HumanFallDetectionLSTM/visual.py

165 lines
5.6 KiB
Python

from enum import IntEnum, unique
from typing import List
import cv2
import numpy as np
@unique
class CocoPart(IntEnum):
"""Body part locations in the 'coordinates' list."""
Nose = 0
LEye = 1
REye = 2
LEar = 3
REar = 4
LShoulder = 5
RShoulder = 6
LElbow = 7
RElbow = 8
LWrist = 9
RWrist = 10
LHip = 11
RHip = 12
LKnee = 13
RKnee = 14
LAnkle = 15
RAnkle = 16
SKELETON_CONNECTIONS_COCO = [(0, 1, (210, 182, 247)), (0, 2, (127, 127, 127)), (1, 2, (194, 119, 227)),
(1, 3, (199, 199, 199)), (2, 4, (34, 189, 188)), (3, 5, (141, 219, 219)),
(4, 6, (207, 190, 23)), (5, 6, (150, 152, 255)), (5, 7, (189, 103, 148)),
(5, 11, (138, 223, 152)), (6, 8, (213, 176, 197)), (6, 12, (40, 39, 214)),
(7, 9, (75, 86, 140)), (8, 10, (148, 156, 196)), (11, 12, (44, 160, 44)),
(11, 13, (232, 199, 174)), (12, 14,
(120, 187, 255)), (13, 15, (180, 119, 31)),
(14, 16, (14, 127, 255))]
SKELETON_CONNECTIONS_5P = [('H', 'N', (210, 182, 247)), ('N', 'B', (210, 182, 247)), ('B', 'KL', (210, 182, 247)),
('B', 'KR', (210, 182, 247)), ('KL', 'KR', (210, 182, 247))]
COLOR_ARRAY = [(210, 182, 247), (127, 127, 127), (194, 119, 227), (199, 199, 199), (34, 189, 188),
(141, 219, 219), (207, 190, 23), (150, 152, 255), (189, 103, 148), (138, 223, 152)]
UNMATCHED_COLOR = (180, 119, 31)
# activity_dict = {
# 1.0: "Falling forward using hands",
# 2.0: "Falling forward using knees",
# 3: "Falling backwards",
# 4: "Falling sideward",
# 5: "Falling",
# 6: "Walking",
# 7: "Standing",
# 8: "Sitting",
# 9: "Picking up an object",
# 10: "Jumping",
# 11: "Laying",
# 12: "False Fall",
# 20: "None"
# }
activity_dict = {
1.0: "Falling forward using hands",
2.0: "Falling forward using knees",
3: "Falling backwards",
4: "Falling sideward",
5: "FALL",
6: "Normal",
7: "Normal",
8: "Normal",
9: "Normal",
10: "Normal",
11: "Normal",
12: "FALL Warning",
20: "None"
}
def write_on_image(img: np.ndarray, text: str, color: List) -> np.ndarray:
"""Write text at the top of the image."""
# Add a white border to top of image for writing text
img = cv2.copyMakeBorder(src=img,
top=int(0.1 * img.shape[0]),
bottom=0,
left=0,
right=0,
borderType=cv2.BORDER_CONSTANT,
dst=None,
value=[255, 255, 255])
for i, line in enumerate(text.split('\n')):
y = 30 + i * 30
cv2.putText(img=img,
text=line,
org=(0, y),
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=0.7,
color=color,
thickness=2)
return img
def visualise(img: np.ndarray, keypoint_sets: List, width: int, height: int, vis_keypoints: bool = False,
vis_skeleton: bool = False, CocoPointsOn: bool = False) -> np.ndarray:
"""Draw keypoints/skeleton on the output video frame."""
if CocoPointsOn:
SKELETON_CONNECTIONS = SKELETON_CONNECTIONS_COCO
else:
SKELETON_CONNECTIONS = SKELETON_CONNECTIONS_5P
if vis_keypoints or vis_skeleton:
for keypoints in keypoint_sets:
if not CocoPointsOn:
keypoints = keypoints["keypoints"]
if vis_skeleton:
for p1i, p2i, color in SKELETON_CONNECTIONS:
if keypoints[p1i] is None or keypoints[p2i] is None:
continue
p1 = (int(keypoints[p1i][0] * width), int(keypoints[p1i][1] * height))
p2 = (int(keypoints[p2i][0] * width), int(keypoints[p2i][1] * height))
if p1 == (0, 0) or p2 == (0, 0):
continue
cv2.line(img=img, pt1=p1, pt2=p2, color=color, thickness=3)
return img
def visualise_tracking(img: np.ndarray, keypoint_sets: List, width: int, height: int, num_matched: int, vis_keypoints: bool = False,
vis_skeleton: bool = False, CocoPointsOn: bool = False) -> np.ndarray:
"""Draw keypoints/skeleton on the output video frame."""
if CocoPointsOn:
SKELETON_CONNECTIONS = SKELETON_CONNECTIONS_COCO
else:
SKELETON_CONNECTIONS = SKELETON_CONNECTIONS_5P
if vis_keypoints or vis_skeleton:
for i, keypoints in enumerate(keypoint_sets):
if keypoints is None:
continue
if not CocoPointsOn:
keypoints = keypoints["keypoints"]
if vis_skeleton:
for p1i, p2i, color in SKELETON_CONNECTIONS:
if keypoints[p1i] is None or keypoints[p2i] is None:
continue
p1 = (int(keypoints[p1i][0] * width), int(keypoints[p1i][1] * height))
p2 = (int(keypoints[p2i][0] * width), int(keypoints[p2i][1] * height))
if p1 == (0, 0) or p2 == (0, 0):
continue
if i < num_matched:
color = COLOR_ARRAY[i % 10]
else:
color = UNMATCHED_COLOR
cv2.line(img=img, pt1=p1, pt2=p2, color=color, thickness=3)
return img