for i in range(len(np_boxes_num)):
|
|
boxes_num = np_boxes_num[i]
|
|
boxes_i = boxes[start_idx:start_idx + boxes_num, :]
|
|
idx = boxes_i[:, 1] > threshold
|
|
filter_boxes_i = boxes_i[idx, :]
|
|
filter_boxes.append(filter_boxes_i)
|
|
filter_num.append(filter_boxes_i.shape[0])
|
|
start_idx += boxes_num
|
|
boxes = np.concatenate(filter_boxes)
|
|
filter_num = np.array(filter_num)
|
|
filter_res = {'boxes': boxes, 'boxes_num': filter_num}
|
|
return filter_res
|
|
|
|
def predict(self, repeats=1, run_benchmark=False):
|
|
'''
|
|
Args:
|
|
repeats (int): repeats number for prediction
|
|
Returns:
|
|
result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
|
|
matix element:[class, score, x_min, y_min, x_max, y_max]
|
|
MaskRCNN's result include 'masks': np.ndarray:
|
|
shape: [N, im_h, im_w]
|
|
'''
|
|
# model prediction
|
|
np_boxes_num, np_boxes, np_masks = np.array([0]), None, None
|
|
|
|
if run_benchmark:
|
|
for i in range(repeats):
|
|
self.predictor.run()
|
|
if self.device == 'GPU':
|
|
paddle.device.cuda.synchronize()
|
|
else:
|
|
paddle.device.synchronize(device=self.device.lower())
|
|
|
|
result = dict(
|
|
boxes=np_boxes, masks=np_masks, boxes_num=np_boxes_num)
|
|
return result
|
|
|
|
for i in range(repeats):
|
|
self.predictor.run()
|
|
output_names = self.predictor.get_output_names()
|
|
boxes_tensor = self.predictor.get_output_handle(output_names[0])
|
|
np_boxes = boxes_tensor.copy_to_cpu()
|
|
if len(output_names) == 1:
|
|
# some exported model can not get tensor 'bbox_num'
|
|
np_boxes_num = np.array([len(np_boxes)])
|
|
else:
|
|
boxes_num = self.predictor.get_output_handle(output_names[1])
|
|
np_boxes_num = boxes_num.copy_to_cpu()
|
|
if self.pred_config.mask:
|
|
masks_tensor = self.predictor.get_output_handle(output_names[2])
|
|
np_masks = masks_tensor.copy_to_cpu()
|
|
result = dict(boxes=np_boxes, masks=np_masks, boxes_num=np_boxes_num)
|
|
return result
|
|
|
|
def merge_batch_result(self, batch_result):
|
|
if len(batch_result) == 1:
|
|
return batch_result[0]
|
|
res_key = batch_result[0].keys()
|
|
results = {k: [] for k in res_key}
|
|
for res in batch_result:
|
|
for k, v in res.items():
|
|
results[k].append(v)
|
|
for k, v in results.items():
|
|
if k not in ['masks', 'segm']:
|
|
results[k] = np.concatenate(v)
|
|
return results
|
|
|
|
def get_timer(self):
|
|
return self.det_times
|
|
|
|
def predict_image_slice(self,
|
|
img_list,
|
|
slice_size=[640, 640],
|
|
overlap_ratio=[0.25, 0.25],
|
|
combine_method='nms',
|
|
match_threshold=0.6,
|
|
match_metric='ios',
|
|
run_benchmark=False,
|
|
repeats=1,
|
|
visual=True,
|
|
save_results=False):
|
|
# slice infer only support bs=1
|
|
results = []
|
|
try:
|
|
import sahi
|
|
from sahi.slicing import slice_image
|
|
except Exception as e:
|
|
print(
|
|
'sahi not found, plaese install sahi. '
|
|
'for example: `pip install sahi`, see https://github.com/obss/sahi.'
|
|
)
|
|
raise e
|
|
num_classes = len(self.pred_config.labels)
|
|
for i in range(len(img_list)):
|
|
ori_image = img_list[i]
|
|
slice_image_result = sahi.slicing.slice_image(
|
|
image=ori_image,
|
|
slice_height=slice_size[0],
|
|
slice_width=slice_size[1],
|
|
overlap_height_ratio=overlap_ratio[0],
|
|
overlap_width_ratio=overlap_ratio[1])
|
|
sub_img_num = len(slice_image_result)
|
|
merged_bboxs = []
|
|
print('slice to {} sub_samples.', sub_img_num)
|
|
|
|
batch_image_list = [
|
|
slice_image_result.images[_ind] for _ind in range(sub_img_num)
|
|
]
|
|
if run_benchmark:
|
|
# preprocess
|
|
inputs = self.preprocess(batch_image_list) # warmup
|
|
self.det_times.preprocess_time_s.start()
|
|
inputs = self.preprocess(batch_image_list)
|
|
self.det_times.preprocess_time_s.end()
|
|
|
|
# model prediction
|
|
result = self.predict(repeats=50, run_benchmark=True) # warmup
|
|
self.det_times.inference_time_s.start()
|
|
result = self.predict(repeats=repeats, run_benchmark=True)
|
|
self.det_times.inference_time_s.end(repeats=repeats)
|
|
|
|
# postprocess
|
|
result_warmup = self.postprocess(inputs, result) # warmup
|
|
self.det_times.postprocess_time_s.start()
|
|
result = self.postprocess(inputs, result)
|
|
self.det_times.postprocess_time_s.end()
|
|
self.det_times.img_num += 1
|
|
|
|
cm, gm, gu = get_current_memory_mb()
|
|
self.cpu_mem += cm
|
|
self.gpu_mem += gm
|
|
self.gpu_util += gu
|
|
else:
|
|
# preprocess
|
|
self.det_times.preprocess_time_s.start()
|
|
inputs = self.preprocess(batch_image_list)
|
|
self.det_times.preprocess_time_s.end()
|
|
|
|
# model prediction
|
|
self.det_times.inference_time_s.start()
|
|
result = self.predict()
|
|
self.det_times.inference_time_s.end()
|
|
|
|
# postprocess
|
|
self.det_times.postprocess_time_s.start()
|
|
result = self.postprocess(inputs, result)
|
|
self.det_times.postprocess_time_s.end()
|
|
self.det_times.img_num += 1
|
|
|
|
st, ed = 0, result['boxes_num'][0] # start_index, end_index
|
|
for _ind in range(sub_img_num):
|
|
boxes_num = result['boxes_num'][_ind]
|
|
ed = st + boxes_num
|
|
shift_amount = slice_image_result.starting_pixels[_ind]
|
|
result['boxes'][st:ed][:, 2:4] = result['boxes'][
|
|
st:ed][:, 2:4] + shift_amount
|
|
result['boxes'][st:ed][:, 4:6] = result['boxes'][
|
|
st:ed][:, 4:6] + shift_amount
|
|
merged_bboxs.append(result['boxes'][st:ed])
|
|
st = ed
|
|
|
|
merged_results = {'boxes': []}
|
|
if combine_method == 'nms':
|
|
final_boxes = multiclass_nms(
|
|
np.concatenate(merged_bboxs), num_classes, match_threshold,
|
|
match_metric)
|
|
merged_results['boxes'] = np.concatenate(final_boxes)
|
|
elif combine_method == 'concat':
|
|
merged_results['boxes'] = np.concatenate(merged_bboxs)
|
|
else:
|
|
raise ValueError(
|
|
"Now only support 'nms' or 'concat' to fuse detection results."
|
|
)
|
|
merged_results['boxes_num'] = np.array(
|
|
[len(merged_results['boxes'])], dtype=np.int32)
|
|
|
|
if visual:
|
|
visualize(
|
|
[ori_image], # should be list
|
|
merged_results,
|
|
self.pred_config.labels,
|
|
output_dir=self.output_dir,
|
|
threshold=self.threshold)
|
|
|
|
results.append(merged_results)
|
|
print('Test iter {}'.format(i))
|
|
|
|
results = self.merge_batch_result(results)
|
|
if save_results:
|
|
Path(self.output_dir).mkdir(exist_ok=True)
|
|
self.save_coco_results(
|
|
img_list,
|
|
results,
|
|
use_coco_category=FLAGS.use_coco_category,
|
|
task_type=FLAGS.task_type)
|
|
return results
|
|
|
|
def predict_image(self,
|
|
image_list,
|
|
run_benchmark=False,
|
|
repeats=1,
|
|
visual=True,
|
|
save_results=False):
|
|
batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
|
|
results = []
|
|
for i in range(batch_loop_cnt):
|
|
start_index = i * self.batch_size
|
|
end_index = min((i + 1) * self.batch_size, len(image_list))
|
|
batch_image_list = image_list[start_index:end_index]
|
|
if run_benchmark:
|
|
# preprocess
|
|
inputs = self.preprocess(batch_image_list) # warmup
|
|
self.det_times.preprocess_time_s.start()
|
|
inputs = self.preprocess(batch_image_list)
|
|
self.det_times.preprocess_time_s.end()
|
|
|
|
# model prediction
|
|
result = self.predict(repeats=50, run_benchmark=True) # warmup
|
|
self.det_times.inference_time_s.start()
|
|
result = self.predict(repeats=repeats, run_benchmark=True)
|
|
self.det_times.inference_time_s.end(repeats=repeats)
|
|
|
|
# postprocess
|
|
result_warmup = self.postprocess(inputs, result) # warmup
|
|
self.det_times.postprocess_time_s.start()
|
|
result = self.postprocess(inputs, result)
|
|
self.det_times.postprocess_time_s.end()
|
|
self.det_times.img_num += len(batch_image_list)
|
|
|
|
cm, gm, gu = get_current_memory_mb()
|
|
self.cpu_mem += cm
|
|
self.gpu_mem += gm
|
|
self.gpu_util += gu
|
|
else:
|
|
# preprocess
|
|
self.det_times.preprocess_time_s.start()
|
|
inputs = self.preprocess(batch_image_list)
|
|
self.det_times.preprocess_time_s.end()
|
|
|
|
# model prediction
|
|
self.det_times.inference_time_s.start()
|
|
result = self.predict()
|
|
self.det_times.inference_time_s.end()
|
|
|
|
# postprocess
|
|
self.det_times.postprocess_time_s.start()
|
|
result = self.postprocess(inputs, result)
|
|
self.det_times.postprocess_time_s.end()
|
|
self.det_times.img_num += len(batch_image_list)
|
|
|
|
if visual:
|
|
visualize(
|
|
batch_image_list,
|
|
result,
|
|
self.pred_config.labels,
|
|
output_dir=self.output_dir,
|
|
threshold=self.threshold)
|
|
results.append(result)
|
|
print('Test iter {}'.format(i))
|
|
results = self.merge_batch_result(results)
|
|
if save_results:
|
|
Path(self.output_dir).mkdir(exist_ok=True)
|
|
self.save_coco_results(
|
|
image_list,
|
|
results,
|
|
use_coco_category=FLAGS.use_coco_category,
|
|
task_type=FLAGS.task_type)
|
|
return results
|
|
|
|
def predict_video(self, video_file, camera_id):
|
|
video_out_name = 'output.mp4'
|
|
if camera_id != -1:
|
|
capture = cv2.VideoCapture(camera_id)
|
|
else:
|
|
capture = cv2.VideoCapture(video_file)
|
|
video_out_name = os.path.split(video_file)[-1]
|
|
# Get Video info : resolution, fps, frame count
|
|
width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
fps = int(capture.get(cv2.CAP_PROP_FPS))
|
|
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
print("fps: %d, frame_count: %d" % (fps, frame_count))
|
|
|
|
if not os.path.exists(self.output_dir):
|
|
os.makedirs(self.output_dir)
|
|
out_path = os.path.join(self.output_dir, video_out_name)
|
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
|
writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
|
|
index = 1
|
|
while (1):
|
|
ret, frame = capture.read()
|
|
if not ret:
|
|
break
|
|
print('detect frame: %d' % (index))
|
|
index += 1
|
|
results = self.predict_image([frame[:, :, ::-1]], visual=False)
|
|
|
|
im = visualize_box_mask(
|
|
frame,
|
|
results,
|
|
self.pred_config.labels,
|
|
threshold=self.threshold)
|
|
im = np.array(im)
|
|
writer.write(im)
|
|
if camera_id != -1:
|
|
cv2.imshow('Mask Detection', im)
|
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
break
|
|
writer.release()
|
|
|
|
def save_coco_results(self,
|
|
image_list,
|
|
results,
|
|
use_coco_category=False,
|
|
task_type='Detection'):
|
|
bbox_results = []
|
|
mask_results = []
|
|
idx = 0
|
|
print("Start saving coco json files...")
|
|
for i, box_num in enumerate(results['boxes_num']):
|
|
file_name = os.path.split(image_list[i])[-1]
|
|
if use_coco_category:
|
|
img_id = int(os.path.splitext(file_name)[0])
|
|
else:
|
|
img_id = i
|
|
|
|
if 'boxes' in results:
|
|
boxes = results['boxes'][idx:idx + box_num].tolist()
|
|
if task_type == 'Rotate':
|
|
bbox = [
|
|
box[2], box[3], box[4], box[5], box[6], box[7], box[8],
|
|
box[9]
|
|
] # x1, y1, x2, y2, x3, y3, x4, y4
|
|
else: # default is 'Detection'
|
|
bbox: [box[2], box[3], box[4] - box[2],
|
|
box[5] - box[3]] # xyxy -> xywh
|
|
bbox_results.extend([{
|
|
'image_id': img_id,
|
|
'category_id': coco_clsid2catid[int(box[0])] \
|
|
if use_coco_category else int(box[0]),
|
|
'file_name': file_name,
|
|
'bbox': bbox,
|
|
'score': box[1]} for box in boxes])
|
|
|
|
if 'masks' in results:
|
|
import pycocotools.mask as mask_util
|
|
|
|
boxes = results['boxes'][idx:idx + box_num].tolist()
|
|
masks = results['masks'][i][:box_num].astype(np.uint8)
|
|
seg_res = []
|
|
for box, mask in zip(boxes, masks):
|
|
rle = mask_util.encode(
|
|
np.array(
|
|
mask[:, :, None], dtype=np.uint8, order="F"))[0]
|
|
if 'counts' in rle:
|
|
rle['counts'] = rle['counts'].decode("utf8")
|
|
seg_res.append({
|
|
'image_id': img_id,
|
|
'category_id': coco_clsid2catid[int(box[0])] \
|
|
if use_coco_category else int(box[0]),
|
|
'file_name': file_name,
|
|
'segmentation': rle,
|
|
'score': box[1]})
|
|
mask_results.extend(seg_res)
|
|
|
|
idx += box_num
|
|
|
|
if bbox_results:
|
|
bbox_file = os.path.join(self.output_dir, "bbox.json")
|
|
with open(bbox_file, 'w') as f:
|
|
json.dump(bbox_results, f)
|
|
print(f"The bbox result is saved to {bbox_file}")
|
|
if mask_results:
|
|
mask_file = os.path.join(self.output_dir, "mask.json")
|
|
with open(mask_file, 'w') as f:
|
|
json.dump(mask_results, f)
|
|
print(f"The mask result is saved to {mask_file}")
|
|
|
|
|
|
class DetectorSOLOv2(Detector):
|
|
"""
|
|
Args:
|
|
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
|
|
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
|
|
run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
|
|
batch_size (int): size of pre batch in inference
|
|
trt_min_shape (int): min shape for dynamic shape in trt
|
|
trt_max_shape (int): max shape for dynamic shape in trt
|
|
trt_opt_shape (int): opt shape for dynamic shape in trt
|
|
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
|
|
calibration, trt_calib_mode need to set True
|
|
cpu_threads (int): cpu threads
|
|
enable_mkldnn (bool): whether to open MKLDNN
|
|
enable_mkldnn_bfloat16 (bool): Whether to turn on mkldnn bfloat16
|
|
output_dir (str): The path of output
|
|
threshold (float): The threshold of score for visualization
|
|
|
|
"""
|
|
|
|
def __init__(self,
|
|
model_dir,
|
|
device='CPU',
|
|
run_mode='paddle',
|
|
batch_size=1,
|
|
trt_min_shape=1,
|
|
trt_max_shape=1280,
|
|
trt_opt_shape=640,
|
|
trt_calib_mode=False,
|
|
cpu_threads=1,
|
|
enable_mkldnn=False,
|
|
enable_mkldnn_bfloat16=False,
|
|
output_dir='./',
|
|
threshold=0.5,
|
|
use_fd_format=False):
|
|
super(DetectorSOLOv2, self).__init__(
|
|
model_dir=model_dir,
|
|
device=device,
|
|
run_mode=run_mode,
|
|
batch_size=batch_size,
|
|
trt_min_shape=trt_min_shape,
|
|
trt_max_shape=trt_max_shape,
|
|
trt_opt_shape=trt_opt_shape,
|
|
trt_calib_mode=trt_calib_mode,
|
|
cpu_threads=cpu_threads,
|
|
enable_mkldnn=enable_mkldnn,
|
|
enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
|
|
output_dir=output_dir,
|
|
threshold=threshold,
|
|
use_fd_format=use_fd_format)
|
|
|
|
def predict(self, repeats=1, run_benchmark=False):
|
|
'''
|
|
Args:
|
|
repeats (int): repeat number for prediction
|
|
Returns:
|
|
result (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
|
|
'cate_label': label of segm, shape:[N]
|
|
'cate_score': confidence score of segm, shape:[N]
|
|
'''
|
|
np_segms, np_label, np_score, np_boxes_num = None, None, None, np.array(
|
|
[0])
|
|
|
|
if run_benchmark:
|
|
for i in range(repeats):
|
|
self.predictor.run()
|
|
paddle.device.cuda.synchronize()
|
|
result = dict(
|
|
segm=np_segms,
|
|
label=np_label,
|
|
score=np_score,
|
|
boxes_num=np_boxes_num)
|
|
return result
|
|
|
|
for i in range(repeats):
|
|
self.predictor.run()
|
|
output_names = self.predictor.get_output_names()
|
|
np_segms = self.predictor.get_output_handle(output_names[
|
|
0]).copy_to_cpu()
|
|
np_boxes_num = self.predictor.get_output_handle(output_names[
|
|
1]).copy_to_cpu()
|
|
np_label = self.predictor.get_output_handle(output_names[
|
|
2]).copy_to_cpu()
|
|
np_score = self.predictor.get_output_handle(output_names[
|
|
3]).copy_to_cpu()
|
|
|
|
result = dict(
|
|
segm=np_segms,
|
|
label=np_label,
|
|
score=np_score,
|
|
boxes_num=np_boxes_num)
|
|
return result
|
|
|
|
|
|
class DetectorPicoDet(Detector):
|
|
"""
|
|
Args:
|
|
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
|
|
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
|
|
run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
|
|
batch_size (int): size of pre batch in inference
|
|
trt_min_shape (int): min shape for dynamic shape in trt
|
|
trt_max_shape (int): max shape for dynamic shape in trt
|
|
trt_opt_shape (int): opt shape for dynamic shape in trt
|
|
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
|
|
calibration, trt_calib_mode need to set True
|
|
cpu_threads (int): cpu threads
|
|
enable_mkldnn (bool): whether to turn on MKLDNN
|
|
enable_mkldnn_bfloat16 (bool): whether to turn on MKLDNN_BFLOAT16
|
|
"""
|
|
|
|
def __init__(self,
|
|
model_dir,
|
|
device='CPU',
|
|
run_mode='paddle',
|
|
batch_size=1,
|
|
trt_min_shape=1,
|
|
trt_max_shape=1280,
|
|
trt_opt_shape=640,
|
|
trt_calib_mode=False,
|
|
cpu_threads=1,
|
|
enable_mkldnn=False,
|
|
enable_mkldnn_bfloat16=False,
|
|
output_dir='./',
|
|
threshold=0.5,
|
|
use_fd_format=False):
|
|
super(DetectorPicoDet, self).__init__(
|
|
model_dir=model_dir,
|
|
device=device,
|
|
run_mode=run_mode,
|
|
batch_size=batch_size,
|
|
trt_min_shape=trt_min_shape,
|
|
trt_max_shape=trt_max_shape,
|
|
trt_opt_shape=trt_opt_shape,
|
|
trt_calib_mode=trt_calib_mode,
|
|
cpu_threads=cpu_threads,
|
|
enable_mkldnn=enable_mkldnn,
|
|
enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
|
|
output_dir=output_dir,
|
|
threshold=threshold,
|
|
use_fd_format=use_fd_format)
|
|
|
|
def postprocess(self, inputs, result):
|
|
# postprocess output of predictor
|
|
np_score_list = result['boxes']
|
|
np_boxes_list = result['boxes_num']
|
|
postprocessor = PicoDetPostProcess(
|
|
inputs['image'].shape[2:],
|
|
inputs['im_shape'],
|
|
inputs['scale_factor'],
|
|
strides=self.pred_config.fpn_stride,
|
|
nms_threshold=self.pred_config.nms['nms_threshold'])
|
|
np_boxes, np_boxes_num = postprocessor(np_score_list, np_boxes_list)
|
|
result = dict(boxes=np_boxes, boxes_num=np_boxes_num)
|
|
return result
|
|
|
|
def predict(self, repeats=1, run_benchmark=False):
|
|
'''
|
|
Args:
|
|
repeats (int): repeat number for prediction
|
|
Returns:
|
|
result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
|
|
matix element:[class, score, x_min, y_min, x_max, y_max]
|
|
'''
|
|
np_score_list, np_boxes_list = [], []
|
|
|
|
if run_benchmark:
|
|
for i in range(repeats):
|
|
self.predictor.run()
|
|
paddle.device.cuda.synchronize()
|
|
result = dict(boxes=np_score_list, boxes_num=np_boxes_list)
|
|
return result
|
|
|
|
for i in range(repeats):
|
|
self.predictor.run()
|
|
np_score_list.clear()
|
|
np_boxes_list.clear()
|
|
output_names = self.predictor.get_output_names()
|
|
num_outs = int(len(output_names) / 2)
|
|
for out_idx in range(num_outs):
|
|
np_score_list.append(
|
|
self.predictor.get_output_handle(output_names[out_idx])
|
|
.copy_to_cpu())
|
|
np_boxes_list.append(
|
|
self.predictor.get_output_handle(output_names[
|
|
out_idx + num_outs]).copy_to_cpu())
|
|
result = dict(boxes=np_score_list, boxes_num=np_boxes_list)
|
|
return result
|
|
|
|
|
|
class DetectorCLRNet(Detector):
|
|
"""
|
|
Args:
|
|
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
|
|
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
|
|
run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
|
|
batch_size (int): size of pre batch in inference
|
|
trt_min_shape (int): min shape for dynamic shape in trt
|
|
trt_max_shape (int): max shape for dynamic shape in trt
|
|
trt_opt_shape (int): opt shape for dynamic shape in trt
|
|
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
|
|
calibration, trt_calib_mode need to set True
|
|
cpu_threads (int): cpu threads
|
|
enable_mkldnn (bool): whether to turn on MKLDNN
|
|
enable_mkldnn_bfloat16 (bool): whether to turn on MKLDNN_BFLOAT16
|
|
"""
|
|
|
|
def __init__(self,
|
|
model_dir,
|
|
device='CPU',
|
|
run_mode='paddle',
|
|
batch_size=1,
|
|
trt_min_shape=1,
|
|
trt_max_shape=1280,
|
|
trt_opt_shape=640,
|
|
trt_calib_mode=False,
|
|
cpu_threads=1,
|
|
enable_mkldnn=False,
|
|
enable_mkldnn_bfloat16=False,
|
|
output_dir='./',
|
|
threshold=0.5,
|
|
use_fd_format=False):
|
|
super(DetectorCLRNet, self).__init__(
|
|
model_dir=model_dir,
|
|
device=device,
|
|
run_mode=run_mode,
|
|
batch_size=batch_size,
|
|
trt_min_shape=trt_min_shape,
|
|
trt_max_shape=trt_max_shape,
|
|
trt_opt_shape=trt_opt_shape,
|
|
trt_calib_mode=trt_calib_mode,
|
|
cpu_threads=cpu_threads,
|
|
enable_mkldnn=enable_mkldnn,
|
|
enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
|
|
output_dir=output_dir,
|
|
threshold=threshold,
|
|
use_fd_format=use_fd_format)
|
|
|
|
deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
|
|
with open(deploy_file) as f:
|
|
yml_conf = yaml.safe_load(f)
|
|
self.img_w = yml_conf['img_w']
|
|
self.ori_img_h = yml_conf['ori_img_h']
|
|
self.cut_height = yml_conf['cut_height']
|
|
self.max_lanes = yml_conf['max_lanes']
|
|
self.nms_thres = yml_conf['nms_thres']
|
|
self.num_points = yml_conf['num_points']
|
|
self.conf_threshold = yml_conf['conf_threshold']
|
|
|
|
def postprocess(self, inputs, result):
|
|
# postprocess output of predictor
|
|
lanes_list = result['lanes']
|
|
postprocessor = CLRNetPostProcess(
|
|
img_w=self.img_w,
|
|
ori_img_h=self.ori_img_h,
|
|
cut_height=self.cut_height,
|
|
conf_threshold=self.conf_threshold,
|
|
nms_thres=self.nms_thres,
|
|
max_lanes=self.max_lanes,
|
|
num_points=self.num_points)
|
|
lanes = postprocessor(lanes_list)
|
|
result = dict(lanes=lanes)
|
|
return result
|
|
|
|
def predict(self, repeats=1, run_benchmark=False):
|
|
'''
|
|
Args:
|
|
repeats (int): repeat number for prediction
|
|
Returns:
|
|
result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
|
|
matix element:[class, score, x_min, y_min, x_max, y_max]
|
|
'''
|
|
lanes_list = []
|
|
|
|
if run_benchmark:
|
|
for i in range(repeats):
|
|
self.predictor.run()
|
|
paddle.device.cuda.synchronize()
|
|
result = dict(lanes=lanes_list)
|
|
return result
|
|
|
|
for i in range(repeats):
|
|
# TODO: check the output of predictor
|
|
self.predictor.run()
|
|
lanes_list.clear()
|
|
output_names = self.predictor.get_output_names()
|
|
num_outs = int(len(output_names) / 2)
|
|
if num_outs == 0:
|
|
lanes_list.append([])
|
|
for out_idx in range(num_outs):
|
|
lanes_list.append(
|
|
self.predictor.get_output_handle(output_names[out_idx])
|
|
.copy_to_cpu())
|
|
result = dict(lanes=lanes_list)
|
|
return result
|
|
|
|
|
|
def create_inputs(imgs, im_info):
|
|
"""generate input for different model type
|
|
Args:
|
|
imgs (list(numpy)): list of images (np.ndarray)
|
|
im_info (list(dict)): list of image info
|
|
Returns:
|
|
inputs (dict): input of model
|
|
"""
|
|
inputs = {}
|
|
|
|
im_shape = []
|
|
scale_factor = []
|
|
if len(imgs) == 1:
|
|
inputs['image'] = np.array((imgs[0], )).astype('float32')
|
|
inputs['im_shape'] = np.array(
|
|
(im_info[0]['im_shape'], )).astype('float32')
|
|
inputs['scale_factor'] = np.array(
|
|
(im_info[0]['scale_factor'], )).astype('float32')
|
|
return inputs
|
|
|
|
for e in im_info:
|
|
im_shape.append(np.array((e['im_shape'], )).astype('float32'))
|
|
scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))
|
|
|
|
inputs['im_shape'] = np.concatenate(im_shape, axis=0)
|
|
inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
|
|
|
|
imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
|
|
max_shape_h = max([e[0] for e in imgs_shape])
|
|
max_shape_w = max([e[1] for e in imgs_shape])
|
|
padding_imgs = []
|
|
for img in imgs:
|
|
im_c, im_h, im_w = img.shape[:]
|
|
padding_im = np.zeros(
|
|
(im_c, max_shape_h, max_shape_w), dtype=np.float32)
|
|
padding_im[:, :im_h, :im_w] = img
|
|
padding_imgs.append(padding_im)
|
|
inputs['image'] = np.stack(padding_imgs, axis=0)
|
|
return inputs
|
|
|
|
|
|
class PredictConfig():
|
|
"""set config of preprocess, postprocess and visualize
|
|
Args:
|
|
model_dir (str): root path of model.yml
|
|
"""
|
|
|
|
def __init__(self, model_dir, use_fd_format=False):
|
|
# parsing Yaml config for Preprocess
|
|
fd_deploy_file = os.path.join(model_dir, 'inference.yml')
|
|
ppdet_deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
|
|
if use_fd_format:
|
|
if not os.path.exists(fd_deploy_file) and os.path.exists(
|
|
ppdet_deploy_file):
|
|
raise RuntimeError(
|
|
"Non-FD format model detected. Please set `use_fd_format` to False."
|
|
)
|
|
deploy_file = fd_deploy_file
|
|
else:
|
|
if not os.path.exists(ppdet_deploy_file) and os.path.exists(
|
|
fd_deploy_file):
|
|
raise RuntimeError(
|
|
"FD format model detected. Please set `use_fd_format` to False."
|
|
)
|
|
deploy_file = ppdet_deploy_file
|
|
with open(deploy_file) as f:
|
|
yml_conf = yaml.safe_load(f)
|
|
self.check_model(yml_conf)
|
|
self.arch = yml_conf['arch']
|
|
self.preprocess_infos = yml_conf['Preprocess']
|
|
self.min_subgraph_size = yml_conf['min_subgraph_size']
|
|
self.labels = yml_conf['label_list']
|
|
self.mask = False
|
|
self.use_dynamic_shape = yml_conf['use_dynamic_shape']
|
|
if 'mask' in yml_conf:
|
|
self.mask = yml_conf['mask']
|
|
self.tracker = None
|
|
if 'tracker' in yml_conf:
|
|
self.tracker = yml_conf['tracker']
|
|
if 'NMS' in yml_conf:
|
|
self.nms = yml_conf['NMS']
|
|
if 'fpn_stride' in yml_conf:
|
|
self.fpn_stride = yml_conf['fpn_stride']
|
|
if self.arch == 'RCNN' and yml_conf.get('export_onnx', False):
|
|
print(
|
|
'The RCNN export model is used for ONNX and it only supports batch_size = 1'
|
|
)
|
|
self.print_config()
|
|
|
|
def check_model(self, yml_conf):
|
|
"""
|
|
Raises:
|
|
ValueError: loaded model not in supported model type
|
|
"""
|
|
for support_model in SUPPORT_MODELS:
|
|
if support_model in yml_conf['arch']:
|
|
return True
|
|
raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
|
|
'arch'], SUPPORT_MODELS))
|
|
|
|
def print_config(self):
|
|
print('----------- Model Configuration -----------')
|
|
print('%s: %s' % ('Model Arch', self.arch))
|
|
print('%s: ' % ('Transform Order'))
|
|
for op_info in self.preprocess_infos:
|
|
print('--%s: %s' % ('transform op', op_info['type']))
|
|
print('--------------------------------------------')
|
|
|
|
|
|
def load_predictor(model_dir,
|
|
arch,
|
|
run_mode='paddle',
|
|
batch_size=1,
|
|
device='CPU',
|
|
min_subgraph_size=3,
|
|
use_dynamic_shape=False,
|
|
trt_min_shape=1,
|
|
trt_max_shape=1280,
|
|
trt_opt_shape=640,
|
|
trt_calib_mode=False,
|
|
cpu_threads=1,
|
|
enable_mkldnn=False,
|
|
enable_mkldnn_bfloat16=False,
|
|
delete_shuffle_pass=False):
|
|
"""set AnalysisConfig, generate AnalysisPredictor
|
|
Args:
|
|
model_dir (str): root path of __model__ and __params__
|
|
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
|
|
run_mode (str): mode of running(paddle/trt_fp32/trt_fp16/trt_int8)
|
|
use_dynamic_shape (bool): use dynamic shape or not
|
|
trt_min_shape (int): min shape for dynamic shape in trt
|
|
trt_max_shape (int): max shape for dynamic shape in trt
|
|
trt_opt_shape (int): opt shape for dynamic shape in trt
|
|
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
|
|
calibration, trt_calib_mode need to set True
|
|
delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT.
|
|
Used by action model.
|
|
Returns:
|
|
predictor (PaddlePredictor): AnalysisPredictor
|
|
Raises:
|
|
ValueError: predict by TensorRT need device == 'GPU'.
|
|
"""
|
|
if device != 'GPU' and run_mode != 'paddle':
|
|
raise ValueError(
|
|
"Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
|
|
.format(run_mode, device))
|
|
|
|
if paddle.__version__ >= '3.0.0' or paddle.__version__ == '0.0.0':
|
|
model_path = model_dir
|
|
model_prefix = 'model'
|
|
infer_param = os.path.join(model_dir, 'model.pdiparams')
|
|
if not os.path.exists(infer_param):
|
|
model_prefix = 'inference'
|
|
if paddle.framework.use_pir_api():
|
|
infer_model = os.path.join(model_dir, 'inference.pdmodel')
|
|
else:
|
|
infer_model = os.path.join(model_dir, 'inference.json')
|
|
if not os.path.exists(infer_model):
|
|
raise ValueError(
|
|
"Cannot find any inference model in dir: {}.".format(model_dir))
|
|
config = Config(model_path, model_prefix)
|
|
|
|
else:
|
|
infer_model = os.path.join(model_dir, 'model.pdmodel')
|
|
infer_params = os.path.join(model_dir, 'model.pdiparams')
|
|
if not os.path.exists(infer_model):
|
|
infer_model = os.path.join(model_dir, 'inference.pdmodel')
|
|
infer_params = os.path.join(model_dir, 'inference.pdiparams')
|
|
if not os.path.exists(infer_model):
|
|
raise ValueError(
|
|
"Cannot find any inference model in dir: {},".format(model_dir))
|
|
config = Config(infer_model, infer_params)
|
|
|
|
if device == 'GPU':
|
|
# initial GPU memory(M), device ID
|
|
config.enable_use_gpu(200, 0)
|
|
# optimize graph and fuse op
|
|
config.switch_ir_optim(True)
|
|
elif device == 'XPU':
|
|
if config.lite_engine_enabled():
|
|
config.enable_lite_engine()
|
|
config.enable_xpu(10 * 1024 * 1024)
|
|
elif device == 'NPU':
|
|
config.enable_custom_device('npu')
|
|
elif device == 'MLU':
|
|
config.enable_custom_device('mlu')
|
|
else:
|
|
config.disable_gpu()
|
|
config.set_cpu_math_library_num_threads(cpu_threads)
|
|
if enable_mkldnn:
|
|
try:
|
|
# cache 10 different shapes for mkldnn to avoid memory leak
|
|
config.set_mkldnn_cache_capacity(10)
|
|
config.enable_mkldnn()
|
|
if enable_mkldnn_bfloat16:
|
|
config.enable_mkldnn_bfloat16()
|
|
except Exception as e:
|
|
print(
|
|
"The current environment does not support `mkldnn`, so disable mkldnn."
|
|
)
|
|
pass
|
|
|
|
precision_map = {
|
|
'trt_int8': Config.Precision.Int8,
|
|
'trt_fp32': Config.Precision.Float32,
|
|
'trt_fp16': Config.Precision.Half
|
|
}
|
|
if run_mode in precision_map.keys():
|
|
config.enable_tensorrt_engine(
|
|
workspace_size=(1 << 25) * batch_size,
|
|
max_batch_size=batch_size,
|
|
min_subgraph_size=min_subgraph_size,
|
|
precision_mode=precision_map[run_mode],
|
|
use_static=False,
|
|
use_calib_mode=trt_calib_mode)
|
|
if FLAGS.collect_trt_shape_info:
|
|
config.collect_shape_range_info(FLAGS.tuned_trt_shape_file)
|
|
elif os.path.exists(FLAGS.tuned_trt_shape_file):
|
|
print(f'Use dynamic shape file: '
|
|
f'{FLAGS.tuned_trt_shape_file} for TRT...')
|
|
config.enable_tuned_tensorrt_dynamic_shape(
|
|
FLAGS.tuned_trt_shape_file, True)
|
|
|
|
if use_dynamic_shape:
|
|
min_input_shape = {
|
|
'image': [batch_size, 3, trt_min_shape, trt_min_shape],
|
|
'scale_factor': [batch_size, 2]
|
|
}
|
|
max_input_shape = {
|
|
'image': [batch_size, 3, trt_max_shape, trt_max_shape],
|
|
'scale_factor': [batch_size, 2]
|
|
}
|
|
opt_input_shape = {
|
|
'image': [batch_size, 3, trt_opt_shape, trt_opt_shape],
|
|
'scale_factor': [batch_size, 2]
|
|
}
|
|
config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
|
|
opt_input_shape)
|
|
print('trt set dynamic shape done!')
|
|
|
|
# disable print log when predict
|
|
config.disable_glog_info()
|
|
# enable shared memory
|
|
config.enable_memory_optim()
|
|
# disable feed, fetch OP, needed by zero_copy_run
|
|
config.switch_use_feed_fetch_ops(False)
|
|
if delete_shuffle_pass:
|
|
config.delete_pass("shuffle_channel_detect_pass")
|
|
predictor = create_predictor(config)
|
|
return predictor, config
|
|
|
|
|
|
def get_test_images(infer_dir, infer_img):
|
|
"""
|
|
Get image path list in TEST mode
|
|
"""
|
|
assert infer_img is not None or infer_dir is not None, \
|
|
"--image_file or --image_dir should be set"
|
|
assert infer_img is None or os.path.isfile(infer_img), \
|
|
"{} is not a file".format(infer_img)
|
|
assert infer_dir is None or os.path.isdir(infer_dir), \
|
|
"{} is not a directory".format(infer_dir)
|
|
|
|
# infer_img has a higher priority
|
|
if infer_img and os.path.isfile(infer_img):
|
|
return [infer_img]
|
|
|
|
images = set()
|
|
infer_dir = os.path.abspath(infer_dir)
|
|
assert os.path.isdir(infer_dir), \
|
|
"infer_dir {} is not a directory".format(infer_dir)
|
|
exts = ['jpg', 'jpeg', 'png', 'bmp']
|
|
exts += [ext.upper() for ext in exts]
|
|
for ext in exts:
|
|
images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
|
|
images = list(images)
|
|
|
|
assert len(images) > 0, "no image found in {}".format(infer_dir)
|
|
print("Found {} inference images in total.".format(len(images)))
|
|
|
|
return images
|
|
|
|
|
|
def visualize(image_list, result, labels, output_dir='output/', threshold=0.5):
|
|
# visualize the predict result
|
|
if 'lanes' in result:
|
|
print(image_list)
|
|
for idx, image_file in enumerate(image_list):
|
|
lanes = result['lanes'][idx]
|
|
img = cv2.imread(image_file)
|
|
out_file = os.path.join(output_dir, os.path.basename(image_file))
|
|
# hard code
|
|
lanes = [lane.to_array([], ) for lane in lanes]
|
|
imshow_lanes(img, lanes, out_file=out_file)
|
|
return
|
|
start_idx = 0
|
|
for idx, image_file in enumerate(image_list):
|
|
im_bboxes_num = result['boxes_num'][idx]
|
|
im_results = {}
|
|
if 'boxes' in result:
|
|
im_results['boxes'] = result['boxes'][start_idx:start_idx +
|
|
im_bboxes_num, :]
|
|
if 'masks' in result:
|
|
im_results['masks'] = result['masks'][start_idx:start_idx +
|
|
im_bboxes_num, :]
|
|
if 'segm' in result:
|
|
im_results['segm'] = result['segm'][start_idx:start_idx +
|
|
im_bboxes_num, :]
|
|
if 'label' in result:
|
|
im_results['label'] = result['label'][start_idx:start_idx +
|
|
im_bboxes_num]
|
|
if 'score' in result:
|
|
im_results['score'] = result['score'][start_idx:start_idx +
|
|
im_bboxes_num]
|
|
|
|
start_idx += im_bboxes_num
|
|
im = visualize_box_mask(
|
|
image_file, im_results, labels, threshold=threshold)
|
|
img_name = os.path.split(image_file)[-1]
|
|
if not os.path.exists(output_dir):
|
|
os.makedirs(output_dir)
|
|
out_path = os.path.join(output_dir, img_name)
|
|
im.save(out_path, quality=95)
|
|
print("save result to: " + out_path)
|
|
|
|
|
|
def print_arguments(args):
|
|
print('----------- Running Arguments -----------')
|
|
for arg, value in sorted(vars(args).items()):
|
|
print('%s: %s' % (arg, value))
|
|
print('------------------------------------------')
|
|
|
|
|
|
def main():
|
|
if FLAGS.use_fd_format:
|
|
deploy_file = os.path.join(FLAGS.model_dir, 'inference.yml')
|
|
else:
|
|
deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
|
|
with open(deploy_file) as f:
|
|
yml_conf = yaml.safe_load(f)
|
|
arch = yml_conf['arch']
|
|
detector_func = 'Detector'
|
|
if arch == 'SOLOv2':
|
|
detector_func = 'DetectorSOLOv2'
|
|
elif arch == 'PicoDet':
|
|
detector_func = 'DetectorPicoDet'
|
|
elif arch == "CLRNet":
|
|
detector_func = 'DetectorCLRNet'
|
|
|
|
detector = eval(detector_func)(
|
|
FLAGS.model_dir,
|
|
device=FLAGS.device,
|
|
run_mode=FLAGS.run_mode,
|
|
batch_size=FLAGS.batch_size,
|
|
trt_min_shape=FLAGS.trt_min_shape,
|
|
trt_max_shape=FLAGS.trt_max_shape,
|
|
trt_opt_shape=FLAGS.trt_opt_shape,
|
|
trt_calib_mode=FLAGS.trt_calib_mode,
|
|
cpu_threads=FLAGS.cpu_threads,
|
|
enable_mkldnn=FLAGS.enable_mkldnn,
|
|
enable_mkldnn_bfloat16=FLAGS.enable_mkldnn_bfloat16,
|
|
threshold=FLAGS.threshold,
|
|
output_dir=FLAGS.output_dir,
|
|
use_fd_format=FLAGS.use_fd_format)
|
|
|
|
# predict from video file or camera video stream
|
|
if FLAGS.video_file is not None or FLAGS.camera_id != -1:
|
|
detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
|
|
else:
|
|
# predict from image
|
|
if FLAGS.image_dir is None and FLAGS.image_file is not None:
|
|
assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
|
|
img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
|
|
if FLAGS.slice_infer:
|
|
detector.predict_image_slice(
|
|
img_list,
|
|
FLAGS.slice_size,
|
|
FLAGS.overlap_ratio,
|
|
FLAGS.combine_method,
|
|
FLAGS.match_threshold,
|
|
FLAGS.match_metric,
|
|
visual=FLAGS.save_images,
|
|
save_results=FLAGS.save_results)
|
|
else:
|
|
detector.predict_image(
|
|
img_list,
|
|
FLAGS.run_benchmark,
|
|
repeats=100,
|
|
visual=FLAGS.save_images,
|
|
save_results=FLAGS.save_results)
|
|
if not FLAGS.run_benchmark:
|
|
detector.det_times.info(average=True)
|
|
else:
|
|
mode = FLAGS.run_mode
|
|
model_dir = FLAGS.model_dir
|
|
model_info = {
|
|
'model_name': model_dir.strip('/').split('/')[-1],
|
|
'precision': mode.split('_')[-1]
|
|
}
|
|
bench_log(detector, img_list, model_info, name='DET')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
paddle.enable_static()
|
|
parser = argsparser()
|
|
FLAGS = parser.parse_args()
|
|
print_arguments(FLAGS)
|
|
FLAGS.device = FLAGS.device.upper()
|
|
assert FLAGS.device in ['CPU', 'GPU', 'XPU', 'NPU', 'MLU'
|
|
], "device should be CPU, GPU, XPU, MLU or NPU"
|
|
assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
|
|
|
|
assert not (
|
|
FLAGS.enable_mkldnn == False and FLAGS.enable_mkldnn_bfloat16 == True
|
|
), 'To enable mkldnn bfloat, please turn on both enable_mkldnn and enable_mkldnn_bfloat16'
|
|
|
|
main()
|