build/static/js/50.db04e8e8.chunk.js

1 line
31 KiB
JavaScript
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

(this.webpackJsonp=this.webpackJsonp||[]).push([[50],{"3cqt":function(e,t,a){"use strict";Object.defineProperty(t,"__esModule",{value:!0});var n=i(a("q1tI")),c=i(a("OS56"));function i(e){return e&&e.__esModule?e:{default:e}}a("eIEw");var l=[{name:"MMDetection算法演示",describe:"MMDetection 是 OpenMMLab 中的通用目标检测算法平台,目前已经支持了 70+ 算法和 500+ 个预训练模型,支持目标检测、实例分割和全景分割。是 OpenMMLab 算法库中的MMDetection3D 和 MMRotate 的核心依赖,为 MMOCR、MMPose 和 MMTracking 提供了检测组件",source:"https://www.gitlink.org.cn/api/attachments/388003",type:"img"},{name:"MMPose算法演示",describe:"MMPose 是 OpenMMLab 中的姿态估计算法库,目前已经支持了近 30 个算法和 300+ 预训练模型,涵盖了人体、人脸、人手、动物等多类目标的姿态估计。秉承 OpenMMLab 系列的结构化框架设计MMPose 很适合作为算法复现和创新的平台",source:"https://www.gitlink.org.cn/api/attachments/388257.mp4",type:"mp4",img:"https://www.gitlink.org.cn/api/attachments/388256"},{name:"MMOCR算法演示",describe:"MMOCR 作为 OpenMMLab 家族的一员,支持众多 OCR 相关的模型,涵盖了文本检测、文本识别以及关键信息提取等多个主要方向。通过在 MMOCR 中复现相关算法,你将可以了解到 OCR 领域的前沿知识,熟练掌握 MM 系列框架的整体流程,并积累深度学习相关的学术及工程经验",source:"https://www.gitlink.org.cn/api/attachments/388005",type:"img"},{name:"MMGeneration算法演示",describe:"MMGeneration 是一个图像和视频生成算法库,支持多种生成模型如图像生成,条件生成,图像转换的训练和测试,同时也提供了丰富的应用",source:"https://www.gitlink.org.cn/api/attachments/387955",type:"img"},{name:"MMRotate算法演示",describe:"MMRotate 是 OpenMMLab 中基于 PyTorch 的旋转框目标检测工具箱。目前支持了旋转框检测领域主流的数据集和 SOTA 算法",source:"https://www.gitlink.org.cn/api/attachments/387957",type:"img"},{name:"MMDetection3D算法演示",describe:"MMDetection3D 是 OpenMMLab 中的通用 3D 感知算法平台,目前已经支持了室内外多个主流数据集的单模态/多模态 3D 检测和点云分割算法。同时 MMDetection3D 可以无缝使用 MMDetection 中的所有组件,为多模态感知提供了丰富的基础模块",source:"https://www.gitlink.org.cn/api/attachments/387953",type:"img"},{name:"MMEditing算法演示",describe:"MMEditing是面向底层视觉工具箱集成了超分辨率、视频插帧、补图、抠图等方向大量SOTA模型且持续吸纳新的底层视觉模型",source:"https://www.gitlink.org.cn/api/attachments/388004",type:"img"},{name:"MMFlow算法演示",describe:"MMFlow是一款基于 PyTorch 和 MMCV 的光流估计开源工具箱,提供了多个 SOTA 光流估计算法,并支持光流领域主流学术数据集,以及光流可视化和评估方法",source:"https://www.gitlink.org.cn/api/attachments/388258",type:"img"},{name:"MMClassification",describe:"MMClassification 是一款基于 PyTorch 的开源图像分类工具箱丰富的模型库支持40+预训练模型、主流数据集支持及丰富的训练技巧与策略",source:"https://www.gitlink.org.cn/api/attachments/387952",type:"img"}],r={infinite:!0,dots:!0,speed:750,slidesToShow:1,slidesToScroll:1,pauseOnDotsHover:!0,autoplaySpeed:1e4,centerMode:!0,centerPadding:"0px",autoplay:!0,arrows:!1};t.default=function(){return n.default.createElement(c.default,r,l.map((function(e){return n.default.createElement("div",{className:"slider_content",key:e.name},n.default.createElement("div",{className:"slider_img "+e.name.split("算法演示")[0]},"img"==e.type&&n.default.createElement("img",{src:e.source}),"mp4"==e.type&&n.default.createElement("video",{className:"introduce-video",src:e.source,poster:e.img,autoPlay:!0,loop:!0,muted:!0},"您的浏览器不支持 video 标签。"),"MMClassification"===e.name&&n.default.createElement("div",{className:"point"},n.default.createElement("div",{className:"point_item"},"40+预训练模型"),n.default.createElement("div",{className:"point_item"},"主流数据集支持"),n.default.createElement("div",{className:"point_item"},"丰富的训练技巧与策略")),"MMDetection3D算法演示"===e.name&&n.default.createElement("div",{className:"point"},n.default.createElement("div",{className:"point_item"},"7 个数据集"),n.default.createElement("div",{className:"point_item"},"17 种不同算法"),n.default.createElement("div",{className:"point_item"},"80+ 个预训练模型"))),n.default.createElement("div",{className:"slider_tit ellipsis-1"},e.name),n.default.createElement("div",{className:"slider_content"},e.describe))})))}},EO54:function(e,t,a){"use strict";a.r(t),t.default=a.p+"static/media/teacher7.4102dcc1.png"},GcrW:function(e,t,a){"use strict";a.r(t),t.default=a.p+"static/media/teacher15.5d777604.png"},KUIa:function(e,t,a){"use strict";Object.defineProperty(t,"__esModule",{value:!0});var n=r(a("ZTPi"));a("Znn+");var c=a("q1tI"),i=r(c),l=r(a("X727"));function r(e){return e&&e.__esModule?e:{default:e}}a("V3Cy");var s=window.$,o=n.default.TabPane;t.default=function(e){var t=e.list,a=e.applyTaskId,r=(e.history,e.current_user),u=e.showLoginDialog,d=e.isStudentApplyDate,A=e.secondStudentApplyDate,f=e.applyTask;return(0,c.useEffect)((function(){setTimeout((function(){s(".glcc_openmmlab .ant-tabs-tab").hover((function(e){e.currentTarget.click()}),(function(e){}))}),1e3)}),[]),i.default.createElement(n.default,{tabPosition:"left",defaultActiveKey:"0",className:"openmmlab_tab"},t.map((function(e,t){return i.default.createElement(o,{tab:i.default.createElement("div",{className:"tab_tit"},i.default.createElement("div",{className:"tab_tit_content"},e.projectName&&e.projectName.split("-")[1]),i.default.createElement("div",{className:"tab_type"},e.projectType)),key:t+""},i.default.createElement("div",{className:"tab_content"},i.default.createElement("div",{className:"openmmlab_tab_content"},i.default.createElement(l.default,{detail:e,applyTaskId:a,current_user:r,showLoginDialog:u,isStudentApplyDate:d,secondStudentApplyDate:A,applyTask:f}))))})))}},LjnE:function(e,t,a){"use strict";Object.defineProperty(t,"__esModule",{value:!0});var n=w(a("q1tI"));a("m1C3");var c=w(a("hrHt")),i=w(a("VFDx")),l=w(a("XJky")),r=w(a("ty6N")),s=w(a("lyFj")),o=w(a("bD28")),u=w(a("EO54")),d=w(a("me7W")),A=w(a("q/hA")),f=w(a("h4NI")),m=w(a("T8QH")),p=w(a("jf87")),M=w(a("e5Ry")),E=w(a("soWM")),g=w(a("GcrW"));function w(e){return e&&e.__esModule?e:{default:e}}var y=[{name:"王泰",picture:c.default,introduce:"算法研究员,目前负责 MMDetection3D 算法库的开发和维护。曾在 CoRL, CVPR,等顶级会议上发表多篇论文、在 nuScenes, Lyft 等竞赛中多次获奖",project:"基于 MMDetection3D支持轻量化3D感知模型的部署与应用"},{name:"张士龙",picture:i.default,introduce:"算法研究员目前负责MMDetection、MMCV、MMFewshot 的开发与维护,擅长 Object Detection在 CVPRICML发表过相关论文",project:"基于MMDetection, 探究 Transformer 在 Object Detection 中的应用"},{name:"孔焕军",picture:l.default,introduce:"算法研究员,目前主要负责 MMDeploy 部署算法库的开发和维护。擅长降低技术入门难度,分享过一系列入门文档\n",project:"基于 MMDeploy实现猫猫识别"},{name:"高桐",picture:r.default,introduce:"算法研究员,目前主要负责 MMOCR 算法库的开发和维护。曾在 ICLR 等会议发表相关论文\n",project:"基于 MMOCR实现前沿 OCR 算法"},{name:"余朝晖",picture:s.default,introduce:"算法研究员,主要负责 MMClassification 算法库的开发和维护",project:"基于 MMCLS实现 Google-landmark 数据集上的图像检索功能"},{name:"郑淼",picture:o.default,introduce:"算法研究员,主要负责 MMFlow 和 MMSegmentation 算法库的开发和维护",project:"基于MMFlow实现 flow1d 算法ICCV 2021 oral"},{name:"刘奎坤",picture:u.default,introduce:"算法研究员,主要负责 MMOCR 算法库的开发和维护",project:"基于 MMOCR实现前沿 OCR 算法"},{name:"胡木",picture:d.default,introduce:"算法研究员,主要负责 MMRazor 算法库的开发和维护",project:"基于MMRazor实现AdaRound量化算法"},{name:"杨逸飞",picture:A.default,introduce:"算法研究员,主要负责 MMGeneration 算法库的开发和维护",project:"基于 MMGen实现Text2Image 生成算法"},{name:"王若晖",picture:f.default,introduce:"算法研究员,负责 OpenMMLab 课程项目以及 MMEditing 算法库的开发和维护",project:"图像、视频上色工具的构建"},{name:"李亦宁",picture:m.default,introduce:"算法研究员,目前负责 MMPose 算法库的开发和维护",project:"基于 MMPose 实现前沿姿态估计算法"},{name:"吕成器",picture:p.default,introduce:"算法研究员,目前负责 MMDetection 开发和维护,知名目标检测算法 NanoDet 作者",project:"基于 MMDetection 实现密集行人检测算法"},{name:"周越",picture:M.default,introduce:"算法研究员,目前负责 MMDetection 和 MMRotate 算法库的开发和维护",project:"基于 MMRotate实现前沿的旋转框检测算法"},{name:"方翊箫",picture:E.default,introduce:"算法研究员,主要负责 MMSelfSup 算法库的开发和维护",project:"基于 MMSelfSup 实现前沿的自监督学习算法以及 Benchmark 评测"},{name:"黄海安",picture:g.default,introduce:"算法研究员,目前负责 MMDetection 算法库的开发和维护,知乎 ID 深度眸",project:"基于 MMDetection实现前沿的实例/全景分割算法"}];t.default=function(){return n.default.createElement("div",{className:"teachers_content clearfix"},y.map((function(e,t){return n.default.createElement("div",{className:"teacher_item "+(t<4?"maxHeight":""),key:t},n.default.createElement("img",{className:"teacher_picture",src:e.picture,alt:""}),n.default.createElement("div",{className:"showBox"},n.default.createElement("div",{className:"name font-17"},e.name),n.default.createElement("div",{className:"introBox"},e.introduce)),n.default.createElement("div",{className:"hoverShow"},e.project))})))}},NVer:function(e,t,a){},T8QH:function(e,t,a){"use strict";a.r(t),t.default=a.p+"static/media/teacher11.8a0d8669.png"},V3Cy:function(e,t,a){},VFDx:function(e,t,a){"use strict";a.r(t),t.default=a.p+"static/media/teacher2.b2b9919d.png"},WlAC:function(e,t,a){},X727:function(e,t,a){"use strict";Object.defineProperty(t,"__esModule",{value:!0});var n=u(a("2/Rp")),c=u(a("3S7+")),i=function(e,t){if(Array.isArray(e))return e;if(Symbol.iterator in Object(e))return function(e,t){var a=[],n=!0,c=!1,i=void 0;try{for(var l,r=e[Symbol.iterator]();!(n=(l=r.next()).done)&&(a.push(l.value),!t||a.length!==t);n=!0);}catch(e){c=!0,i=e}finally{try{!n&&r.return&&r.return()}finally{if(c)throw i}}return a}(e,t);throw new TypeError("Invalid attempt to destructure non-iterable instance")};a("+L6B"),a("5Dmo");var l=a("q1tI"),r=u(l),s=u(a("2CTR")),o=a("hJRQ");function u(e){return e&&e.__esModule?e:{default:e}}t.default=function(e){var t=e.detail,a=e.projectId,u=e.applyTaskId,d=e.isStudentApplyDate,A=e.secondStudentApplyDate,f=e.applyTask,m=(0,l.useState)(t),p=i(m,2),M=p[0],E=p[1];return(0,l.useEffect)((function(){!t&&a&&(0,o.getProjectById)(a).then((function(e){e&&"success"===e.message&&E(e.data)}))}),[t]),M?r.default.createElement("div",{className:"projectDetailBox "+(t?"":"byTask")},r.default.createElement("div",{className:"projectDetailHead"},r.default.createElement("p",null,"GitLink项目地址:  ",r.default.createElement("a",{href:M.gitlinkUrl,className:"linkUrl",target:"_blank"},M.gitlinkUrl)),r.default.createElement("div",null,"项目简介:  ",M.projectIntro)),M.registrationTaskList&&M.registrationTaskList.length>0?M.registrationTaskList.map((function(e,t){return r.default.createElement("div",{className:"taskItem mt15",key:t},r.default.createElement("div",{className:"left"},r.default.createElement("div",{className:"taskTitle",onClick:function(){window.location.href="/glcc/subjects/detail/"+e.id}},r.default.createElement(c.default,{title:e.taskName},e.taskName)),r.default.createElement("div",{className:"mt15 oneLine leftWidth"},"导师姓名:   ",e.tutorName),e.tutorMail&&r.default.createElement("div",{className:"mb15 email oneLine leftWidth"},"邮箱地址:   ",r.default.createElement("span",null,r.default.createElement(c.default,{title:e.tutorMail},e.tutorMail)))),r.default.createElement("div",{className:"center"},r.default.createElement("div",{className:"taskDesc"},e.taskDesc),e.taskUrl&&r.default.createElement("div",{className:"taskUrl oneLine"},"课题链接:   ",r.default.createElement("a",{href:e.taskUrl,target:"_blank"},e.taskUrl)),r.default.createElement("div",null,u&&Object.keys(u).includes(e.id.toString())&&r.default.createElement(n.default,{onClick:function(){window.location.href="/glcc/student/apply/"+e.id},className:"lookDetail mr10"},"报名详情"),d&&!(u&&Object.keys(u).includes(e.id.toString()))&&r.default.createElement(n.default,{type:"primary",className:"applyBut mr10",onClick:function(){f(e.id)}},"申请课题"),A&&!(u&&Object.keys(u).includes(e.id.toString()))&&(e.locked?r.default.createElement(c.default,{title:"该课题已有学生入选"},r.default.createElement(n.default,{type:"primary",className:"mr10",disabled:!0},"申请课题")):r.default.createElement(n.default,{type:"primary",className:"applyBut mr10",onClick:function(){f(e.id)}},"申请课题")),r.default.createElement(n.default,{onClick:function(){window.open("/glcc/subjects/detail/"+e.id)},className:"lookDetail"},"课题详情"))),r.default.createElement("div",{className:"right oneLine taskUrl"},r.default.createElement("span",{className:"taskReward"},"¥",e.taskReward)))})):r.default.createElement(s.default,{_html:"课题暂无数据",small:!0})):r.default.createElement("div",{className:"projectDetailBox nodata"},r.default.createElement(s.default,{_html:"暂无数据",small:!0}))}},XJky:function(e,t,a){"use strict";a.r(t),t.default=a.p+"static/media/teacher3.20cb800b.png"},bD28:function(e,t,a){"use strict";a.r(t),t.default=a.p+"static/media/teacher6.06b6f465.png"},e5Ry:function(e,t,a){"use strict";a.r(t),t.default=a.p+"static/media/teacher13.f7886e36.png"},eIEw:function(e,t,a){},gnIu:function(e,t){e.exports=""},h4NI:function(e,t,a){"use strict";a.r(t),t.default=a.p+"static/media/teacher10.9298db29.png"},hrHt:function(e,t,a){"use strict";a.r(t),t.default=a.p+"static/media/teacher1.ee492a9b.png"},jf87:function(e,t,a){"use strict";a.r(t),t.default=a.p+"static/media/teacher12.47e02224.png"},lyFj:function(e,t,a){"use strict";a.r(t),t.default=a.p+"static/media/teacher5.9397d078.png"},m1C3:function(e,t,a){},me7W:function(e,t,a){"use strict";a.r(t),t.default=a.p+"static/media/teacher8.5d3f117e.png"},"q/hA":function(e,t,a){"use strict";a.r(t),t.default=a.p+"static/media/teacher9.69b0adae.png"},rljp:function(e,t,a){"use strict";Object.defineProperty(t,"__esModule",{value:!0});var n=Object.assign||function(e){for(var t=1;t<arguments.length;t++){var a=arguments[t];for(var n in a)Object.prototype.hasOwnProperty.call(a,n)&&(e[n]=a[n])}return e},c=function(e,t){if(Array.isArray(e))return e;if(Symbol.iterator in Object(e))return function(e,t){var a=[],n=!0,c=!1,i=void 0;try{for(var l,r=e[Symbol.iterator]();!(n=(l=r.next()).done)&&(a.push(l.value),!t||a.length!==t);n=!0);}catch(e){c=!0,i=e}finally{try{!n&&r.return&&r.return()}finally{if(c)throw i}}return a}(e,t);throw new TypeError("Invalid attempt to destructure non-iterable instance")},i=a("q1tI"),l=f(i),r=f(a("gnIu")),s=f(a("3cqt")),o=f(a("xp4n")),u=f(a("KUIa")),d=f(a("LjnE")),A=a("hJRQ");function f(e){return e&&e.__esModule?e:{default:e}}a("WlAC"),t.default=function(e){var t=(0,i.useState)([]),a=c(t,2),f=a[0],m=a[1];return(0,i.useEffect)((function(){window.scrollTo(0,0)}),[]),(0,i.useEffect)((function(){(0,A.projectList)({curPage:1,keyword:"openmmlab",pageSize:1e4}).then((function(e){e&&"success"===e.message&&m(e.data.rows)}))}),[]),l.default.createElement("div",{className:"glcc_openmmlab"},l.default.createElement("div",{className:"first_selection"},l.default.createElement("div",{className:"openmmlab_head"},l.default.createElement("img",{className:"openmmlab_logo",src:r.default,alt:""}),l.default.createElement("p",{className:"openmmlab_des"},"深度学习时代最完整的计算机视觉开源算法体系")),l.default.createElement("div",{className:"openmmlab_slider openmmlab_main"},l.default.createElement("div",{className:"slider_left"},l.default.createElement(s.default,null)),l.default.createElement("div",{className:"slider_right"},l.default.createElement(o.default,n({list:f},e))))),l.default.createElement("div",{className:"openmmlab_title"},"项目精选"),l.default.createElement(u.default,n({},e,{list:f})),l.default.createElement("div",{className:"teachers"},l.default.createElement("div",{className:"teachers_tit"},"导师一览"),l.default.createElement(d.default,null)))}},soWM:function(e,t,a){"use strict";a.r(t),t.default=a.p+"static/media/teacher14.83b48396.png"},ty6N:function(e,t,a){"use strict";a.r(t),t.default=a.p+"static/media/teacher4.c15a0bda.png"},xp4n:function(e,t,a){"use strict";Object.defineProperty(t,"__esModule",{value:!0});var n=i(a("q1tI")),c=i(a("OS56"));function i(e){return e&&e.__esModule?e:{default:e}}a("NVer");var l={infinite:!0,speed:750,slidesToShow:3,slidesToScroll:1,pauseOnDotsHover:!0,autoplaySpeed:5e3,centerMode:!0,centerPadding:"",autoplay:!0,arrows:!1,vertical:!0};t.default=function(e){var t=e.list;function a(e){window.open("/glcc/projects?projectName="+e.replace(/ /g,""))}return e.history,n.default.createElement(c.default,l,t&&t.map((function(e,t){return n.default.createElement("div",{className:"news-slide-item",key:t},n.default.createElement("div",{className:"slide-title"},n.default.createElement("h3",{className:"slide-title-content ellipsis-1 link",onClick:function(){a(e.projectName)}},e.projectName)),n.default.createElement("p",{className:"ellipsis-2"},e.projectIntro),n.default.createElement("span",{className:"project_more",onClick:function(){a(e.projectName)}},"查看详情",n.default.createElement("i",{className:"iconfont font-12 icon-xiangyoujiantou"})))})))}}}]);