ADD file via upload

This commit is contained in:
pvf8p2eo4 2021-10-27 15:23:51 +08:00
parent fe1f66b163
commit e89fc94e4d
1 changed files with 126 additions and 0 deletions

126
posegait/src/runworking.py Normal file
View File

@ -0,0 +1,126 @@
import argparse
import logging
import time
import os
import ast
import common
import cv2
import numpy as np
from estimator import TfPoseEstimator
from networks import get_graph_path, model_wh
import matplotlib.pyplot as plt
from lifting.prob_model import Prob3dPose
from lifting.draw import plot_pose
logger = logging.getLogger('TfPoseEstimator')
logger.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
formatter = logging.Formatter('[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s')
ch.setFormatter(formatter)
logger.addHandler(ch)
if __name__ == '__main__':
#print(os.getcwd())
#os.chdir('..')
#print(os.getcwd())
#import sys
#sys.exit(0)
#os.chdir('..')
parser = argparse.ArgumentParser(description='tf-pose-estimation run')
parser.add_argument('--image', type=str, default='dhoni.jpg')
parser.add_argument('--resolution', type=str, default='432x368', help='network input resolution. default=432x368')
parser.add_argument('--model', type=str, default='mobilenet_thin', help='cmu / mobilenet_thin')
parser.add_argument('--scales', type=str, default='[None]', help='for multiple scales, eg. [1.0, (1.1, 0.05)]')
args = parser.parse_args()
scales = ast.literal_eval(args.scales)
w, h = model_wh(args.resolution)
e = TfPoseEstimator(get_graph_path(args.model), target_size=(w, h))
# estimate human poses from a single image !
image = common.read_imgfile(args.image, None, None)
# image = cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21)
t = time.time()
humans = e.inference(image, scales=scales)
elapsed = time.time() - t
logger.info('inference image: %s in %.4f seconds.' % (args.image, elapsed))
image = TfPoseEstimator.draw_humans(image, humans, imgcopy=False)
cv2.imshow('tf-pose-estimation result', image)
#cv2.waitKey()
fig1 = plt.figure(1)
a = fig1.add_subplot(2, 2, 1)
a.set_title('Result')
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
bgimg = cv2.cvtColor(image.astype(np.uint8), cv2.COLOR_BGR2RGB)
bgimg = cv2.resize(bgimg, (e.heatMat.shape[1], e.heatMat.shape[0]), interpolation=cv2.INTER_AREA)
# show network output
a = fig1.add_subplot(2, 2, 2)
plt.imshow(bgimg, alpha=0.5)
tmp = np.amax(e.heatMat[:, :, :-1], axis=2)
plt.imshow(tmp, cmap=plt.cm.gray, alpha=0.5)
plt.colorbar()
tmp2 = e.pafMat.transpose((2, 0, 1))
tmp2_odd = np.amax(np.absolute(tmp2[::2, :, :]), axis=0)
tmp2_even = np.amax(np.absolute(tmp2[1::2, :, :]), axis=0)
a = fig1.add_subplot(2, 2, 3)
a.set_title('Vectormap-x')
#plt.imshow(CocoPose.get_bgimg(inp, target_size=(vectmap.shape[1], vectmap.shape[0])), alpha=0.5)
#plt.imshow(tmp2_odd, cmap=plt.cm.gray, alpha=0.5)
#plt.colorbar()
a = fig1.add_subplot(2, 2, 4)
a.set_title('Vectormap-y')
#plt.imshow(CocoPose.get_bgimg(inp, target_size=(vectmap.shape[1], vectmap.shape[0])), alpha=0.5)
plt.imshow(tmp2_even, cmap=plt.cm.gray, alpha=0.5)
plt.colorbar()
#plt.show()
#import sys
#sys.exit(0)
logger.info('3d lifting initialization.')
poseLifting = Prob3dPose('./lifting/models/prob_model_params.mat')
image_h, image_w = image.shape[:2]
standard_w = 640
standard_h = 480
fig2 = plt.figure(2)
pose_2d_mpiis = []
visibilities = []
for human in humans:
pose_2d_mpii, visibility = common.MPIIPart.from_coco(human)
pose_2d_mpiis.append([(int(x * standard_w + 0.5), int(y * standard_h + 0.5)) for x, y in pose_2d_mpii])
visibilities.append(visibility)
pose_2d_mpiis = np.array(pose_2d_mpiis)
visibilities = np.array(visibilities)
transformed_pose2d, weights = poseLifting.transform_joints(pose_2d_mpiis, visibilities)
pose_3d = poseLifting.compute_3d(transformed_pose2d, weights)
lis_3d = pose_3d.tolist()
print('list_3d', lis_3d)
with open('C:\\Users\\carti\\Desktop\\tf-pose\\src\\img_3d.txt', 'a') as f:
for item in lis_3d:
f.write("%s\n" % item)
#print(pose_3d)
pose_3dqt = np.array(pose_3d[0]).transpose()
for point in pose_3dqt:
print(point)
for i, single_3d in enumerate(pose_3d):
plot_pose(single_3d)
plt.show()
pass