llvm-project/clang/lib/AST/Interp/ByteCodeExprGen.cpp

1150 lines
33 KiB
C++

//===--- ByteCodeExprGen.cpp - Code generator for expressions ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ByteCodeExprGen.h"
#include "ByteCodeEmitter.h"
#include "ByteCodeGenError.h"
#include "ByteCodeStmtGen.h"
#include "Context.h"
#include "Function.h"
#include "PrimType.h"
#include "Program.h"
#include "State.h"
using namespace clang;
using namespace clang::interp;
using APSInt = llvm::APSInt;
template <typename T> using Expected = llvm::Expected<T>;
template <typename T> using Optional = llvm::Optional<T>;
namespace clang {
namespace interp {
/// Scope used to handle temporaries in toplevel variable declarations.
template <class Emitter> class DeclScope final : public LocalScope<Emitter> {
public:
DeclScope(ByteCodeExprGen<Emitter> *Ctx, const VarDecl *VD)
: LocalScope<Emitter>(Ctx), Scope(Ctx->P, VD) {}
void addExtended(const Scope::Local &Local) override {
return this->addLocal(Local);
}
private:
Program::DeclScope Scope;
};
/// Scope used to handle initialization methods.
template <class Emitter> class OptionScope {
public:
using InitFnRef = typename ByteCodeExprGen<Emitter>::InitFnRef;
using ChainedInitFnRef = std::function<bool(InitFnRef)>;
/// Root constructor, compiling or discarding primitives.
OptionScope(ByteCodeExprGen<Emitter> *Ctx, bool NewDiscardResult)
: Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult),
OldInitFn(std::move(Ctx->InitFn)) {
Ctx->DiscardResult = NewDiscardResult;
Ctx->InitFn = llvm::Optional<InitFnRef>{};
}
/// Root constructor, setting up compilation state.
OptionScope(ByteCodeExprGen<Emitter> *Ctx, InitFnRef NewInitFn)
: Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult),
OldInitFn(std::move(Ctx->InitFn)) {
Ctx->DiscardResult = true;
Ctx->InitFn = NewInitFn;
}
/// Extends the chain of initialisation pointers.
OptionScope(ByteCodeExprGen<Emitter> *Ctx, ChainedInitFnRef NewInitFn)
: Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult),
OldInitFn(std::move(Ctx->InitFn)) {
assert(OldInitFn && "missing initializer");
Ctx->InitFn = [this, NewInitFn] { return NewInitFn(*OldInitFn); };
}
~OptionScope() {
Ctx->DiscardResult = OldDiscardResult;
Ctx->InitFn = std::move(OldInitFn);
}
private:
/// Parent context.
ByteCodeExprGen<Emitter> *Ctx;
/// Old discard flag to restore.
bool OldDiscardResult;
/// Old pointer emitter to restore.
llvm::Optional<InitFnRef> OldInitFn;
};
} // namespace interp
} // namespace clang
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCastExpr(const CastExpr *CE) {
auto *SubExpr = CE->getSubExpr();
switch (CE->getCastKind()) {
case CK_LValueToRValue: {
return dereference(
CE->getSubExpr(), DerefKind::Read,
[](PrimType) {
// Value loaded - nothing to do here.
return true;
},
[this, CE](PrimType T) {
// Pointer on stack - dereference it.
if (!this->emitLoadPop(T, CE))
return false;
return DiscardResult ? this->emitPop(T, CE) : true;
});
}
case CK_UncheckedDerivedToBase: {
if (!this->visit(SubExpr))
return false;
const CXXRecordDecl *FromDecl = getRecordDecl(SubExpr);
assert(FromDecl);
const CXXRecordDecl *ToDecl = getRecordDecl(CE);
assert(ToDecl);
const Record *R = getRecord(FromDecl);
const Record::Base *ToBase = R->getBase(ToDecl);
assert(ToBase);
return this->emitGetPtrBase(ToBase->Offset, CE);
}
case CK_ArrayToPointerDecay:
case CK_AtomicToNonAtomic:
case CK_ConstructorConversion:
case CK_FunctionToPointerDecay:
case CK_NonAtomicToAtomic:
case CK_NoOp:
case CK_UserDefinedConversion:
case CK_NullToPointer:
return this->Visit(SubExpr);
case CK_IntegralToBoolean:
case CK_IntegralCast: {
Optional<PrimType> FromT = classify(SubExpr->getType());
Optional<PrimType> ToT = classify(CE->getType());
if (!FromT || !ToT)
return false;
if (!this->Visit(SubExpr))
return false;
// TODO: Emit this only if FromT != ToT.
return this->emitCast(*FromT, *ToT, CE);
}
case CK_ToVoid:
return discard(SubExpr);
default:
assert(false && "Cast not implemented");
}
llvm_unreachable("Unhandled clang::CastKind enum");
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
if (DiscardResult)
return true;
if (Optional<PrimType> T = classify(LE->getType()))
return emitConst(*T, LE->getValue(), LE);
return this->bail(LE);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitParenExpr(const ParenExpr *PE) {
return this->Visit(PE->getSubExpr());
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
const Expr *LHS = BO->getLHS();
const Expr *RHS = BO->getRHS();
// Deal with operations which have composite or void types.
switch (BO->getOpcode()) {
case BO_Comma:
if (!discard(LHS))
return false;
if (!this->Visit(RHS))
return false;
return true;
default:
break;
}
// Typecheck the args.
Optional<PrimType> LT = classify(LHS->getType());
Optional<PrimType> RT = classify(RHS->getType());
if (!LT || !RT) {
return this->bail(BO);
}
if (Optional<PrimType> T = classify(BO->getType())) {
if (!visit(LHS))
return false;
if (!visit(RHS))
return false;
auto Discard = [this, T, BO](bool Result) {
if (!Result)
return false;
return DiscardResult ? this->emitPop(*T, BO) : true;
};
switch (BO->getOpcode()) {
case BO_EQ:
return Discard(this->emitEQ(*LT, BO));
case BO_NE:
return Discard(this->emitNE(*LT, BO));
case BO_LT:
return Discard(this->emitLT(*LT, BO));
case BO_LE:
return Discard(this->emitLE(*LT, BO));
case BO_GT:
return Discard(this->emitGT(*LT, BO));
case BO_GE:
return Discard(this->emitGE(*LT, BO));
case BO_Sub:
return Discard(this->emitSub(*T, BO));
case BO_Add:
return Discard(this->emitAdd(*T, BO));
case BO_Mul:
return Discard(this->emitMul(*T, BO));
case BO_Rem:
return Discard(this->emitRem(*T, BO));
case BO_Div:
return Discard(this->emitDiv(*T, BO));
case BO_Assign:
if (!this->emitStore(*T, BO))
return false;
return DiscardResult ? this->emitPopPtr(BO) : true;
case BO_And:
return Discard(this->emitBitAnd(*T, BO));
case BO_Or:
return Discard(this->emitBitOr(*T, BO));
case BO_LAnd:
case BO_LOr:
default:
return this->bail(BO);
}
}
return this->bail(BO);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
if (Optional<PrimType> T = classify(E))
return this->emitZero(*T, E);
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitArraySubscriptExpr(
const ArraySubscriptExpr *E) {
const Expr *Base = E->getBase();
const Expr *Index = E->getIdx();
// Take pointer of LHS, add offset from RHS, narrow result.
// What's left on the stack after this is a pointer.
if (Optional<PrimType> IndexT = classify(Index->getType())) {
if (!this->Visit(Base))
return false;
if (!this->Visit(Index))
return false;
if (!this->emitAddOffset(*IndexT, E))
return false;
if (!this->emitNarrowPtr(E))
return false;
return true;
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitInitListExpr(const InitListExpr *E) {
for (const Expr *Init : E->inits()) {
if (!this->visit(Init))
return false;
}
return true;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitSubstNonTypeTemplateParmExpr(
const SubstNonTypeTemplateParmExpr *E) {
return this->visit(E->getReplacement());
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
// TODO: Check if the ConstantExpr already has a value set and if so,
// use that instead of evaluating it again.
return this->visit(E->getSubExpr());
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitUnaryExprOrTypeTraitExpr(
const UnaryExprOrTypeTraitExpr *E) {
if (E->getKind() == UETT_SizeOf) {
QualType ArgType = E->getTypeOfArgument();
CharUnits Size;
if (ArgType->isVoidType() || ArgType->isFunctionType())
Size = CharUnits::One();
else {
if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
return false;
Size = Ctx.getASTContext().getTypeSizeInChars(ArgType);
}
return this->emitConst(E, Size.getQuantity());
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitMemberExpr(const MemberExpr *E) {
// 'Base.Member'
const Expr *Base = E->getBase();
const ValueDecl *Member = E->getMemberDecl();
if (!this->visit(Base))
return false;
// Base above gives us a pointer on the stack.
// TODO: Implement non-FieldDecl members.
if (const auto *FD = dyn_cast<FieldDecl>(Member)) {
const RecordDecl *RD = FD->getParent();
const Record *R = getRecord(RD);
const Record::Field *F = R->getField(FD);
// Leave a pointer to the field on the stack.
return this->emitGetPtrField(F->Offset, E);
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitArrayInitIndexExpr(
const ArrayInitIndexExpr *E) {
// ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
// stand-alone, e.g. via EvaluateAsInt().
if (!ArrayIndex)
return false;
QualType IndexType = E->getType();
APInt Value(getIntWidth(IndexType), *ArrayIndex);
return this->emitConst(classifyPrim(IndexType), Value, E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
return this->visit(E->getSourceExpr());
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitAbstractConditionalOperator(
const AbstractConditionalOperator *E) {
const Expr *Condition = E->getCond();
const Expr *TrueExpr = E->getTrueExpr();
const Expr *FalseExpr = E->getFalseExpr();
LabelTy LabelEnd = this->getLabel(); // Label after the operator.
LabelTy LabelFalse = this->getLabel(); // Label for the false expr.
if (!this->visit(Condition))
return false;
if (!this->jumpFalse(LabelFalse))
return false;
if (!this->visit(TrueExpr))
return false;
if (!this->jump(LabelEnd))
return false;
this->emitLabel(LabelFalse);
if (!this->visit(FalseExpr))
return false;
this->fallthrough(LabelEnd);
this->emitLabel(LabelEnd);
return true;
}
template <class Emitter> bool ByteCodeExprGen<Emitter>::discard(const Expr *E) {
OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true);
return this->Visit(E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visit(const Expr *E) {
OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false);
return this->Visit(E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitBool(const Expr *E) {
if (Optional<PrimType> T = classify(E->getType())) {
return visit(E);
} else {
return this->bail(E);
}
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitZeroInitializer(PrimType T, const Expr *E) {
switch (T) {
case PT_Bool:
return this->emitZeroBool(E);
case PT_Sint8:
return this->emitZeroSint8(E);
case PT_Uint8:
return this->emitZeroUint8(E);
case PT_Sint16:
return this->emitZeroSint16(E);
case PT_Uint16:
return this->emitZeroUint16(E);
case PT_Sint32:
return this->emitZeroSint32(E);
case PT_Uint32:
return this->emitZeroUint32(E);
case PT_Sint64:
return this->emitZeroSint64(E);
case PT_Uint64:
return this->emitZeroUint64(E);
case PT_Ptr:
return this->emitNullPtr(E);
}
llvm_unreachable("unknown primitive type");
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::dereference(
const Expr *LV, DerefKind AK, llvm::function_ref<bool(PrimType)> Direct,
llvm::function_ref<bool(PrimType)> Indirect) {
if (Optional<PrimType> T = classify(LV->getType())) {
if (!LV->refersToBitField()) {
// Only primitive, non bit-field types can be dereferenced directly.
if (auto *DE = dyn_cast<DeclRefExpr>(LV)) {
if (!DE->getDecl()->getType()->isReferenceType()) {
if (auto *PD = dyn_cast<ParmVarDecl>(DE->getDecl()))
return dereferenceParam(LV, *T, PD, AK, Direct, Indirect);
if (auto *VD = dyn_cast<VarDecl>(DE->getDecl()))
return dereferenceVar(LV, *T, VD, AK, Direct, Indirect);
}
}
}
if (!visit(LV))
return false;
return Indirect(*T);
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::dereferenceParam(
const Expr *LV, PrimType T, const ParmVarDecl *PD, DerefKind AK,
llvm::function_ref<bool(PrimType)> Direct,
llvm::function_ref<bool(PrimType)> Indirect) {
auto It = this->Params.find(PD);
if (It != this->Params.end()) {
unsigned Idx = It->second;
switch (AK) {
case DerefKind::Read:
return DiscardResult ? true : this->emitGetParam(T, Idx, LV);
case DerefKind::Write:
if (!Direct(T))
return false;
if (!this->emitSetParam(T, Idx, LV))
return false;
return DiscardResult ? true : this->emitGetPtrParam(Idx, LV);
case DerefKind::ReadWrite:
if (!this->emitGetParam(T, Idx, LV))
return false;
if (!Direct(T))
return false;
if (!this->emitSetParam(T, Idx, LV))
return false;
return DiscardResult ? true : this->emitGetPtrParam(Idx, LV);
}
return true;
}
// If the param is a pointer, we can dereference a dummy value.
if (!DiscardResult && T == PT_Ptr && AK == DerefKind::Read) {
if (auto Idx = P.getOrCreateDummy(PD))
return this->emitGetPtrGlobal(*Idx, PD);
return false;
}
// Value cannot be produced - try to emit pointer and do stuff with it.
return visit(LV) && Indirect(T);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::dereferenceVar(
const Expr *LV, PrimType T, const VarDecl *VD, DerefKind AK,
llvm::function_ref<bool(PrimType)> Direct,
llvm::function_ref<bool(PrimType)> Indirect) {
auto It = Locals.find(VD);
if (It != Locals.end()) {
const auto &L = It->second;
switch (AK) {
case DerefKind::Read:
if (!this->emitGetLocal(T, L.Offset, LV))
return false;
return DiscardResult ? this->emitPop(T, LV) : true;
case DerefKind::Write:
if (!Direct(T))
return false;
if (!this->emitSetLocal(T, L.Offset, LV))
return false;
return DiscardResult ? true : this->emitGetPtrLocal(L.Offset, LV);
case DerefKind::ReadWrite:
if (!this->emitGetLocal(T, L.Offset, LV))
return false;
if (!Direct(T))
return false;
if (!this->emitSetLocal(T, L.Offset, LV))
return false;
return DiscardResult ? true : this->emitGetPtrLocal(L.Offset, LV);
}
} else if (auto Idx = getGlobalIdx(VD)) {
switch (AK) {
case DerefKind::Read:
if (!this->emitGetGlobal(T, *Idx, LV))
return false;
return DiscardResult ? this->emitPop(T, LV) : true;
case DerefKind::Write:
if (!Direct(T))
return false;
if (!this->emitSetGlobal(T, *Idx, LV))
return false;
return DiscardResult ? true : this->emitGetPtrGlobal(*Idx, LV);
case DerefKind::ReadWrite:
if (!this->emitGetGlobal(T, *Idx, LV))
return false;
if (!Direct(T))
return false;
if (!this->emitSetGlobal(T, *Idx, LV))
return false;
return DiscardResult ? true : this->emitGetPtrGlobal(*Idx, LV);
}
}
// If the declaration is a constant value, emit it here even
// though the declaration was not evaluated in the current scope.
// The access mode can only be read in this case.
if (!DiscardResult && AK == DerefKind::Read) {
if (VD->hasLocalStorage() && VD->hasInit() && !VD->isConstexpr()) {
QualType VT = VD->getType();
if (VT.isConstQualified() && VT->isFundamentalType())
return this->Visit(VD->getInit());
}
}
// Value cannot be produced - try to emit pointer.
return visit(LV) && Indirect(T);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::emitConst(PrimType T, const APInt &Value,
const Expr *E) {
switch (T) {
case PT_Sint8:
return this->emitConstSint8(Value.getSExtValue(), E);
case PT_Uint8:
return this->emitConstUint8(Value.getZExtValue(), E);
case PT_Sint16:
return this->emitConstSint16(Value.getSExtValue(), E);
case PT_Uint16:
return this->emitConstUint16(Value.getZExtValue(), E);
case PT_Sint32:
return this->emitConstSint32(Value.getSExtValue(), E);
case PT_Uint32:
return this->emitConstUint32(Value.getZExtValue(), E);
case PT_Sint64:
return this->emitConstSint64(Value.getSExtValue(), E);
case PT_Uint64:
return this->emitConstUint64(Value.getZExtValue(), E);
case PT_Bool:
return this->emitConstBool(Value.getBoolValue(), E);
case PT_Ptr:
llvm_unreachable("Invalid integral type");
break;
}
llvm_unreachable("unknown primitive type");
}
template <class Emitter>
unsigned ByteCodeExprGen<Emitter>::allocateLocalPrimitive(DeclTy &&Src,
PrimType Ty,
bool IsConst,
bool IsExtended) {
Descriptor *D = P.createDescriptor(Src, Ty, IsConst, Src.is<const Expr *>());
Scope::Local Local = this->createLocal(D);
if (auto *VD = dyn_cast_or_null<ValueDecl>(Src.dyn_cast<const Decl *>()))
Locals.insert({VD, Local});
VarScope->add(Local, IsExtended);
return Local.Offset;
}
template <class Emitter>
llvm::Optional<unsigned>
ByteCodeExprGen<Emitter>::allocateLocal(DeclTy &&Src, bool IsExtended) {
QualType Ty;
const ValueDecl *Key = nullptr;
const Expr *Init = nullptr;
bool IsTemporary = false;
if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
Key = VD;
Ty = VD->getType();
if (const auto *VarD = dyn_cast<VarDecl>(VD))
Init = VarD->getInit();
}
if (auto *E = Src.dyn_cast<const Expr *>()) {
IsTemporary = true;
Ty = E->getType();
}
Descriptor *D = P.createDescriptor(
Src, Ty.getTypePtr(), Ty.isConstQualified(), IsTemporary, false, Init);
if (!D)
return {};
Scope::Local Local = this->createLocal(D);
if (Key)
Locals.insert({Key, Local});
VarScope->add(Local, IsExtended);
return Local.Offset;
}
// NB: When calling this function, we have a pointer to the
// array-to-initialize on the stack.
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitArrayInitializer(const Expr *Initializer) {
assert(Initializer->getType()->isArrayType());
// TODO: Fillers?
if (const auto *InitList = dyn_cast<InitListExpr>(Initializer)) {
unsigned ElementIndex = 0;
for (const Expr *Init : InitList->inits()) {
if (Optional<PrimType> T = classify(Init->getType())) {
// Visit the primitive element like normal.
if (!this->emitDupPtr(Init))
return false;
if (!this->visit(Init))
return false;
if (!this->emitInitElem(*T, ElementIndex, Init))
return false;
} else {
// Advance the pointer currently on the stack to the given
// dimension and narrow().
if (!this->emitDupPtr(Init))
return false;
if (!this->emitConstUint32(ElementIndex, Init))
return false;
if (!this->emitAddOffsetUint32(Init))
return false;
if (!this->emitNarrowPtr(Init))
return false;
if (!visitInitializer(Init))
return false;
}
if (!this->emitPopPtr(Init))
return false;
++ElementIndex;
}
return true;
} else if (const auto *DIE = dyn_cast<CXXDefaultInitExpr>(Initializer)) {
return this->visitInitializer(DIE->getExpr());
} else if (const auto *AILE = dyn_cast<ArrayInitLoopExpr>(Initializer)) {
// TODO: This compiles to quite a lot of bytecode if the array is larger.
// Investigate compiling this to a loop, or at least try to use
// the AILE's Common expr.
const Expr *SubExpr = AILE->getSubExpr();
size_t Size = AILE->getArraySize().getZExtValue();
Optional<PrimType> ElemT = classify(SubExpr->getType());
// So, every iteration, we execute an assignment here
// where the LHS is on the stack (the target array)
// and the RHS is our SubExpr.
for (size_t I = 0; I != Size; ++I) {
ArrayIndexScope<Emitter> IndexScope(this, I);
if (!this->emitDupPtr(SubExpr)) // LHS
return false;
if (ElemT) {
if (!this->visit(SubExpr))
return false;
if (!this->emitInitElem(*ElemT, I, Initializer))
return false;
} else {
// Narrow to our array element and recurse into visitInitializer()
if (!this->emitConstUint64(I, SubExpr))
return false;
if (!this->emitAddOffsetUint64(SubExpr))
return false;
if (!this->emitNarrowPtr(SubExpr))
return false;
if (!visitInitializer(SubExpr))
return false;
}
if (!this->emitPopPtr(Initializer))
return false;
}
return true;
} else if (const auto *IVIE = dyn_cast<ImplicitValueInitExpr>(Initializer)) {
const ArrayType *AT = IVIE->getType()->getAsArrayTypeUnsafe();
assert(AT);
const auto *CAT = cast<ConstantArrayType>(AT);
size_t NumElems = CAT->getSize().getZExtValue();
if (Optional<PrimType> ElemT = classify(CAT->getElementType())) {
// TODO(perf): For int and bool types, we can probably just skip this
// since we memset our Block*s to 0 and so we have the desired value
// without this.
for (size_t I = 0; I != NumElems; ++I) {
if (!this->emitZero(*ElemT, Initializer))
return false;
if (!this->emitInitElem(*ElemT, I, Initializer))
return false;
}
} else {
assert(false && "default initializer for non-primitive type");
}
return true;
}
assert(false && "Unknown expression for array initialization");
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitRecordInitializer(const Expr *Initializer) {
Initializer = Initializer->IgnoreParenImpCasts();
assert(Initializer->getType()->isRecordType());
if (const auto CtorExpr = dyn_cast<CXXConstructExpr>(Initializer)) {
const Function *Func = getFunction(CtorExpr->getConstructor());
if (!Func || !Func->isConstexpr())
return false;
// The This pointer is already on the stack because this is an initializer,
// but we need to dup() so the call() below has its own copy.
if (!this->emitDupPtr(Initializer))
return false;
// Constructor arguments.
for (const auto *Arg : CtorExpr->arguments()) {
if (!this->visit(Arg))
return false;
}
return this->emitCall(Func, Initializer);
} else if (const auto *InitList = dyn_cast<InitListExpr>(Initializer)) {
const Record *R = getRecord(InitList->getType());
unsigned InitIndex = 0;
for (const Expr *Init : InitList->inits()) {
const Record::Field *FieldToInit = R->getField(InitIndex);
if (!this->emitDupPtr(Initializer))
return false;
if (Optional<PrimType> T = classify(Init->getType())) {
if (!this->visit(Init))
return false;
if (!this->emitInitField(*T, FieldToInit->Offset, Initializer))
return false;
} else {
// Non-primitive case. Get a pointer to the field-to-initialize
// on the stack and recurse into visitInitializer().
if (!this->emitGetPtrField(FieldToInit->Offset, Init))
return false;
if (!this->visitInitializer(Init))
return false;
if (!this->emitPopPtr(Initializer))
return false;
}
++InitIndex;
}
return true;
} else if (const CallExpr *CE = dyn_cast<CallExpr>(Initializer)) {
const Decl *Callee = CE->getCalleeDecl();
const Function *Func = getFunction(dyn_cast<FunctionDecl>(Callee));
if (!Func)
return false;
if (Func->hasRVO()) {
// RVO functions expect a pointer to initialize on the stack.
// Dup our existing pointer so it has its own copy to use.
if (!this->emitDupPtr(Initializer))
return false;
return this->visit(CE);
}
} else if (const auto *DIE = dyn_cast<CXXDefaultInitExpr>(Initializer)) {
return this->visitInitializer(DIE->getExpr());
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitInitializer(const Expr *Initializer) {
QualType InitializerType = Initializer->getType();
if (InitializerType->isArrayType())
return visitArrayInitializer(Initializer);
if (InitializerType->isRecordType())
return visitRecordInitializer(Initializer);
// Otherwise, visit the expression like normal.
return this->Visit(Initializer);
}
template <class Emitter>
llvm::Optional<unsigned>
ByteCodeExprGen<Emitter>::getGlobalIdx(const VarDecl *VD) {
if (VD->isConstexpr()) {
// Constexpr decl - it must have already been defined.
return P.getGlobal(VD);
}
if (!VD->hasLocalStorage()) {
// Not constexpr, but a global var - can have pointer taken.
Program::DeclScope Scope(P, VD);
return P.getOrCreateGlobal(VD);
}
return {};
}
template <class Emitter>
const RecordType *ByteCodeExprGen<Emitter>::getRecordTy(QualType Ty) {
if (const PointerType *PT = dyn_cast<PointerType>(Ty))
return PT->getPointeeType()->getAs<RecordType>();
else
return Ty->getAs<RecordType>();
}
template <class Emitter>
Record *ByteCodeExprGen<Emitter>::getRecord(QualType Ty) {
if (auto *RecordTy = getRecordTy(Ty)) {
return getRecord(RecordTy->getDecl());
}
return nullptr;
}
template <class Emitter>
Record *ByteCodeExprGen<Emitter>::getRecord(const RecordDecl *RD) {
return P.getOrCreateRecord(RD);
}
template <class Emitter>
const Function *ByteCodeExprGen<Emitter>::getFunction(const FunctionDecl *FD) {
assert(FD);
const Function *Func = P.getFunction(FD);
if (!Func) {
if (auto R = ByteCodeStmtGen<ByteCodeEmitter>(Ctx, P).compileFunc(FD))
Func = *R;
else {
llvm::consumeError(R.takeError());
return nullptr;
}
}
return Func;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitExpr(const Expr *Exp) {
ExprScope<Emitter> RootScope(this);
if (!visit(Exp))
return false;
if (Optional<PrimType> T = classify(Exp))
return this->emitRet(*T, Exp);
else
return this->emitRetValue(Exp);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitDecl(const VarDecl *VD) {
const Expr *Init = VD->getInit();
if (Optional<unsigned> I = P.createGlobal(VD, Init)) {
if (Optional<PrimType> T = classify(VD->getType())) {
{
// Primitive declarations - compute the value and set it.
DeclScope<Emitter> LocalScope(this, VD);
if (!visit(Init))
return false;
}
// If the declaration is global, save the value for later use.
if (!this->emitDup(*T, VD))
return false;
if (!this->emitInitGlobal(*T, *I, VD))
return false;
return this->emitRet(*T, VD);
} else {
{
// Composite declarations - allocate storage and initialize it.
DeclScope<Emitter> LocalScope(this, VD);
if (!visitGlobalInitializer(Init, *I))
return false;
}
// Return a pointer to the global.
if (!this->emitGetPtrGlobal(*I, VD))
return false;
return this->emitRetValue(VD);
}
}
return this->bail(VD);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCallExpr(const CallExpr *E) {
assert(!E->getBuiltinCallee() && "Builtin functions aren't supported yet");
const Decl *Callee = E->getCalleeDecl();
if (const auto *FuncDecl = dyn_cast_or_null<FunctionDecl>(Callee)) {
const Function *Func = getFunction(FuncDecl);
if (!Func)
return false;
// If the function is being compiled right now, this is a recursive call.
// In that case, the function can't be valid yet, even though it will be
// later.
// If the function is already fully compiled but not constexpr, it was
// found to be faulty earlier on, so bail out.
if (Func->isFullyCompiled() && !Func->isConstexpr())
return false;
// Put arguments on the stack.
for (const auto *Arg : E->arguments()) {
if (!this->visit(Arg))
return false;
}
// In any case call the function. The return value will end up on the stack and
// if the function has RVO, we already have the pointer on the stack to write
// the result into.
return this->emitCall(Func, E);
} else {
assert(false && "We don't support non-FunctionDecl callees right now.");
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXMemberCallExpr(
const CXXMemberCallExpr *E) {
// Get a This pointer on the stack.
if (!this->visit(E->getImplicitObjectArgument()))
return false;
return VisitCallExpr(E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXDefaultInitExpr(
const CXXDefaultInitExpr *E) {
return this->visit(E->getExpr());
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXDefaultArgExpr(
const CXXDefaultArgExpr *E) {
return this->visit(E->getExpr());
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXBoolLiteralExpr(
const CXXBoolLiteralExpr *E) {
if (DiscardResult)
return true;
return this->emitConstBool(E->getValue(), E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXNullPtrLiteralExpr(
const CXXNullPtrLiteralExpr *E) {
if (DiscardResult)
return true;
return this->emitNullPtr(E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
return this->emitThis(E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
const Expr *SubExpr = E->getSubExpr();
switch (E->getOpcode()) {
case UO_PostInc: // x++
case UO_PostDec: // x--
case UO_PreInc: // --x
case UO_PreDec: // ++x
return false;
case UO_LNot: // !x
if (!this->Visit(SubExpr))
return false;
return this->emitInvBool(E);
case UO_Minus: // -x
if (!this->Visit(SubExpr))
return false;
if (Optional<PrimType> T = classify(E->getType()))
return this->emitNeg(*T, E);
return false;
case UO_Plus: // +x
return this->Visit(SubExpr); // noop
case UO_AddrOf: // &x
// We should already have a pointer when we get here.
return this->Visit(SubExpr);
case UO_Deref: // *x
return dereference(
SubExpr, DerefKind::Read,
[](PrimType) {
llvm_unreachable("Dereferencing requires a pointer");
return false;
},
[this, E](PrimType T) {
return DiscardResult ? this->emitPop(T, E) : true;
});
case UO_Not: // ~x
if (!this->Visit(SubExpr))
return false;
if (Optional<PrimType> T = classify(E->getType()))
return this->emitComp(*T, E);
return false;
case UO_Real: // __real x
case UO_Imag: // __imag x
case UO_Extension:
case UO_Coawait:
assert(false && "Unhandled opcode");
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
const auto *Decl = E->getDecl();
bool FoundDecl = false;
if (auto It = Locals.find(Decl); It != Locals.end()) {
const unsigned Offset = It->second.Offset;
if (!this->emitGetPtrLocal(Offset, E))
return false;
FoundDecl = true;
} else if (auto GlobalIndex = P.getGlobal(Decl)) {
if (!this->emitGetPtrGlobal(*GlobalIndex, E))
return false;
FoundDecl = true;
} else if (const auto *PVD = dyn_cast<ParmVarDecl>(Decl)) {
if (auto It = this->Params.find(PVD); It != this->Params.end()) {
if (!this->emitGetPtrParam(It->second, E))
return false;
FoundDecl = true;
}
} else if (const auto *ECD = dyn_cast<EnumConstantDecl>(Decl)) {
PrimType T = *classify(ECD->getType());
return this->emitConst(T, ECD->getInitVal(), E);
}
// References are implemented using pointers, so when we get here,
// we have a pointer to a pointer, which we need to de-reference once.
if (FoundDecl) {
if (Decl->getType()->isReferenceType()) {
if (!this->emitLoadPopPtr(E))
return false;
}
return true;
}
return false;
}
template <class Emitter>
void ByteCodeExprGen<Emitter>::emitCleanup() {
for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
C->emitDestruction();
}
namespace clang {
namespace interp {
template class ByteCodeExprGen<ByteCodeEmitter>;
template class ByteCodeExprGen<EvalEmitter>;
} // namespace interp
} // namespace clang