forked from pkwhiuqat/HumanFallDetectionLSTM
ADD file via upload
This commit is contained in:
parent
c8e1d32f41
commit
c1860d7225
|
@ -0,0 +1,200 @@
|
|||
# -----------------------------------------------------
|
||||
# Copyright (c) Shanghai Jiao Tong University. All rights reserved.
|
||||
# Written by Jiefeng Li (jeff.lee.sjtu@gmail.com)
|
||||
# -----------------------------------------------------
|
||||
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
|
||||
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
|
||||
"""3x3 convolution with padding"""
|
||||
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
||||
padding=dilation, groups=groups, bias=False, dilation=dilation)
|
||||
|
||||
|
||||
class BasicBlock(nn.Module):
|
||||
expansion = 1
|
||||
|
||||
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
|
||||
base_width=64, dilation=1, norm_layer=None):
|
||||
super(BasicBlock, self).__init__()
|
||||
if norm_layer is None:
|
||||
norm_layer = nn.BatchNorm2d
|
||||
if groups != 1 or base_width != 64:
|
||||
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
|
||||
if dilation > 1:
|
||||
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
|
||||
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
|
||||
self.conv1 = conv3x3(inplanes, planes, stride)
|
||||
self.bn1 = norm_layer(planes)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.conv2 = conv3x3(planes, planes)
|
||||
self.bn2 = norm_layer(planes)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
identity = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
identity = self.downsample(x)
|
||||
|
||||
out += identity
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, inplanes, planes, stride=1,
|
||||
downsample=None, norm_layer=nn.BatchNorm2d, dcn=None):
|
||||
super(Bottleneck, self).__init__()
|
||||
self.dcn = dcn
|
||||
self.with_dcn = dcn is not None
|
||||
|
||||
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
||||
self.bn1 = norm_layer(planes, momentum=0.1)
|
||||
if self.with_dcn:
|
||||
fallback_on_stride = dcn.get('FALLBACK_ON_STRIDE', False)
|
||||
self.with_modulated_dcn = dcn.get('MODULATED', False)
|
||||
if not self.with_dcn or fallback_on_stride:
|
||||
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
|
||||
padding=1, bias=False)
|
||||
else:
|
||||
from .dcn import DeformConv, ModulatedDeformConv
|
||||
self.deformable_groups = dcn.get('DEFORM_GROUP', 1)
|
||||
if not self.with_modulated_dcn:
|
||||
conv_op = DeformConv
|
||||
offset_channels = 18
|
||||
else:
|
||||
conv_op = ModulatedDeformConv
|
||||
offset_channels = 27
|
||||
|
||||
self.conv2_offset = nn.Conv2d(
|
||||
planes,
|
||||
self.deformable_groups * offset_channels,
|
||||
kernel_size=3,
|
||||
stride=stride,
|
||||
padding=1)
|
||||
self.conv2 = conv_op(
|
||||
planes,
|
||||
planes,
|
||||
kernel_size=3,
|
||||
stride=stride,
|
||||
padding=1,
|
||||
deformable_groups=self.deformable_groups,
|
||||
bias=False)
|
||||
|
||||
self.bn2 = norm_layer(planes, momentum=0.1)
|
||||
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
|
||||
self.bn3 = norm_layer(planes * 4, momentum=0.1)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out = F.relu(self.bn1(self.conv1(x)), inplace=True)
|
||||
if not self.with_dcn:
|
||||
out = F.relu(self.bn2(self.conv2(out)), inplace=True)
|
||||
elif self.with_modulated_dcn:
|
||||
offset_mask = self.conv2_offset(out)
|
||||
offset = offset_mask[:, :18 * self.deformable_groups, :, :]
|
||||
mask = offset_mask[:, -9 * self.deformable_groups:, :, :]
|
||||
mask = mask.sigmoid()
|
||||
out = F.relu(self.bn2(self.conv2(out, offset, mask)))
|
||||
else:
|
||||
offset = self.conv2_offset(out)
|
||||
out = F.relu(self.bn2(self.conv2(out, offset)), inplace=True)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(x)
|
||||
|
||||
out += residual
|
||||
out = F.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNet(nn.Module):
|
||||
""" ResNet """
|
||||
|
||||
def __init__(self, architecture, norm_layer=nn.BatchNorm2d, dcn=None, stage_with_dcn=(False, False, False, False)):
|
||||
super(ResNet, self).__init__()
|
||||
self._norm_layer = norm_layer
|
||||
assert architecture in ["resnet18", "resnet50", "resnet101", 'resnet152']
|
||||
layers = {
|
||||
'resnet18': [2, 2, 2, 2],
|
||||
'resnet34': [3, 4, 6, 3],
|
||||
'resnet50': [3, 4, 6, 3],
|
||||
'resnet101': [3, 4, 23, 3],
|
||||
'resnet152': [3, 8, 36, 3],
|
||||
}
|
||||
self.inplanes = 64
|
||||
if architecture == "resnet18" or architecture == 'resnet34':
|
||||
self.block = BasicBlock
|
||||
else:
|
||||
self.block = Bottleneck
|
||||
self.layers = layers[architecture]
|
||||
|
||||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7,
|
||||
stride=2, padding=3, bias=False)
|
||||
self.bn1 = norm_layer(64, eps=1e-5, momentum=0.1, affine=True)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
|
||||
stage_dcn = [dcn if with_dcn else None for with_dcn in stage_with_dcn]
|
||||
|
||||
self.layer1 = self.make_layer(
|
||||
self.block, 64, self.layers[0], dcn=stage_dcn[0])
|
||||
self.layer2 = self.make_layer(
|
||||
self.block, 128, self.layers[1], stride=2, dcn=stage_dcn[1])
|
||||
self.layer3 = self.make_layer(
|
||||
self.block, 256, self.layers[2], stride=2, dcn=stage_dcn[2])
|
||||
|
||||
self.layer4 = self.make_layer(
|
||||
self.block, 512, self.layers[3], stride=2, dcn=stage_dcn[3])
|
||||
|
||||
def forward(self, x):
|
||||
x = self.maxpool(self.relu(self.bn1(self.conv1(x)))) # 64 * h/4 * w/4
|
||||
x = self.layer1(x) # 256 * h/4 * w/4
|
||||
x = self.layer2(x) # 512 * h/8 * w/8
|
||||
x = self.layer3(x) # 1024 * h/16 * w/16
|
||||
x = self.layer4(x) # 2048 * h/32 * w/32
|
||||
return x
|
||||
|
||||
def stages(self):
|
||||
return [self.layer1, self.layer2, self.layer3, self.layer4]
|
||||
|
||||
def make_layer(self, block, planes, blocks, stride=1, dcn=None):
|
||||
downsample = None
|
||||
if stride != 1 or self.inplanes != planes * block.expansion:
|
||||
downsample = nn.Sequential(
|
||||
nn.Conv2d(self.inplanes, planes * block.expansion,
|
||||
kernel_size=1, stride=stride, bias=False),
|
||||
self._norm_layer(planes * block.expansion),
|
||||
)
|
||||
|
||||
layers = []
|
||||
layers.append(block(self.inplanes, planes, stride, downsample,
|
||||
norm_layer=self._norm_layer, dcn=dcn))
|
||||
self.inplanes = planes * block.expansion
|
||||
for i in range(1, blocks):
|
||||
layers.append(block(self.inplanes, planes,
|
||||
norm_layer=self._norm_layer, dcn=dcn))
|
||||
|
||||
return nn.Sequential(*layers)
|
Loading…
Reference in New Issue