ADD file via upload

This commit is contained in:
pa67p85k2 2021-11-20 21:27:17 +08:00
parent c8e1d32f41
commit c1860d7225
1 changed files with 200 additions and 0 deletions

View File

@ -0,0 +1,200 @@
# -----------------------------------------------------
# Copyright (c) Shanghai Jiao Tong University. All rights reserved.
# Written by Jiefeng Li (jeff.lee.sjtu@gmail.com)
# -----------------------------------------------------
import torch.nn as nn
import torch.nn.functional as F
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1,
downsample=None, norm_layer=nn.BatchNorm2d, dcn=None):
super(Bottleneck, self).__init__()
self.dcn = dcn
self.with_dcn = dcn is not None
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = norm_layer(planes, momentum=0.1)
if self.with_dcn:
fallback_on_stride = dcn.get('FALLBACK_ON_STRIDE', False)
self.with_modulated_dcn = dcn.get('MODULATED', False)
if not self.with_dcn or fallback_on_stride:
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
else:
from .dcn import DeformConv, ModulatedDeformConv
self.deformable_groups = dcn.get('DEFORM_GROUP', 1)
if not self.with_modulated_dcn:
conv_op = DeformConv
offset_channels = 18
else:
conv_op = ModulatedDeformConv
offset_channels = 27
self.conv2_offset = nn.Conv2d(
planes,
self.deformable_groups * offset_channels,
kernel_size=3,
stride=stride,
padding=1)
self.conv2 = conv_op(
planes,
planes,
kernel_size=3,
stride=stride,
padding=1,
deformable_groups=self.deformable_groups,
bias=False)
self.bn2 = norm_layer(planes, momentum=0.1)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = norm_layer(planes * 4, momentum=0.1)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = F.relu(self.bn1(self.conv1(x)), inplace=True)
if not self.with_dcn:
out = F.relu(self.bn2(self.conv2(out)), inplace=True)
elif self.with_modulated_dcn:
offset_mask = self.conv2_offset(out)
offset = offset_mask[:, :18 * self.deformable_groups, :, :]
mask = offset_mask[:, -9 * self.deformable_groups:, :, :]
mask = mask.sigmoid()
out = F.relu(self.bn2(self.conv2(out, offset, mask)))
else:
offset = self.conv2_offset(out)
out = F.relu(self.bn2(self.conv2(out, offset)), inplace=True)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = F.relu(out)
return out
class ResNet(nn.Module):
""" ResNet """
def __init__(self, architecture, norm_layer=nn.BatchNorm2d, dcn=None, stage_with_dcn=(False, False, False, False)):
super(ResNet, self).__init__()
self._norm_layer = norm_layer
assert architecture in ["resnet18", "resnet50", "resnet101", 'resnet152']
layers = {
'resnet18': [2, 2, 2, 2],
'resnet34': [3, 4, 6, 3],
'resnet50': [3, 4, 6, 3],
'resnet101': [3, 4, 23, 3],
'resnet152': [3, 8, 36, 3],
}
self.inplanes = 64
if architecture == "resnet18" or architecture == 'resnet34':
self.block = BasicBlock
else:
self.block = Bottleneck
self.layers = layers[architecture]
self.conv1 = nn.Conv2d(3, 64, kernel_size=7,
stride=2, padding=3, bias=False)
self.bn1 = norm_layer(64, eps=1e-5, momentum=0.1, affine=True)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
stage_dcn = [dcn if with_dcn else None for with_dcn in stage_with_dcn]
self.layer1 = self.make_layer(
self.block, 64, self.layers[0], dcn=stage_dcn[0])
self.layer2 = self.make_layer(
self.block, 128, self.layers[1], stride=2, dcn=stage_dcn[1])
self.layer3 = self.make_layer(
self.block, 256, self.layers[2], stride=2, dcn=stage_dcn[2])
self.layer4 = self.make_layer(
self.block, 512, self.layers[3], stride=2, dcn=stage_dcn[3])
def forward(self, x):
x = self.maxpool(self.relu(self.bn1(self.conv1(x)))) # 64 * h/4 * w/4
x = self.layer1(x) # 256 * h/4 * w/4
x = self.layer2(x) # 512 * h/8 * w/8
x = self.layer3(x) # 1024 * h/16 * w/16
x = self.layer4(x) # 2048 * h/32 * w/32
return x
def stages(self):
return [self.layer1, self.layer2, self.layer3, self.layer4]
def make_layer(self, block, planes, blocks, stride=1, dcn=None):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
self._norm_layer(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample,
norm_layer=self._norm_layer, dcn=dcn))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes,
norm_layer=self._norm_layer, dcn=dcn))
return nn.Sequential(*layers)