139 lines
5.3 KiB
Python
139 lines
5.3 KiB
Python
# coding=utf-8
|
|
# Copyright (c) 2024, HUAWEI CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
import os
|
|
import logging
|
|
import stat
|
|
import re
|
|
import sys
|
|
import subprocess
|
|
from typing import Iterable, Dict
|
|
import pandas as pd
|
|
from tasks.evaluation.eval_api.dataset_eval import DatasetEval
|
|
from tasks.evaluation.eval_api.chat import Chat
|
|
from tasks.evaluation.eval_impl.template import CODE_TEST_LOG_DIR
|
|
from modellink.error_utils import check_divisible_by_zero
|
|
from modellink.utils import WRITE_FILE_DEFAULT_FLAGS, WRITE_FILE_DEFAULT_MODES
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def extract_answer_code(answer, task: dict):
|
|
"""
|
|
:param answer:
|
|
:param task:
|
|
:return:
|
|
"""
|
|
task_id = task['task_id']
|
|
target_func = task['entry_point']
|
|
test_case = task['test']
|
|
save_file = f"{task_id}.py".replace("/", "-")
|
|
code = answer
|
|
code_lines = code.split("\n")
|
|
target_func_flag = False
|
|
if not os.path.exists(CODE_TEST_LOG_DIR):
|
|
os.makedirs(CODE_TEST_LOG_DIR)
|
|
test_code_path = "{}/{}".format(CODE_TEST_LOG_DIR, save_file)
|
|
with os.fdopen(os.open(test_code_path, WRITE_FILE_DEFAULT_FLAGS, WRITE_FILE_DEFAULT_MODES), 'w') as f:
|
|
f.write("from typing import List\n")
|
|
f.write("import math\n")
|
|
for i, line in enumerate(code_lines):
|
|
if i == 0 and line.lower() == "python":
|
|
continue
|
|
line_strip = line.strip()
|
|
if len(line_strip) < 1:
|
|
continue
|
|
if line_strip[0] == line[0]:
|
|
if line.startswith("from") or line.startswith("import"):
|
|
f.write(line)
|
|
f.write('\n')
|
|
elif line.startswith("def"):
|
|
if re.split(r"\s+", line)[1] == target_func:
|
|
target_func_flag = True
|
|
f.write(line)
|
|
f.write('\n')
|
|
else:
|
|
if target_func_flag:
|
|
break
|
|
else:
|
|
f.write(line)
|
|
f.write('\n')
|
|
f.write(test_case)
|
|
f.write('\n')
|
|
f.write(f'check({target_func})')
|
|
return test_code_path
|
|
|
|
|
|
class HumanEval(DatasetEval):
|
|
def __init__(self, test_dir,
|
|
instruction_template="The definition and function description of the python function are as follows. "
|
|
"Please complete the implementation of the python function.\n{prompt}"):
|
|
self.test_dir = test_dir
|
|
self.instruction_template = instruction_template
|
|
|
|
def read_problems(self) -> Dict[str, Dict]:
|
|
return {task["task_id"]: task for task in self.stream_jsonl(self.test_dir)}
|
|
|
|
def stream_jsonl(self, test_dir: str) -> Iterable[Dict]:
|
|
"""
|
|
Parses each jsonl line and yields it as a dictionary
|
|
"""
|
|
for file in os.listdir(test_dir):
|
|
test_code_path = os.path.join(self.test_dir, file)
|
|
with open(test_code_path, 'r') as fp:
|
|
for line in fp:
|
|
if any(not x.isspace() for x in line):
|
|
yield json.loads(line)
|
|
|
|
def eval(self, chat: Chat) -> (dict, pd.DataFrame):
|
|
problems = self.read_problems()
|
|
success_n = 0
|
|
rank = None
|
|
answer_result = {}
|
|
for idx, (task_id, task) in enumerate(problems.items()):
|
|
instruction = self.instruction_template.format(prompt=task['prompt'])
|
|
chat_result, rank = chat.beam_search_chat(instruction=instruction, history=[])
|
|
answer = None
|
|
if chat_result:
|
|
answer = chat_result[0].lstrip()
|
|
try:
|
|
if rank == 0:
|
|
python_execute = sys.executable
|
|
answer = task['prompt'] + ' ' + answer
|
|
logger.info(f'answer: {answer}')
|
|
test_file = extract_answer_code(answer, task)
|
|
result = subprocess.run([python_execute, test_file], capture_output=True, timeout=10)
|
|
if result.returncode != 0:
|
|
error_msg = result.stderr.decode("utf-8")
|
|
logger.info(error_msg)
|
|
answer_result[task_id] = error_msg
|
|
else:
|
|
answer_result[task_id] = 'passed'
|
|
success_n += 1
|
|
logger.info("%s : passed , acc : %s", task_id,
|
|
check_divisible_by_zero(success_n, len(problems)))
|
|
except Exception as e:
|
|
if rank == 0:
|
|
logger.info("%s failed. %s", task_id, e)
|
|
finally:
|
|
pass
|
|
if rank == 0:
|
|
logger.info("acc = %s", {check_divisible_by_zero(success_n, len(problems))})
|
|
return answer_result, None
|
|
|
|
def top_k_eval(self, ) -> (dict, pd.DataFrame):
|
|
pass
|