ModelLink/tasks/evaluation/eval_impl/human_eval.py

139 lines
5.3 KiB
Python

# coding=utf-8
# Copyright (c) 2024, HUAWEI CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import logging
import stat
import re
import sys
import subprocess
from typing import Iterable, Dict
import pandas as pd
from tasks.evaluation.eval_api.dataset_eval import DatasetEval
from tasks.evaluation.eval_api.chat import Chat
from tasks.evaluation.eval_impl.template import CODE_TEST_LOG_DIR
from modellink.error_utils import check_divisible_by_zero
from modellink.utils import WRITE_FILE_DEFAULT_FLAGS, WRITE_FILE_DEFAULT_MODES
logger = logging.getLogger(__name__)
def extract_answer_code(answer, task: dict):
"""
:param answer:
:param task:
:return:
"""
task_id = task['task_id']
target_func = task['entry_point']
test_case = task['test']
save_file = f"{task_id}.py".replace("/", "-")
code = answer
code_lines = code.split("\n")
target_func_flag = False
if not os.path.exists(CODE_TEST_LOG_DIR):
os.makedirs(CODE_TEST_LOG_DIR)
test_code_path = "{}/{}".format(CODE_TEST_LOG_DIR, save_file)
with os.fdopen(os.open(test_code_path, WRITE_FILE_DEFAULT_FLAGS, WRITE_FILE_DEFAULT_MODES), 'w') as f:
f.write("from typing import List\n")
f.write("import math\n")
for i, line in enumerate(code_lines):
if i == 0 and line.lower() == "python":
continue
line_strip = line.strip()
if len(line_strip) < 1:
continue
if line_strip[0] == line[0]:
if line.startswith("from") or line.startswith("import"):
f.write(line)
f.write('\n')
elif line.startswith("def"):
if re.split(r"\s+", line)[1] == target_func:
target_func_flag = True
f.write(line)
f.write('\n')
else:
if target_func_flag:
break
else:
f.write(line)
f.write('\n')
f.write(test_case)
f.write('\n')
f.write(f'check({target_func})')
return test_code_path
class HumanEval(DatasetEval):
def __init__(self, test_dir,
instruction_template="The definition and function description of the python function are as follows. "
"Please complete the implementation of the python function.\n{prompt}"):
self.test_dir = test_dir
self.instruction_template = instruction_template
def read_problems(self) -> Dict[str, Dict]:
return {task["task_id"]: task for task in self.stream_jsonl(self.test_dir)}
def stream_jsonl(self, test_dir: str) -> Iterable[Dict]:
"""
Parses each jsonl line and yields it as a dictionary
"""
for file in os.listdir(test_dir):
test_code_path = os.path.join(self.test_dir, file)
with open(test_code_path, 'r') as fp:
for line in fp:
if any(not x.isspace() for x in line):
yield json.loads(line)
def eval(self, chat: Chat) -> (dict, pd.DataFrame):
problems = self.read_problems()
success_n = 0
rank = None
answer_result = {}
for idx, (task_id, task) in enumerate(problems.items()):
instruction = self.instruction_template.format(prompt=task['prompt'])
chat_result, rank = chat.beam_search_chat(instruction=instruction, history=[])
answer = None
if chat_result:
answer = chat_result[0].lstrip()
try:
if rank == 0:
python_execute = sys.executable
answer = task['prompt'] + ' ' + answer
logger.info(f'answer: {answer}')
test_file = extract_answer_code(answer, task)
result = subprocess.run([python_execute, test_file], capture_output=True, timeout=10)
if result.returncode != 0:
error_msg = result.stderr.decode("utf-8")
logger.info(error_msg)
answer_result[task_id] = error_msg
else:
answer_result[task_id] = 'passed'
success_n += 1
logger.info("%s : passed , acc : %s", task_id,
check_divisible_by_zero(success_n, len(problems)))
except Exception as e:
if rank == 0:
logger.info("%s failed. %s", task_id, e)
finally:
pass
if rank == 0:
logger.info("acc = %s", {check_divisible_by_zero(success_n, len(problems))})
return answer_result, None
def top_k_eval(self, ) -> (dict, pd.DataFrame):
pass