3276 lines
129 KiB
C++
3276 lines
129 KiB
C++
//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Rewrite call/invoke instructions so as to make potential relocations
|
|
// performed by the garbage collector explicit in the IR.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Analysis/DomTreeUpdater.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Statepoint.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <optional>
|
|
#include <set>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#define DEBUG_TYPE "rewrite-statepoints-for-gc"
|
|
|
|
using namespace llvm;
|
|
|
|
// Print the liveset found at the insert location
|
|
static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
|
|
cl::init(false));
|
|
static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
|
|
cl::init(false));
|
|
|
|
// Print out the base pointers for debugging
|
|
static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
|
|
cl::init(false));
|
|
|
|
// Cost threshold measuring when it is profitable to rematerialize value instead
|
|
// of relocating it
|
|
static cl::opt<unsigned>
|
|
RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
|
|
cl::init(6));
|
|
|
|
#ifdef EXPENSIVE_CHECKS
|
|
static bool ClobberNonLive = true;
|
|
#else
|
|
static bool ClobberNonLive = false;
|
|
#endif
|
|
|
|
static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
|
|
cl::location(ClobberNonLive),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool>
|
|
AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
|
|
cl::Hidden, cl::init(true));
|
|
|
|
/// The IR fed into RewriteStatepointsForGC may have had attributes and
|
|
/// metadata implying dereferenceability that are no longer valid/correct after
|
|
/// RewriteStatepointsForGC has run. This is because semantically, after
|
|
/// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
|
|
/// heap. stripNonValidData (conservatively) restores
|
|
/// correctness by erasing all attributes in the module that externally imply
|
|
/// dereferenceability. Similar reasoning also applies to the noalias
|
|
/// attributes and metadata. gc.statepoint can touch the entire heap including
|
|
/// noalias objects.
|
|
/// Apart from attributes and metadata, we also remove instructions that imply
|
|
/// constant physical memory: llvm.invariant.start.
|
|
static void stripNonValidData(Module &M);
|
|
|
|
static bool shouldRewriteStatepointsIn(Function &F);
|
|
|
|
PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
|
|
ModuleAnalysisManager &AM) {
|
|
bool Changed = false;
|
|
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
|
for (Function &F : M) {
|
|
// Nothing to do for declarations.
|
|
if (F.isDeclaration() || F.empty())
|
|
continue;
|
|
|
|
// Policy choice says not to rewrite - the most common reason is that we're
|
|
// compiling code without a GCStrategy.
|
|
if (!shouldRewriteStatepointsIn(F))
|
|
continue;
|
|
|
|
auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
|
|
auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
|
|
auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
|
|
Changed |= runOnFunction(F, DT, TTI, TLI);
|
|
}
|
|
if (!Changed)
|
|
return PreservedAnalyses::all();
|
|
|
|
// stripNonValidData asserts that shouldRewriteStatepointsIn
|
|
// returns true for at least one function in the module. Since at least
|
|
// one function changed, we know that the precondition is satisfied.
|
|
stripNonValidData(M);
|
|
|
|
PreservedAnalyses PA;
|
|
PA.preserve<TargetIRAnalysis>();
|
|
PA.preserve<TargetLibraryAnalysis>();
|
|
return PA;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class RewriteStatepointsForGCLegacyPass : public ModulePass {
|
|
RewriteStatepointsForGC Impl;
|
|
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
|
|
RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
|
|
initializeRewriteStatepointsForGCLegacyPassPass(
|
|
*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnModule(Module &M) override {
|
|
bool Changed = false;
|
|
for (Function &F : M) {
|
|
// Nothing to do for declarations.
|
|
if (F.isDeclaration() || F.empty())
|
|
continue;
|
|
|
|
// Policy choice says not to rewrite - the most common reason is that
|
|
// we're compiling code without a GCStrategy.
|
|
if (!shouldRewriteStatepointsIn(F))
|
|
continue;
|
|
|
|
TargetTransformInfo &TTI =
|
|
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
const TargetLibraryInfo &TLI =
|
|
getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
|
|
|
|
Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
|
|
}
|
|
|
|
if (!Changed)
|
|
return false;
|
|
|
|
// stripNonValidData asserts that shouldRewriteStatepointsIn
|
|
// returns true for at least one function in the module. Since at least
|
|
// one function changed, we know that the precondition is satisfied.
|
|
stripNonValidData(M);
|
|
return true;
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
// We add and rewrite a bunch of instructions, but don't really do much
|
|
// else. We could in theory preserve a lot more analyses here.
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char RewriteStatepointsForGCLegacyPass::ID = 0;
|
|
|
|
ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
|
|
return new RewriteStatepointsForGCLegacyPass();
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
|
|
"rewrite-statepoints-for-gc",
|
|
"Make relocations explicit at statepoints", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
|
|
"rewrite-statepoints-for-gc",
|
|
"Make relocations explicit at statepoints", false, false)
|
|
|
|
namespace {
|
|
|
|
struct GCPtrLivenessData {
|
|
/// Values defined in this block.
|
|
MapVector<BasicBlock *, SetVector<Value *>> KillSet;
|
|
|
|
/// Values used in this block (and thus live); does not included values
|
|
/// killed within this block.
|
|
MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
|
|
|
|
/// Values live into this basic block (i.e. used by any
|
|
/// instruction in this basic block or ones reachable from here)
|
|
MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
|
|
|
|
/// Values live out of this basic block (i.e. live into
|
|
/// any successor block)
|
|
MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
|
|
};
|
|
|
|
// The type of the internal cache used inside the findBasePointers family
|
|
// of functions. From the callers perspective, this is an opaque type and
|
|
// should not be inspected.
|
|
//
|
|
// In the actual implementation this caches two relations:
|
|
// - The base relation itself (i.e. this pointer is based on that one)
|
|
// - The base defining value relation (i.e. before base_phi insertion)
|
|
// Generally, after the execution of a full findBasePointer call, only the
|
|
// base relation will remain. Internally, we add a mixture of the two
|
|
// types, then update all the second type to the first type
|
|
using DefiningValueMapTy = MapVector<Value *, Value *>;
|
|
using IsKnownBaseMapTy = MapVector<Value *, bool>;
|
|
using PointerToBaseTy = MapVector<Value *, Value *>;
|
|
using StatepointLiveSetTy = SetVector<Value *>;
|
|
using RematerializedValueMapTy =
|
|
MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
|
|
|
|
struct PartiallyConstructedSafepointRecord {
|
|
/// The set of values known to be live across this safepoint
|
|
StatepointLiveSetTy LiveSet;
|
|
|
|
/// The *new* gc.statepoint instruction itself. This produces the token
|
|
/// that normal path gc.relocates and the gc.result are tied to.
|
|
GCStatepointInst *StatepointToken;
|
|
|
|
/// Instruction to which exceptional gc relocates are attached
|
|
/// Makes it easier to iterate through them during relocationViaAlloca.
|
|
Instruction *UnwindToken;
|
|
|
|
/// Record live values we are rematerialized instead of relocating.
|
|
/// They are not included into 'LiveSet' field.
|
|
/// Maps rematerialized copy to it's original value.
|
|
RematerializedValueMapTy RematerializedValues;
|
|
};
|
|
|
|
struct RematerizlizationCandidateRecord {
|
|
// Chain from derived pointer to base.
|
|
SmallVector<Instruction *, 3> ChainToBase;
|
|
// Original base.
|
|
Value *RootOfChain;
|
|
// Cost of chain.
|
|
InstructionCost Cost;
|
|
};
|
|
using RematCandTy = MapVector<Value *, RematerizlizationCandidateRecord>;
|
|
|
|
} // end anonymous namespace
|
|
|
|
static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
|
|
std::optional<OperandBundleUse> DeoptBundle =
|
|
Call->getOperandBundle(LLVMContext::OB_deopt);
|
|
|
|
if (!DeoptBundle) {
|
|
assert(AllowStatepointWithNoDeoptInfo &&
|
|
"Found non-leaf call without deopt info!");
|
|
return std::nullopt;
|
|
}
|
|
|
|
return DeoptBundle->Inputs;
|
|
}
|
|
|
|
/// Compute the live-in set for every basic block in the function
|
|
static void computeLiveInValues(DominatorTree &DT, Function &F,
|
|
GCPtrLivenessData &Data);
|
|
|
|
/// Given results from the dataflow liveness computation, find the set of live
|
|
/// Values at a particular instruction.
|
|
static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
|
|
StatepointLiveSetTy &out);
|
|
|
|
// TODO: Once we can get to the GCStrategy, this becomes
|
|
// Optional<bool> isGCManagedPointer(const Type *Ty) const override {
|
|
|
|
static bool isGCPointerType(Type *T) {
|
|
if (auto *PT = dyn_cast<PointerType>(T))
|
|
// For the sake of this example GC, we arbitrarily pick addrspace(1) as our
|
|
// GC managed heap. We know that a pointer into this heap needs to be
|
|
// updated and that no other pointer does.
|
|
return PT->getAddressSpace() == 1;
|
|
return false;
|
|
}
|
|
|
|
// Return true if this type is one which a) is a gc pointer or contains a GC
|
|
// pointer and b) is of a type this code expects to encounter as a live value.
|
|
// (The insertion code will assert that a type which matches (a) and not (b)
|
|
// is not encountered.)
|
|
static bool isHandledGCPointerType(Type *T) {
|
|
// We fully support gc pointers
|
|
if (isGCPointerType(T))
|
|
return true;
|
|
// We partially support vectors of gc pointers. The code will assert if it
|
|
// can't handle something.
|
|
if (auto VT = dyn_cast<VectorType>(T))
|
|
if (isGCPointerType(VT->getElementType()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/// Returns true if this type contains a gc pointer whether we know how to
|
|
/// handle that type or not.
|
|
static bool containsGCPtrType(Type *Ty) {
|
|
if (isGCPointerType(Ty))
|
|
return true;
|
|
if (VectorType *VT = dyn_cast<VectorType>(Ty))
|
|
return isGCPointerType(VT->getScalarType());
|
|
if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
|
|
return containsGCPtrType(AT->getElementType());
|
|
if (StructType *ST = dyn_cast<StructType>(Ty))
|
|
return llvm::any_of(ST->elements(), containsGCPtrType);
|
|
return false;
|
|
}
|
|
|
|
// Returns true if this is a type which a) is a gc pointer or contains a GC
|
|
// pointer and b) is of a type which the code doesn't expect (i.e. first class
|
|
// aggregates). Used to trip assertions.
|
|
static bool isUnhandledGCPointerType(Type *Ty) {
|
|
return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
|
|
}
|
|
#endif
|
|
|
|
// Return the name of the value suffixed with the provided value, or if the
|
|
// value didn't have a name, the default value specified.
|
|
static std::string suffixed_name_or(Value *V, StringRef Suffix,
|
|
StringRef DefaultName) {
|
|
return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
|
|
}
|
|
|
|
// Conservatively identifies any definitions which might be live at the
|
|
// given instruction. The analysis is performed immediately before the
|
|
// given instruction. Values defined by that instruction are not considered
|
|
// live. Values used by that instruction are considered live.
|
|
static void analyzeParsePointLiveness(
|
|
DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
|
|
PartiallyConstructedSafepointRecord &Result) {
|
|
StatepointLiveSetTy LiveSet;
|
|
findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);
|
|
|
|
if (PrintLiveSet) {
|
|
dbgs() << "Live Variables:\n";
|
|
for (Value *V : LiveSet)
|
|
dbgs() << " " << V->getName() << " " << *V << "\n";
|
|
}
|
|
if (PrintLiveSetSize) {
|
|
dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n";
|
|
dbgs() << "Number live values: " << LiveSet.size() << "\n";
|
|
}
|
|
Result.LiveSet = LiveSet;
|
|
}
|
|
|
|
/// Returns true if V is a known base.
|
|
static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases);
|
|
|
|
/// Caches the IsKnownBase flag for a value and asserts that it wasn't present
|
|
/// in the cache before.
|
|
static void setKnownBase(Value *V, bool IsKnownBase,
|
|
IsKnownBaseMapTy &KnownBases);
|
|
|
|
static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache,
|
|
IsKnownBaseMapTy &KnownBases);
|
|
|
|
/// Return a base defining value for the 'Index' element of the given vector
|
|
/// instruction 'I'. If Index is null, returns a BDV for the entire vector
|
|
/// 'I'. As an optimization, this method will try to determine when the
|
|
/// element is known to already be a base pointer. If this can be established,
|
|
/// the second value in the returned pair will be true. Note that either a
|
|
/// vector or a pointer typed value can be returned. For the former, the
|
|
/// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
|
|
/// If the later, the return pointer is a BDV (or possibly a base) for the
|
|
/// particular element in 'I'.
|
|
static Value *findBaseDefiningValueOfVector(Value *I, DefiningValueMapTy &Cache,
|
|
IsKnownBaseMapTy &KnownBases) {
|
|
// Each case parallels findBaseDefiningValue below, see that code for
|
|
// detailed motivation.
|
|
|
|
auto Cached = Cache.find(I);
|
|
if (Cached != Cache.end())
|
|
return Cached->second;
|
|
|
|
if (isa<Argument>(I)) {
|
|
// An incoming argument to the function is a base pointer
|
|
Cache[I] = I;
|
|
setKnownBase(I, /* IsKnownBase */true, KnownBases);
|
|
return I;
|
|
}
|
|
|
|
if (isa<Constant>(I)) {
|
|
// Base of constant vector consists only of constant null pointers.
|
|
// For reasoning see similar case inside 'findBaseDefiningValue' function.
|
|
auto *CAZ = ConstantAggregateZero::get(I->getType());
|
|
Cache[I] = CAZ;
|
|
setKnownBase(CAZ, /* IsKnownBase */true, KnownBases);
|
|
return CAZ;
|
|
}
|
|
|
|
if (isa<LoadInst>(I)) {
|
|
Cache[I] = I;
|
|
setKnownBase(I, /* IsKnownBase */true, KnownBases);
|
|
return I;
|
|
}
|
|
|
|
if (isa<InsertElementInst>(I)) {
|
|
// We don't know whether this vector contains entirely base pointers or
|
|
// not. To be conservatively correct, we treat it as a BDV and will
|
|
// duplicate code as needed to construct a parallel vector of bases.
|
|
Cache[I] = I;
|
|
setKnownBase(I, /* IsKnownBase */false, KnownBases);
|
|
return I;
|
|
}
|
|
|
|
if (isa<ShuffleVectorInst>(I)) {
|
|
// We don't know whether this vector contains entirely base pointers or
|
|
// not. To be conservatively correct, we treat it as a BDV and will
|
|
// duplicate code as needed to construct a parallel vector of bases.
|
|
// TODO: There a number of local optimizations which could be applied here
|
|
// for particular sufflevector patterns.
|
|
Cache[I] = I;
|
|
setKnownBase(I, /* IsKnownBase */false, KnownBases);
|
|
return I;
|
|
}
|
|
|
|
// The behavior of getelementptr instructions is the same for vector and
|
|
// non-vector data types.
|
|
if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
|
|
auto *BDV =
|
|
findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases);
|
|
Cache[GEP] = BDV;
|
|
return BDV;
|
|
}
|
|
|
|
// The behavior of freeze instructions is the same for vector and
|
|
// non-vector data types.
|
|
if (auto *Freeze = dyn_cast<FreezeInst>(I)) {
|
|
auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases);
|
|
Cache[Freeze] = BDV;
|
|
return BDV;
|
|
}
|
|
|
|
// If the pointer comes through a bitcast of a vector of pointers to
|
|
// a vector of another type of pointer, then look through the bitcast
|
|
if (auto *BC = dyn_cast<BitCastInst>(I)) {
|
|
auto *BDV = findBaseDefiningValue(BC->getOperand(0), Cache, KnownBases);
|
|
Cache[BC] = BDV;
|
|
return BDV;
|
|
}
|
|
|
|
// We assume that functions in the source language only return base
|
|
// pointers. This should probably be generalized via attributes to support
|
|
// both source language and internal functions.
|
|
if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
|
|
Cache[I] = I;
|
|
setKnownBase(I, /* IsKnownBase */true, KnownBases);
|
|
return I;
|
|
}
|
|
|
|
// A PHI or Select is a base defining value. The outer findBasePointer
|
|
// algorithm is responsible for constructing a base value for this BDV.
|
|
assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
|
|
"unknown vector instruction - no base found for vector element");
|
|
Cache[I] = I;
|
|
setKnownBase(I, /* IsKnownBase */false, KnownBases);
|
|
return I;
|
|
}
|
|
|
|
/// Helper function for findBasePointer - Will return a value which either a)
|
|
/// defines the base pointer for the input, b) blocks the simple search
|
|
/// (i.e. a PHI or Select of two derived pointers), or c) involves a change
|
|
/// from pointer to vector type or back.
|
|
static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache,
|
|
IsKnownBaseMapTy &KnownBases) {
|
|
assert(I->getType()->isPtrOrPtrVectorTy() &&
|
|
"Illegal to ask for the base pointer of a non-pointer type");
|
|
auto Cached = Cache.find(I);
|
|
if (Cached != Cache.end())
|
|
return Cached->second;
|
|
|
|
if (I->getType()->isVectorTy())
|
|
return findBaseDefiningValueOfVector(I, Cache, KnownBases);
|
|
|
|
if (isa<Argument>(I)) {
|
|
// An incoming argument to the function is a base pointer
|
|
// We should have never reached here if this argument isn't an gc value
|
|
Cache[I] = I;
|
|
setKnownBase(I, /* IsKnownBase */true, KnownBases);
|
|
return I;
|
|
}
|
|
|
|
if (isa<Constant>(I)) {
|
|
// We assume that objects with a constant base (e.g. a global) can't move
|
|
// and don't need to be reported to the collector because they are always
|
|
// live. Besides global references, all kinds of constants (e.g. undef,
|
|
// constant expressions, null pointers) can be introduced by the inliner or
|
|
// the optimizer, especially on dynamically dead paths.
|
|
// Here we treat all of them as having single null base. By doing this we
|
|
// trying to avoid problems reporting various conflicts in a form of
|
|
// "phi (const1, const2)" or "phi (const, regular gc ptr)".
|
|
// See constant.ll file for relevant test cases.
|
|
|
|
auto *CPN = ConstantPointerNull::get(cast<PointerType>(I->getType()));
|
|
Cache[I] = CPN;
|
|
setKnownBase(CPN, /* IsKnownBase */true, KnownBases);
|
|
return CPN;
|
|
}
|
|
|
|
// inttoptrs in an integral address space are currently ill-defined. We
|
|
// treat them as defining base pointers here for consistency with the
|
|
// constant rule above and because we don't really have a better semantic
|
|
// to give them. Note that the optimizer is always free to insert undefined
|
|
// behavior on dynamically dead paths as well.
|
|
if (isa<IntToPtrInst>(I)) {
|
|
Cache[I] = I;
|
|
setKnownBase(I, /* IsKnownBase */true, KnownBases);
|
|
return I;
|
|
}
|
|
|
|
if (CastInst *CI = dyn_cast<CastInst>(I)) {
|
|
Value *Def = CI->stripPointerCasts();
|
|
// If stripping pointer casts changes the address space there is an
|
|
// addrspacecast in between.
|
|
assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
|
|
cast<PointerType>(CI->getType())->getAddressSpace() &&
|
|
"unsupported addrspacecast");
|
|
// If we find a cast instruction here, it means we've found a cast which is
|
|
// not simply a pointer cast (i.e. an inttoptr). We don't know how to
|
|
// handle int->ptr conversion.
|
|
assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
|
|
auto *BDV = findBaseDefiningValue(Def, Cache, KnownBases);
|
|
Cache[CI] = BDV;
|
|
return BDV;
|
|
}
|
|
|
|
if (isa<LoadInst>(I)) {
|
|
// The value loaded is an gc base itself
|
|
Cache[I] = I;
|
|
setKnownBase(I, /* IsKnownBase */true, KnownBases);
|
|
return I;
|
|
}
|
|
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
|
|
// The base of this GEP is the base
|
|
auto *BDV =
|
|
findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases);
|
|
Cache[GEP] = BDV;
|
|
return BDV;
|
|
}
|
|
|
|
if (auto *Freeze = dyn_cast<FreezeInst>(I)) {
|
|
auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases);
|
|
Cache[Freeze] = BDV;
|
|
return BDV;
|
|
}
|
|
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
switch (II->getIntrinsicID()) {
|
|
default:
|
|
// fall through to general call handling
|
|
break;
|
|
case Intrinsic::experimental_gc_statepoint:
|
|
llvm_unreachable("statepoints don't produce pointers");
|
|
case Intrinsic::experimental_gc_relocate:
|
|
// Rerunning safepoint insertion after safepoints are already
|
|
// inserted is not supported. It could probably be made to work,
|
|
// but why are you doing this? There's no good reason.
|
|
llvm_unreachable("repeat safepoint insertion is not supported");
|
|
case Intrinsic::gcroot:
|
|
// Currently, this mechanism hasn't been extended to work with gcroot.
|
|
// There's no reason it couldn't be, but I haven't thought about the
|
|
// implications much.
|
|
llvm_unreachable(
|
|
"interaction with the gcroot mechanism is not supported");
|
|
case Intrinsic::experimental_gc_get_pointer_base:
|
|
auto *BDV = findBaseDefiningValue(II->getOperand(0), Cache, KnownBases);
|
|
Cache[II] = BDV;
|
|
return BDV;
|
|
}
|
|
}
|
|
// We assume that functions in the source language only return base
|
|
// pointers. This should probably be generalized via attributes to support
|
|
// both source language and internal functions.
|
|
if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
|
|
Cache[I] = I;
|
|
setKnownBase(I, /* IsKnownBase */true, KnownBases);
|
|
return I;
|
|
}
|
|
|
|
// TODO: I have absolutely no idea how to implement this part yet. It's not
|
|
// necessarily hard, I just haven't really looked at it yet.
|
|
assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
|
|
|
|
if (isa<AtomicCmpXchgInst>(I)) {
|
|
// A CAS is effectively a atomic store and load combined under a
|
|
// predicate. From the perspective of base pointers, we just treat it
|
|
// like a load.
|
|
Cache[I] = I;
|
|
setKnownBase(I, /* IsKnownBase */true, KnownBases);
|
|
return I;
|
|
}
|
|
|
|
assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
|
|
"binary ops which don't apply to pointers");
|
|
|
|
// The aggregate ops. Aggregates can either be in the heap or on the
|
|
// stack, but in either case, this is simply a field load. As a result,
|
|
// this is a defining definition of the base just like a load is.
|
|
if (isa<ExtractValueInst>(I)) {
|
|
Cache[I] = I;
|
|
setKnownBase(I, /* IsKnownBase */true, KnownBases);
|
|
return I;
|
|
}
|
|
|
|
// We should never see an insert vector since that would require we be
|
|
// tracing back a struct value not a pointer value.
|
|
assert(!isa<InsertValueInst>(I) &&
|
|
"Base pointer for a struct is meaningless");
|
|
|
|
// This value might have been generated by findBasePointer() called when
|
|
// substituting gc.get.pointer.base() intrinsic.
|
|
bool IsKnownBase =
|
|
isa<Instruction>(I) && cast<Instruction>(I)->getMetadata("is_base_value");
|
|
setKnownBase(I, /* IsKnownBase */IsKnownBase, KnownBases);
|
|
Cache[I] = I;
|
|
|
|
// An extractelement produces a base result exactly when it's input does.
|
|
// We may need to insert a parallel instruction to extract the appropriate
|
|
// element out of the base vector corresponding to the input. Given this,
|
|
// it's analogous to the phi and select case even though it's not a merge.
|
|
if (isa<ExtractElementInst>(I))
|
|
// Note: There a lot of obvious peephole cases here. This are deliberately
|
|
// handled after the main base pointer inference algorithm to make writing
|
|
// test cases to exercise that code easier.
|
|
return I;
|
|
|
|
// The last two cases here don't return a base pointer. Instead, they
|
|
// return a value which dynamically selects from among several base
|
|
// derived pointers (each with it's own base potentially). It's the job of
|
|
// the caller to resolve these.
|
|
assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
|
|
"missing instruction case in findBaseDefiningValue");
|
|
return I;
|
|
}
|
|
|
|
/// Returns the base defining value for this value.
|
|
static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache,
|
|
IsKnownBaseMapTy &KnownBases) {
|
|
if (Cache.find(I) == Cache.end()) {
|
|
auto *BDV = findBaseDefiningValue(I, Cache, KnownBases);
|
|
Cache[I] = BDV;
|
|
LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
|
|
<< Cache[I]->getName() << ", is known base = "
|
|
<< KnownBases[I] << "\n");
|
|
}
|
|
assert(Cache[I] != nullptr);
|
|
assert(KnownBases.find(Cache[I]) != KnownBases.end() &&
|
|
"Cached value must be present in known bases map");
|
|
return Cache[I];
|
|
}
|
|
|
|
/// Return a base pointer for this value if known. Otherwise, return it's
|
|
/// base defining value.
|
|
static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache,
|
|
IsKnownBaseMapTy &KnownBases) {
|
|
Value *Def = findBaseDefiningValueCached(I, Cache, KnownBases);
|
|
auto Found = Cache.find(Def);
|
|
if (Found != Cache.end()) {
|
|
// Either a base-of relation, or a self reference. Caller must check.
|
|
return Found->second;
|
|
}
|
|
// Only a BDV available
|
|
return Def;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/// This value is a base pointer that is not generated by RS4GC, i.e. it already
|
|
/// exists in the code.
|
|
static bool isOriginalBaseResult(Value *V) {
|
|
// no recursion possible
|
|
return !isa<PHINode>(V) && !isa<SelectInst>(V) &&
|
|
!isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
|
|
!isa<ShuffleVectorInst>(V);
|
|
}
|
|
#endif
|
|
|
|
static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases) {
|
|
auto It = KnownBases.find(V);
|
|
assert(It != KnownBases.end() && "Value not present in the map");
|
|
return It->second;
|
|
}
|
|
|
|
static void setKnownBase(Value *V, bool IsKnownBase,
|
|
IsKnownBaseMapTy &KnownBases) {
|
|
#ifndef NDEBUG
|
|
auto It = KnownBases.find(V);
|
|
if (It != KnownBases.end())
|
|
assert(It->second == IsKnownBase && "Changing already present value");
|
|
#endif
|
|
KnownBases[V] = IsKnownBase;
|
|
}
|
|
|
|
// Returns true if First and Second values are both scalar or both vector.
|
|
static bool areBothVectorOrScalar(Value *First, Value *Second) {
|
|
return isa<VectorType>(First->getType()) ==
|
|
isa<VectorType>(Second->getType());
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Models the state of a single base defining value in the findBasePointer
|
|
/// algorithm for determining where a new instruction is needed to propagate
|
|
/// the base of this BDV.
|
|
class BDVState {
|
|
public:
|
|
enum StatusTy {
|
|
// Starting state of lattice
|
|
Unknown,
|
|
// Some specific base value -- does *not* mean that instruction
|
|
// propagates the base of the object
|
|
// ex: gep %arg, 16 -> %arg is the base value
|
|
Base,
|
|
// Need to insert a node to represent a merge.
|
|
Conflict
|
|
};
|
|
|
|
BDVState() {
|
|
llvm_unreachable("missing state in map");
|
|
}
|
|
|
|
explicit BDVState(Value *OriginalValue)
|
|
: OriginalValue(OriginalValue) {}
|
|
explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr)
|
|
: OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) {
|
|
assert(Status != Base || BaseValue);
|
|
}
|
|
|
|
StatusTy getStatus() const { return Status; }
|
|
Value *getOriginalValue() const { return OriginalValue; }
|
|
Value *getBaseValue() const { return BaseValue; }
|
|
|
|
bool isBase() const { return getStatus() == Base; }
|
|
bool isUnknown() const { return getStatus() == Unknown; }
|
|
bool isConflict() const { return getStatus() == Conflict; }
|
|
|
|
// Values of type BDVState form a lattice, and this function implements the
|
|
// meet
|
|
// operation.
|
|
void meet(const BDVState &Other) {
|
|
auto markConflict = [&]() {
|
|
Status = BDVState::Conflict;
|
|
BaseValue = nullptr;
|
|
};
|
|
// Conflict is a final state.
|
|
if (isConflict())
|
|
return;
|
|
// if we are not known - just take other state.
|
|
if (isUnknown()) {
|
|
Status = Other.getStatus();
|
|
BaseValue = Other.getBaseValue();
|
|
return;
|
|
}
|
|
// We are base.
|
|
assert(isBase() && "Unknown state");
|
|
// If other is unknown - just keep our state.
|
|
if (Other.isUnknown())
|
|
return;
|
|
// If other is conflict - it is a final state.
|
|
if (Other.isConflict())
|
|
return markConflict();
|
|
// Other is base as well.
|
|
assert(Other.isBase() && "Unknown state");
|
|
// If bases are different - Conflict.
|
|
if (getBaseValue() != Other.getBaseValue())
|
|
return markConflict();
|
|
// We are identical, do nothing.
|
|
}
|
|
|
|
bool operator==(const BDVState &Other) const {
|
|
return OriginalValue == Other.OriginalValue && BaseValue == Other.BaseValue &&
|
|
Status == Other.Status;
|
|
}
|
|
|
|
bool operator!=(const BDVState &other) const { return !(*this == other); }
|
|
|
|
LLVM_DUMP_METHOD
|
|
void dump() const {
|
|
print(dbgs());
|
|
dbgs() << '\n';
|
|
}
|
|
|
|
void print(raw_ostream &OS) const {
|
|
switch (getStatus()) {
|
|
case Unknown:
|
|
OS << "U";
|
|
break;
|
|
case Base:
|
|
OS << "B";
|
|
break;
|
|
case Conflict:
|
|
OS << "C";
|
|
break;
|
|
}
|
|
OS << " (base " << getBaseValue() << " - "
|
|
<< (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")"
|
|
<< " for " << OriginalValue->getName() << ":";
|
|
}
|
|
|
|
private:
|
|
AssertingVH<Value> OriginalValue; // instruction this state corresponds to
|
|
StatusTy Status = Unknown;
|
|
AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base.
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
#ifndef NDEBUG
|
|
static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
|
|
State.print(OS);
|
|
return OS;
|
|
}
|
|
#endif
|
|
|
|
/// For a given value or instruction, figure out what base ptr its derived from.
|
|
/// For gc objects, this is simply itself. On success, returns a value which is
|
|
/// the base pointer. (This is reliable and can be used for relocation.) On
|
|
/// failure, returns nullptr.
|
|
static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache,
|
|
IsKnownBaseMapTy &KnownBases) {
|
|
Value *Def = findBaseOrBDV(I, Cache, KnownBases);
|
|
|
|
if (isKnownBase(Def, KnownBases) && areBothVectorOrScalar(Def, I))
|
|
return Def;
|
|
|
|
// Here's the rough algorithm:
|
|
// - For every SSA value, construct a mapping to either an actual base
|
|
// pointer or a PHI which obscures the base pointer.
|
|
// - Construct a mapping from PHI to unknown TOP state. Use an
|
|
// optimistic algorithm to propagate base pointer information. Lattice
|
|
// looks like:
|
|
// UNKNOWN
|
|
// b1 b2 b3 b4
|
|
// CONFLICT
|
|
// When algorithm terminates, all PHIs will either have a single concrete
|
|
// base or be in a conflict state.
|
|
// - For every conflict, insert a dummy PHI node without arguments. Add
|
|
// these to the base[Instruction] = BasePtr mapping. For every
|
|
// non-conflict, add the actual base.
|
|
// - For every conflict, add arguments for the base[a] of each input
|
|
// arguments.
|
|
//
|
|
// Note: A simpler form of this would be to add the conflict form of all
|
|
// PHIs without running the optimistic algorithm. This would be
|
|
// analogous to pessimistic data flow and would likely lead to an
|
|
// overall worse solution.
|
|
|
|
#ifndef NDEBUG
|
|
auto isExpectedBDVType = [](Value *BDV) {
|
|
return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
|
|
isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
|
|
isa<ShuffleVectorInst>(BDV);
|
|
};
|
|
#endif
|
|
|
|
// Once populated, will contain a mapping from each potentially non-base BDV
|
|
// to a lattice value (described above) which corresponds to that BDV.
|
|
// We use the order of insertion (DFS over the def/use graph) to provide a
|
|
// stable deterministic ordering for visiting DenseMaps (which are unordered)
|
|
// below. This is important for deterministic compilation.
|
|
MapVector<Value *, BDVState> States;
|
|
|
|
#ifndef NDEBUG
|
|
auto VerifyStates = [&]() {
|
|
for (auto &Entry : States) {
|
|
assert(Entry.first == Entry.second.getOriginalValue());
|
|
}
|
|
};
|
|
#endif
|
|
|
|
auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) {
|
|
if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
|
|
for (Value *InVal : PN->incoming_values())
|
|
F(InVal);
|
|
} else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
|
|
F(SI->getTrueValue());
|
|
F(SI->getFalseValue());
|
|
} else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
|
|
F(EE->getVectorOperand());
|
|
} else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) {
|
|
F(IE->getOperand(0));
|
|
F(IE->getOperand(1));
|
|
} else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) {
|
|
// For a canonical broadcast, ignore the undef argument
|
|
// (without this, we insert a parallel base shuffle for every broadcast)
|
|
F(SV->getOperand(0));
|
|
if (!SV->isZeroEltSplat())
|
|
F(SV->getOperand(1));
|
|
} else {
|
|
llvm_unreachable("unexpected BDV type");
|
|
}
|
|
};
|
|
|
|
|
|
// Recursively fill in all base defining values reachable from the initial
|
|
// one for which we don't already know a definite base value for
|
|
/* scope */ {
|
|
SmallVector<Value*, 16> Worklist;
|
|
Worklist.push_back(Def);
|
|
States.insert({Def, BDVState(Def)});
|
|
while (!Worklist.empty()) {
|
|
Value *Current = Worklist.pop_back_val();
|
|
assert(!isOriginalBaseResult(Current) && "why did it get added?");
|
|
|
|
auto visitIncomingValue = [&](Value *InVal) {
|
|
Value *Base = findBaseOrBDV(InVal, Cache, KnownBases);
|
|
if (isKnownBase(Base, KnownBases) && areBothVectorOrScalar(Base, InVal))
|
|
// Known bases won't need new instructions introduced and can be
|
|
// ignored safely. However, this can only be done when InVal and Base
|
|
// are both scalar or both vector. Otherwise, we need to find a
|
|
// correct BDV for InVal, by creating an entry in the lattice
|
|
// (States).
|
|
return;
|
|
assert(isExpectedBDVType(Base) && "the only non-base values "
|
|
"we see should be base defining values");
|
|
if (States.insert(std::make_pair(Base, BDVState(Base))).second)
|
|
Worklist.push_back(Base);
|
|
};
|
|
|
|
visitBDVOperands(Current, visitIncomingValue);
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
VerifyStates();
|
|
LLVM_DEBUG(dbgs() << "States after initialization:\n");
|
|
for (const auto &Pair : States) {
|
|
LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
|
|
}
|
|
#endif
|
|
|
|
// Iterate forward through the value graph pruning any node from the state
|
|
// list where all of the inputs are base pointers. The purpose of this is to
|
|
// reuse existing values when the derived pointer we were asked to materialize
|
|
// a base pointer for happens to be a base pointer itself. (Or a sub-graph
|
|
// feeding it does.)
|
|
SmallVector<Value *> ToRemove;
|
|
do {
|
|
ToRemove.clear();
|
|
for (auto Pair : States) {
|
|
Value *BDV = Pair.first;
|
|
auto canPruneInput = [&](Value *V) {
|
|
// If the input of the BDV is the BDV itself we can prune it. This is
|
|
// only possible if the BDV is a PHI node.
|
|
if (V->stripPointerCasts() == BDV)
|
|
return true;
|
|
Value *VBDV = findBaseOrBDV(V, Cache, KnownBases);
|
|
if (V->stripPointerCasts() != VBDV)
|
|
return false;
|
|
// The assumption is that anything not in the state list is
|
|
// propagates a base pointer.
|
|
return States.count(VBDV) == 0;
|
|
};
|
|
|
|
bool CanPrune = true;
|
|
visitBDVOperands(BDV, [&](Value *Op) {
|
|
CanPrune = CanPrune && canPruneInput(Op);
|
|
});
|
|
if (CanPrune)
|
|
ToRemove.push_back(BDV);
|
|
}
|
|
for (Value *V : ToRemove) {
|
|
States.erase(V);
|
|
// Cache the fact V is it's own base for later usage.
|
|
Cache[V] = V;
|
|
}
|
|
} while (!ToRemove.empty());
|
|
|
|
// Did we manage to prove that Def itself must be a base pointer?
|
|
if (!States.count(Def))
|
|
return Def;
|
|
|
|
// Return a phi state for a base defining value. We'll generate a new
|
|
// base state for known bases and expect to find a cached state otherwise.
|
|
auto GetStateForBDV = [&](Value *BaseValue, Value *Input) {
|
|
auto I = States.find(BaseValue);
|
|
if (I != States.end())
|
|
return I->second;
|
|
assert(areBothVectorOrScalar(BaseValue, Input));
|
|
return BDVState(BaseValue, BDVState::Base, BaseValue);
|
|
};
|
|
|
|
bool Progress = true;
|
|
while (Progress) {
|
|
#ifndef NDEBUG
|
|
const size_t OldSize = States.size();
|
|
#endif
|
|
Progress = false;
|
|
// We're only changing values in this loop, thus safe to keep iterators.
|
|
// Since this is computing a fixed point, the order of visit does not
|
|
// effect the result. TODO: We could use a worklist here and make this run
|
|
// much faster.
|
|
for (auto Pair : States) {
|
|
Value *BDV = Pair.first;
|
|
// Only values that do not have known bases or those that have differing
|
|
// type (scalar versus vector) from a possible known base should be in the
|
|
// lattice.
|
|
assert((!isKnownBase(BDV, KnownBases) ||
|
|
!areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) &&
|
|
"why did it get added?");
|
|
|
|
BDVState NewState(BDV);
|
|
visitBDVOperands(BDV, [&](Value *Op) {
|
|
Value *BDV = findBaseOrBDV(Op, Cache, KnownBases);
|
|
auto OpState = GetStateForBDV(BDV, Op);
|
|
NewState.meet(OpState);
|
|
});
|
|
|
|
BDVState OldState = States[BDV];
|
|
if (OldState != NewState) {
|
|
Progress = true;
|
|
States[BDV] = NewState;
|
|
}
|
|
}
|
|
|
|
assert(OldSize == States.size() &&
|
|
"fixed point shouldn't be adding any new nodes to state");
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
VerifyStates();
|
|
LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
|
|
for (const auto &Pair : States) {
|
|
LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
|
|
}
|
|
#endif
|
|
|
|
// Handle all instructions that have a vector BDV, but the instruction itself
|
|
// is of scalar type.
|
|
for (auto Pair : States) {
|
|
Instruction *I = cast<Instruction>(Pair.first);
|
|
BDVState State = Pair.second;
|
|
auto *BaseValue = State.getBaseValue();
|
|
// Only values that do not have known bases or those that have differing
|
|
// type (scalar versus vector) from a possible known base should be in the
|
|
// lattice.
|
|
assert(
|
|
(!isKnownBase(I, KnownBases) || !areBothVectorOrScalar(I, BaseValue)) &&
|
|
"why did it get added?");
|
|
assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
|
|
|
|
if (!State.isBase() || !isa<VectorType>(BaseValue->getType()))
|
|
continue;
|
|
// extractelement instructions are a bit special in that we may need to
|
|
// insert an extract even when we know an exact base for the instruction.
|
|
// The problem is that we need to convert from a vector base to a scalar
|
|
// base for the particular indice we're interested in.
|
|
if (isa<ExtractElementInst>(I)) {
|
|
auto *EE = cast<ExtractElementInst>(I);
|
|
// TODO: In many cases, the new instruction is just EE itself. We should
|
|
// exploit this, but can't do it here since it would break the invariant
|
|
// about the BDV not being known to be a base.
|
|
auto *BaseInst = ExtractElementInst::Create(
|
|
State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
|
|
BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
|
|
States[I] = BDVState(I, BDVState::Base, BaseInst);
|
|
setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases);
|
|
} else if (!isa<VectorType>(I->getType())) {
|
|
// We need to handle cases that have a vector base but the instruction is
|
|
// a scalar type (these could be phis or selects or any instruction that
|
|
// are of scalar type, but the base can be a vector type). We
|
|
// conservatively set this as conflict. Setting the base value for these
|
|
// conflicts is handled in the next loop which traverses States.
|
|
States[I] = BDVState(I, BDVState::Conflict);
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
VerifyStates();
|
|
#endif
|
|
|
|
// Insert Phis for all conflicts
|
|
// TODO: adjust naming patterns to avoid this order of iteration dependency
|
|
for (auto Pair : States) {
|
|
Instruction *I = cast<Instruction>(Pair.first);
|
|
BDVState State = Pair.second;
|
|
// Only values that do not have known bases or those that have differing
|
|
// type (scalar versus vector) from a possible known base should be in the
|
|
// lattice.
|
|
assert((!isKnownBase(I, KnownBases) ||
|
|
!areBothVectorOrScalar(I, State.getBaseValue())) &&
|
|
"why did it get added?");
|
|
assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
|
|
|
|
// Since we're joining a vector and scalar base, they can never be the
|
|
// same. As a result, we should always see insert element having reached
|
|
// the conflict state.
|
|
assert(!isa<InsertElementInst>(I) || State.isConflict());
|
|
|
|
if (!State.isConflict())
|
|
continue;
|
|
|
|
auto getMangledName = [](Instruction *I) -> std::string {
|
|
if (isa<PHINode>(I)) {
|
|
return suffixed_name_or(I, ".base", "base_phi");
|
|
} else if (isa<SelectInst>(I)) {
|
|
return suffixed_name_or(I, ".base", "base_select");
|
|
} else if (isa<ExtractElementInst>(I)) {
|
|
return suffixed_name_or(I, ".base", "base_ee");
|
|
} else if (isa<InsertElementInst>(I)) {
|
|
return suffixed_name_or(I, ".base", "base_ie");
|
|
} else {
|
|
return suffixed_name_or(I, ".base", "base_sv");
|
|
}
|
|
};
|
|
|
|
Instruction *BaseInst = I->clone();
|
|
BaseInst->insertBefore(I);
|
|
BaseInst->setName(getMangledName(I));
|
|
// Add metadata marking this as a base value
|
|
BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
|
|
States[I] = BDVState(I, BDVState::Conflict, BaseInst);
|
|
setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
VerifyStates();
|
|
#endif
|
|
|
|
// Returns a instruction which produces the base pointer for a given
|
|
// instruction. The instruction is assumed to be an input to one of the BDVs
|
|
// seen in the inference algorithm above. As such, we must either already
|
|
// know it's base defining value is a base, or have inserted a new
|
|
// instruction to propagate the base of it's BDV and have entered that newly
|
|
// introduced instruction into the state table. In either case, we are
|
|
// assured to be able to determine an instruction which produces it's base
|
|
// pointer.
|
|
auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
|
|
Value *BDV = findBaseOrBDV(Input, Cache, KnownBases);
|
|
Value *Base = nullptr;
|
|
if (!States.count(BDV)) {
|
|
assert(areBothVectorOrScalar(BDV, Input));
|
|
Base = BDV;
|
|
} else {
|
|
// Either conflict or base.
|
|
assert(States.count(BDV));
|
|
Base = States[BDV].getBaseValue();
|
|
}
|
|
assert(Base && "Can't be null");
|
|
// The cast is needed since base traversal may strip away bitcasts
|
|
if (Base->getType() != Input->getType() && InsertPt)
|
|
Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
|
|
return Base;
|
|
};
|
|
|
|
// Fixup all the inputs of the new PHIs. Visit order needs to be
|
|
// deterministic and predictable because we're naming newly created
|
|
// instructions.
|
|
for (auto Pair : States) {
|
|
Instruction *BDV = cast<Instruction>(Pair.first);
|
|
BDVState State = Pair.second;
|
|
|
|
// Only values that do not have known bases or those that have differing
|
|
// type (scalar versus vector) from a possible known base should be in the
|
|
// lattice.
|
|
assert((!isKnownBase(BDV, KnownBases) ||
|
|
!areBothVectorOrScalar(BDV, State.getBaseValue())) &&
|
|
"why did it get added?");
|
|
assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
|
|
if (!State.isConflict())
|
|
continue;
|
|
|
|
if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
|
|
PHINode *PN = cast<PHINode>(BDV);
|
|
const unsigned NumPHIValues = PN->getNumIncomingValues();
|
|
|
|
// The IR verifier requires phi nodes with multiple entries from the
|
|
// same basic block to have the same incoming value for each of those
|
|
// entries. Since we're inserting bitcasts in the loop, make sure we
|
|
// do so at least once per incoming block.
|
|
DenseMap<BasicBlock *, Value*> BlockToValue;
|
|
for (unsigned i = 0; i < NumPHIValues; i++) {
|
|
Value *InVal = PN->getIncomingValue(i);
|
|
BasicBlock *InBB = PN->getIncomingBlock(i);
|
|
if (!BlockToValue.count(InBB))
|
|
BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator());
|
|
else {
|
|
#ifndef NDEBUG
|
|
Value *OldBase = BlockToValue[InBB];
|
|
Value *Base = getBaseForInput(InVal, nullptr);
|
|
|
|
// We can't use `stripPointerCasts` instead of this function because
|
|
// `stripPointerCasts` doesn't handle vectors of pointers.
|
|
auto StripBitCasts = [](Value *V) -> Value * {
|
|
while (auto *BC = dyn_cast<BitCastInst>(V))
|
|
V = BC->getOperand(0);
|
|
return V;
|
|
};
|
|
// In essence this assert states: the only way two values
|
|
// incoming from the same basic block may be different is by
|
|
// being different bitcasts of the same value. A cleanup
|
|
// that remains TODO is changing findBaseOrBDV to return an
|
|
// llvm::Value of the correct type (and still remain pure).
|
|
// This will remove the need to add bitcasts.
|
|
assert(StripBitCasts(Base) == StripBitCasts(OldBase) &&
|
|
"findBaseOrBDV should be pure!");
|
|
#endif
|
|
}
|
|
Value *Base = BlockToValue[InBB];
|
|
BasePHI->setIncomingValue(i, Base);
|
|
}
|
|
} else if (SelectInst *BaseSI =
|
|
dyn_cast<SelectInst>(State.getBaseValue())) {
|
|
SelectInst *SI = cast<SelectInst>(BDV);
|
|
|
|
// Find the instruction which produces the base for each input.
|
|
// We may need to insert a bitcast.
|
|
BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
|
|
BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
|
|
} else if (auto *BaseEE =
|
|
dyn_cast<ExtractElementInst>(State.getBaseValue())) {
|
|
Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
|
|
// Find the instruction which produces the base for each input. We may
|
|
// need to insert a bitcast.
|
|
BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
|
|
} else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
|
|
auto *BdvIE = cast<InsertElementInst>(BDV);
|
|
auto UpdateOperand = [&](int OperandIdx) {
|
|
Value *InVal = BdvIE->getOperand(OperandIdx);
|
|
Value *Base = getBaseForInput(InVal, BaseIE);
|
|
BaseIE->setOperand(OperandIdx, Base);
|
|
};
|
|
UpdateOperand(0); // vector operand
|
|
UpdateOperand(1); // scalar operand
|
|
} else {
|
|
auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
|
|
auto *BdvSV = cast<ShuffleVectorInst>(BDV);
|
|
auto UpdateOperand = [&](int OperandIdx) {
|
|
Value *InVal = BdvSV->getOperand(OperandIdx);
|
|
Value *Base = getBaseForInput(InVal, BaseSV);
|
|
BaseSV->setOperand(OperandIdx, Base);
|
|
};
|
|
UpdateOperand(0); // vector operand
|
|
if (!BdvSV->isZeroEltSplat())
|
|
UpdateOperand(1); // vector operand
|
|
else {
|
|
// Never read, so just use undef
|
|
Value *InVal = BdvSV->getOperand(1);
|
|
BaseSV->setOperand(1, UndefValue::get(InVal->getType()));
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
VerifyStates();
|
|
#endif
|
|
|
|
// Cache all of our results so we can cheaply reuse them
|
|
// NOTE: This is actually two caches: one of the base defining value
|
|
// relation and one of the base pointer relation! FIXME
|
|
for (auto Pair : States) {
|
|
auto *BDV = Pair.first;
|
|
Value *Base = Pair.second.getBaseValue();
|
|
assert(BDV && Base);
|
|
// Only values that do not have known bases or those that have differing
|
|
// type (scalar versus vector) from a possible known base should be in the
|
|
// lattice.
|
|
assert(
|
|
(!isKnownBase(BDV, KnownBases) || !areBothVectorOrScalar(BDV, Base)) &&
|
|
"why did it get added?");
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "Updating base value cache"
|
|
<< " for: " << BDV->getName() << " from: "
|
|
<< (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
|
|
<< " to: " << Base->getName() << "\n");
|
|
|
|
Cache[BDV] = Base;
|
|
}
|
|
assert(Cache.count(Def));
|
|
return Cache[Def];
|
|
}
|
|
|
|
// For a set of live pointers (base and/or derived), identify the base
|
|
// pointer of the object which they are derived from. This routine will
|
|
// mutate the IR graph as needed to make the 'base' pointer live at the
|
|
// definition site of 'derived'. This ensures that any use of 'derived' can
|
|
// also use 'base'. This may involve the insertion of a number of
|
|
// additional PHI nodes.
|
|
//
|
|
// preconditions: live is a set of pointer type Values
|
|
//
|
|
// side effects: may insert PHI nodes into the existing CFG, will preserve
|
|
// CFG, will not remove or mutate any existing nodes
|
|
//
|
|
// post condition: PointerToBase contains one (derived, base) pair for every
|
|
// pointer in live. Note that derived can be equal to base if the original
|
|
// pointer was a base pointer.
|
|
static void findBasePointers(const StatepointLiveSetTy &live,
|
|
PointerToBaseTy &PointerToBase, DominatorTree *DT,
|
|
DefiningValueMapTy &DVCache,
|
|
IsKnownBaseMapTy &KnownBases) {
|
|
for (Value *ptr : live) {
|
|
Value *base = findBasePointer(ptr, DVCache, KnownBases);
|
|
assert(base && "failed to find base pointer");
|
|
PointerToBase[ptr] = base;
|
|
assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
|
|
DT->dominates(cast<Instruction>(base)->getParent(),
|
|
cast<Instruction>(ptr)->getParent())) &&
|
|
"The base we found better dominate the derived pointer");
|
|
}
|
|
}
|
|
|
|
/// Find the required based pointers (and adjust the live set) for the given
|
|
/// parse point.
|
|
static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
|
|
CallBase *Call,
|
|
PartiallyConstructedSafepointRecord &result,
|
|
PointerToBaseTy &PointerToBase,
|
|
IsKnownBaseMapTy &KnownBases) {
|
|
StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet;
|
|
// We assume that all pointers passed to deopt are base pointers; as an
|
|
// optimization, we can use this to avoid seperately materializing the base
|
|
// pointer graph. This is only relevant since we're very conservative about
|
|
// generating new conflict nodes during base pointer insertion. If we were
|
|
// smarter there, this would be irrelevant.
|
|
if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt))
|
|
for (Value *V : Opt->Inputs) {
|
|
if (!PotentiallyDerivedPointers.count(V))
|
|
continue;
|
|
PotentiallyDerivedPointers.remove(V);
|
|
PointerToBase[V] = V;
|
|
}
|
|
findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache,
|
|
KnownBases);
|
|
}
|
|
|
|
/// Given an updated version of the dataflow liveness results, update the
|
|
/// liveset and base pointer maps for the call site CS.
|
|
static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
|
|
CallBase *Call,
|
|
PartiallyConstructedSafepointRecord &result,
|
|
PointerToBaseTy &PointerToBase);
|
|
|
|
static void recomputeLiveInValues(
|
|
Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
|
|
MutableArrayRef<struct PartiallyConstructedSafepointRecord> records,
|
|
PointerToBaseTy &PointerToBase) {
|
|
// TODO-PERF: reuse the original liveness, then simply run the dataflow
|
|
// again. The old values are still live and will help it stabilize quickly.
|
|
GCPtrLivenessData RevisedLivenessData;
|
|
computeLiveInValues(DT, F, RevisedLivenessData);
|
|
for (size_t i = 0; i < records.size(); i++) {
|
|
struct PartiallyConstructedSafepointRecord &info = records[i];
|
|
recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info,
|
|
PointerToBase);
|
|
}
|
|
}
|
|
|
|
// When inserting gc.relocate and gc.result calls, we need to ensure there are
|
|
// no uses of the original value / return value between the gc.statepoint and
|
|
// the gc.relocate / gc.result call. One case which can arise is a phi node
|
|
// starting one of the successor blocks. We also need to be able to insert the
|
|
// gc.relocates only on the path which goes through the statepoint. We might
|
|
// need to split an edge to make this possible.
|
|
static BasicBlock *
|
|
normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
|
|
DominatorTree &DT) {
|
|
BasicBlock *Ret = BB;
|
|
if (!BB->getUniquePredecessor())
|
|
Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
|
|
|
|
// Now that 'Ret' has unique predecessor we can safely remove all phi nodes
|
|
// from it
|
|
FoldSingleEntryPHINodes(Ret);
|
|
assert(!isa<PHINode>(Ret->begin()) &&
|
|
"All PHI nodes should have been removed!");
|
|
|
|
// At this point, we can safely insert a gc.relocate or gc.result as the first
|
|
// instruction in Ret if needed.
|
|
return Ret;
|
|
}
|
|
|
|
// List of all function attributes which must be stripped when lowering from
|
|
// abstract machine model to physical machine model. Essentially, these are
|
|
// all the effects a safepoint might have which we ignored in the abstract
|
|
// machine model for purposes of optimization. We have to strip these on
|
|
// both function declarations and call sites.
|
|
static constexpr Attribute::AttrKind FnAttrsToStrip[] =
|
|
{Attribute::Memory, Attribute::NoSync, Attribute::NoFree};
|
|
|
|
// Create new attribute set containing only attributes which can be transferred
|
|
// from original call to the safepoint.
|
|
static AttributeList legalizeCallAttributes(LLVMContext &Ctx,
|
|
AttributeList OrigAL,
|
|
AttributeList StatepointAL) {
|
|
if (OrigAL.isEmpty())
|
|
return StatepointAL;
|
|
|
|
// Remove the readonly, readnone, and statepoint function attributes.
|
|
AttrBuilder FnAttrs(Ctx, OrigAL.getFnAttrs());
|
|
for (auto Attr : FnAttrsToStrip)
|
|
FnAttrs.removeAttribute(Attr);
|
|
|
|
for (Attribute A : OrigAL.getFnAttrs()) {
|
|
if (isStatepointDirectiveAttr(A))
|
|
FnAttrs.removeAttribute(A);
|
|
}
|
|
|
|
// Just skip parameter and return attributes for now
|
|
return StatepointAL.addFnAttributes(Ctx, FnAttrs);
|
|
}
|
|
|
|
/// Helper function to place all gc relocates necessary for the given
|
|
/// statepoint.
|
|
/// Inputs:
|
|
/// liveVariables - list of variables to be relocated.
|
|
/// basePtrs - base pointers.
|
|
/// statepointToken - statepoint instruction to which relocates should be
|
|
/// bound.
|
|
/// Builder - Llvm IR builder to be used to construct new calls.
|
|
static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
|
|
ArrayRef<Value *> BasePtrs,
|
|
Instruction *StatepointToken,
|
|
IRBuilder<> &Builder) {
|
|
if (LiveVariables.empty())
|
|
return;
|
|
|
|
auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
|
|
auto ValIt = llvm::find(LiveVec, Val);
|
|
assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
|
|
size_t Index = std::distance(LiveVec.begin(), ValIt);
|
|
assert(Index < LiveVec.size() && "Bug in std::find?");
|
|
return Index;
|
|
};
|
|
Module *M = StatepointToken->getModule();
|
|
|
|
// All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
|
|
// element type is i8 addrspace(1)*). We originally generated unique
|
|
// declarations for each pointer type, but this proved problematic because
|
|
// the intrinsic mangling code is incomplete and fragile. Since we're moving
|
|
// towards a single unified pointer type anyways, we can just cast everything
|
|
// to an i8* of the right address space. A bitcast is added later to convert
|
|
// gc_relocate to the actual value's type.
|
|
auto getGCRelocateDecl = [&] (Type *Ty) {
|
|
assert(isHandledGCPointerType(Ty));
|
|
auto AS = Ty->getScalarType()->getPointerAddressSpace();
|
|
Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
|
|
if (auto *VT = dyn_cast<VectorType>(Ty))
|
|
NewTy = FixedVectorType::get(NewTy,
|
|
cast<FixedVectorType>(VT)->getNumElements());
|
|
return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
|
|
{NewTy});
|
|
};
|
|
|
|
// Lazily populated map from input types to the canonicalized form mentioned
|
|
// in the comment above. This should probably be cached somewhere more
|
|
// broadly.
|
|
DenseMap<Type *, Function *> TypeToDeclMap;
|
|
|
|
for (unsigned i = 0; i < LiveVariables.size(); i++) {
|
|
// Generate the gc.relocate call and save the result
|
|
Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i]));
|
|
Value *LiveIdx = Builder.getInt32(i);
|
|
|
|
Type *Ty = LiveVariables[i]->getType();
|
|
if (!TypeToDeclMap.count(Ty))
|
|
TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
|
|
Function *GCRelocateDecl = TypeToDeclMap[Ty];
|
|
|
|
// only specify a debug name if we can give a useful one
|
|
CallInst *Reloc = Builder.CreateCall(
|
|
GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
|
|
suffixed_name_or(LiveVariables[i], ".relocated", ""));
|
|
// Trick CodeGen into thinking there are lots of free registers at this
|
|
// fake call.
|
|
Reloc->setCallingConv(CallingConv::Cold);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// This struct is used to defer RAUWs and `eraseFromParent` s. Using this
|
|
/// avoids having to worry about keeping around dangling pointers to Values.
|
|
class DeferredReplacement {
|
|
AssertingVH<Instruction> Old;
|
|
AssertingVH<Instruction> New;
|
|
bool IsDeoptimize = false;
|
|
|
|
DeferredReplacement() = default;
|
|
|
|
public:
|
|
static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
|
|
assert(Old != New && Old && New &&
|
|
"Cannot RAUW equal values or to / from null!");
|
|
|
|
DeferredReplacement D;
|
|
D.Old = Old;
|
|
D.New = New;
|
|
return D;
|
|
}
|
|
|
|
static DeferredReplacement createDelete(Instruction *ToErase) {
|
|
DeferredReplacement D;
|
|
D.Old = ToErase;
|
|
return D;
|
|
}
|
|
|
|
static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
|
|
#ifndef NDEBUG
|
|
auto *F = cast<CallInst>(Old)->getCalledFunction();
|
|
assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
|
|
"Only way to construct a deoptimize deferred replacement");
|
|
#endif
|
|
DeferredReplacement D;
|
|
D.Old = Old;
|
|
D.IsDeoptimize = true;
|
|
return D;
|
|
}
|
|
|
|
/// Does the task represented by this instance.
|
|
void doReplacement() {
|
|
Instruction *OldI = Old;
|
|
Instruction *NewI = New;
|
|
|
|
assert(OldI != NewI && "Disallowed at construction?!");
|
|
assert((!IsDeoptimize || !New) &&
|
|
"Deoptimize intrinsics are not replaced!");
|
|
|
|
Old = nullptr;
|
|
New = nullptr;
|
|
|
|
if (NewI)
|
|
OldI->replaceAllUsesWith(NewI);
|
|
|
|
if (IsDeoptimize) {
|
|
// Note: we've inserted instructions, so the call to llvm.deoptimize may
|
|
// not necessarily be followed by the matching return.
|
|
auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
|
|
new UnreachableInst(RI->getContext(), RI);
|
|
RI->eraseFromParent();
|
|
}
|
|
|
|
OldI->eraseFromParent();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
static StringRef getDeoptLowering(CallBase *Call) {
|
|
const char *DeoptLowering = "deopt-lowering";
|
|
if (Call->hasFnAttr(DeoptLowering)) {
|
|
// FIXME: Calls have a *really* confusing interface around attributes
|
|
// with values.
|
|
const AttributeList &CSAS = Call->getAttributes();
|
|
if (CSAS.hasFnAttr(DeoptLowering))
|
|
return CSAS.getFnAttr(DeoptLowering).getValueAsString();
|
|
Function *F = Call->getCalledFunction();
|
|
assert(F && F->hasFnAttribute(DeoptLowering));
|
|
return F->getFnAttribute(DeoptLowering).getValueAsString();
|
|
}
|
|
return "live-through";
|
|
}
|
|
|
|
static void
|
|
makeStatepointExplicitImpl(CallBase *Call, /* to replace */
|
|
const SmallVectorImpl<Value *> &BasePtrs,
|
|
const SmallVectorImpl<Value *> &LiveVariables,
|
|
PartiallyConstructedSafepointRecord &Result,
|
|
std::vector<DeferredReplacement> &Replacements,
|
|
const PointerToBaseTy &PointerToBase) {
|
|
assert(BasePtrs.size() == LiveVariables.size());
|
|
|
|
// Then go ahead and use the builder do actually do the inserts. We insert
|
|
// immediately before the previous instruction under the assumption that all
|
|
// arguments will be available here. We can't insert afterwards since we may
|
|
// be replacing a terminator.
|
|
IRBuilder<> Builder(Call);
|
|
|
|
ArrayRef<Value *> GCArgs(LiveVariables);
|
|
uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
|
|
uint32_t NumPatchBytes = 0;
|
|
uint32_t Flags = uint32_t(StatepointFlags::None);
|
|
|
|
SmallVector<Value *, 8> CallArgs(Call->args());
|
|
std::optional<ArrayRef<Use>> DeoptArgs;
|
|
if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt))
|
|
DeoptArgs = Bundle->Inputs;
|
|
std::optional<ArrayRef<Use>> TransitionArgs;
|
|
if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
|
|
TransitionArgs = Bundle->Inputs;
|
|
// TODO: This flag no longer serves a purpose and can be removed later
|
|
Flags |= uint32_t(StatepointFlags::GCTransition);
|
|
}
|
|
|
|
// Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
|
|
// with a return value, we lower then as never returning calls to
|
|
// __llvm_deoptimize that are followed by unreachable to get better codegen.
|
|
bool IsDeoptimize = false;
|
|
|
|
StatepointDirectives SD =
|
|
parseStatepointDirectivesFromAttrs(Call->getAttributes());
|
|
if (SD.NumPatchBytes)
|
|
NumPatchBytes = *SD.NumPatchBytes;
|
|
if (SD.StatepointID)
|
|
StatepointID = *SD.StatepointID;
|
|
|
|
// Pass through the requested lowering if any. The default is live-through.
|
|
StringRef DeoptLowering = getDeoptLowering(Call);
|
|
if (DeoptLowering.equals("live-in"))
|
|
Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
|
|
else {
|
|
assert(DeoptLowering.equals("live-through") && "Unsupported value!");
|
|
}
|
|
|
|
FunctionCallee CallTarget(Call->getFunctionType(), Call->getCalledOperand());
|
|
if (Function *F = dyn_cast<Function>(CallTarget.getCallee())) {
|
|
auto IID = F->getIntrinsicID();
|
|
if (IID == Intrinsic::experimental_deoptimize) {
|
|
// Calls to llvm.experimental.deoptimize are lowered to calls to the
|
|
// __llvm_deoptimize symbol. We want to resolve this now, since the
|
|
// verifier does not allow taking the address of an intrinsic function.
|
|
|
|
SmallVector<Type *, 8> DomainTy;
|
|
for (Value *Arg : CallArgs)
|
|
DomainTy.push_back(Arg->getType());
|
|
auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
|
|
/* isVarArg = */ false);
|
|
|
|
// Note: CallTarget can be a bitcast instruction of a symbol if there are
|
|
// calls to @llvm.experimental.deoptimize with different argument types in
|
|
// the same module. This is fine -- we assume the frontend knew what it
|
|
// was doing when generating this kind of IR.
|
|
CallTarget = F->getParent()
|
|
->getOrInsertFunction("__llvm_deoptimize", FTy);
|
|
|
|
IsDeoptimize = true;
|
|
} else if (IID == Intrinsic::memcpy_element_unordered_atomic ||
|
|
IID == Intrinsic::memmove_element_unordered_atomic) {
|
|
// Unordered atomic memcpy and memmove intrinsics which are not explicitly
|
|
// marked as "gc-leaf-function" should be lowered in a GC parseable way.
|
|
// Specifically, these calls should be lowered to the
|
|
// __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols.
|
|
// Similarly to __llvm_deoptimize we want to resolve this now, since the
|
|
// verifier does not allow taking the address of an intrinsic function.
|
|
//
|
|
// Moreover we need to shuffle the arguments for the call in order to
|
|
// accommodate GC. The underlying source and destination objects might be
|
|
// relocated during copy operation should the GC occur. To relocate the
|
|
// derived source and destination pointers the implementation of the
|
|
// intrinsic should know the corresponding base pointers.
|
|
//
|
|
// To make the base pointers available pass them explicitly as arguments:
|
|
// memcpy(dest_derived, source_derived, ...) =>
|
|
// memcpy(dest_base, dest_offset, source_base, source_offset, ...)
|
|
auto &Context = Call->getContext();
|
|
auto &DL = Call->getModule()->getDataLayout();
|
|
auto GetBaseAndOffset = [&](Value *Derived) {
|
|
Value *Base = nullptr;
|
|
// Optimizations in unreachable code might substitute the real pointer
|
|
// with undef, poison or null-derived constant. Return null base for
|
|
// them to be consistent with the handling in the main algorithm in
|
|
// findBaseDefiningValue.
|
|
if (isa<Constant>(Derived))
|
|
Base =
|
|
ConstantPointerNull::get(cast<PointerType>(Derived->getType()));
|
|
else {
|
|
assert(PointerToBase.count(Derived));
|
|
Base = PointerToBase.find(Derived)->second;
|
|
}
|
|
unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
|
|
unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
|
|
Value *Base_int = Builder.CreatePtrToInt(
|
|
Base, Type::getIntNTy(Context, IntPtrSize));
|
|
Value *Derived_int = Builder.CreatePtrToInt(
|
|
Derived, Type::getIntNTy(Context, IntPtrSize));
|
|
return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int));
|
|
};
|
|
|
|
auto *Dest = CallArgs[0];
|
|
Value *DestBase, *DestOffset;
|
|
std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest);
|
|
|
|
auto *Source = CallArgs[1];
|
|
Value *SourceBase, *SourceOffset;
|
|
std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source);
|
|
|
|
auto *LengthInBytes = CallArgs[2];
|
|
auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]);
|
|
|
|
CallArgs.clear();
|
|
CallArgs.push_back(DestBase);
|
|
CallArgs.push_back(DestOffset);
|
|
CallArgs.push_back(SourceBase);
|
|
CallArgs.push_back(SourceOffset);
|
|
CallArgs.push_back(LengthInBytes);
|
|
|
|
SmallVector<Type *, 8> DomainTy;
|
|
for (Value *Arg : CallArgs)
|
|
DomainTy.push_back(Arg->getType());
|
|
auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
|
|
/* isVarArg = */ false);
|
|
|
|
auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) {
|
|
uint64_t ElementSize = ElementSizeCI->getZExtValue();
|
|
if (IID == Intrinsic::memcpy_element_unordered_atomic) {
|
|
switch (ElementSize) {
|
|
case 1:
|
|
return "__llvm_memcpy_element_unordered_atomic_safepoint_1";
|
|
case 2:
|
|
return "__llvm_memcpy_element_unordered_atomic_safepoint_2";
|
|
case 4:
|
|
return "__llvm_memcpy_element_unordered_atomic_safepoint_4";
|
|
case 8:
|
|
return "__llvm_memcpy_element_unordered_atomic_safepoint_8";
|
|
case 16:
|
|
return "__llvm_memcpy_element_unordered_atomic_safepoint_16";
|
|
default:
|
|
llvm_unreachable("unexpected element size!");
|
|
}
|
|
}
|
|
assert(IID == Intrinsic::memmove_element_unordered_atomic);
|
|
switch (ElementSize) {
|
|
case 1:
|
|
return "__llvm_memmove_element_unordered_atomic_safepoint_1";
|
|
case 2:
|
|
return "__llvm_memmove_element_unordered_atomic_safepoint_2";
|
|
case 4:
|
|
return "__llvm_memmove_element_unordered_atomic_safepoint_4";
|
|
case 8:
|
|
return "__llvm_memmove_element_unordered_atomic_safepoint_8";
|
|
case 16:
|
|
return "__llvm_memmove_element_unordered_atomic_safepoint_16";
|
|
default:
|
|
llvm_unreachable("unexpected element size!");
|
|
}
|
|
};
|
|
|
|
CallTarget =
|
|
F->getParent()
|
|
->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy);
|
|
}
|
|
}
|
|
|
|
// Create the statepoint given all the arguments
|
|
GCStatepointInst *Token = nullptr;
|
|
if (auto *CI = dyn_cast<CallInst>(Call)) {
|
|
CallInst *SPCall = Builder.CreateGCStatepointCall(
|
|
StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
|
|
TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
|
|
|
|
SPCall->setTailCallKind(CI->getTailCallKind());
|
|
SPCall->setCallingConv(CI->getCallingConv());
|
|
|
|
// Currently we will fail on parameter attributes and on certain
|
|
// function attributes. In case if we can handle this set of attributes -
|
|
// set up function attrs directly on statepoint and return attrs later for
|
|
// gc_result intrinsic.
|
|
SPCall->setAttributes(legalizeCallAttributes(
|
|
CI->getContext(), CI->getAttributes(), SPCall->getAttributes()));
|
|
|
|
Token = cast<GCStatepointInst>(SPCall);
|
|
|
|
// Put the following gc_result and gc_relocate calls immediately after the
|
|
// the old call (which we're about to delete)
|
|
assert(CI->getNextNode() && "Not a terminator, must have next!");
|
|
Builder.SetInsertPoint(CI->getNextNode());
|
|
Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
|
|
} else {
|
|
auto *II = cast<InvokeInst>(Call);
|
|
|
|
// Insert the new invoke into the old block. We'll remove the old one in a
|
|
// moment at which point this will become the new terminator for the
|
|
// original block.
|
|
InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
|
|
StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
|
|
II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
|
|
"statepoint_token");
|
|
|
|
SPInvoke->setCallingConv(II->getCallingConv());
|
|
|
|
// Currently we will fail on parameter attributes and on certain
|
|
// function attributes. In case if we can handle this set of attributes -
|
|
// set up function attrs directly on statepoint and return attrs later for
|
|
// gc_result intrinsic.
|
|
SPInvoke->setAttributes(legalizeCallAttributes(
|
|
II->getContext(), II->getAttributes(), SPInvoke->getAttributes()));
|
|
|
|
Token = cast<GCStatepointInst>(SPInvoke);
|
|
|
|
// Generate gc relocates in exceptional path
|
|
BasicBlock *UnwindBlock = II->getUnwindDest();
|
|
assert(!isa<PHINode>(UnwindBlock->begin()) &&
|
|
UnwindBlock->getUniquePredecessor() &&
|
|
"can't safely insert in this block!");
|
|
|
|
Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
|
|
Builder.SetCurrentDebugLocation(II->getDebugLoc());
|
|
|
|
// Attach exceptional gc relocates to the landingpad.
|
|
Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
|
|
Result.UnwindToken = ExceptionalToken;
|
|
|
|
CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder);
|
|
|
|
// Generate gc relocates and returns for normal block
|
|
BasicBlock *NormalDest = II->getNormalDest();
|
|
assert(!isa<PHINode>(NormalDest->begin()) &&
|
|
NormalDest->getUniquePredecessor() &&
|
|
"can't safely insert in this block!");
|
|
|
|
Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
|
|
|
|
// gc relocates will be generated later as if it were regular call
|
|
// statepoint
|
|
}
|
|
assert(Token && "Should be set in one of the above branches!");
|
|
|
|
if (IsDeoptimize) {
|
|
// If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
|
|
// transform the tail-call like structure to a call to a void function
|
|
// followed by unreachable to get better codegen.
|
|
Replacements.push_back(
|
|
DeferredReplacement::createDeoptimizeReplacement(Call));
|
|
} else {
|
|
Token->setName("statepoint_token");
|
|
if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
|
|
StringRef Name = Call->hasName() ? Call->getName() : "";
|
|
CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
|
|
GCResult->setAttributes(
|
|
AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
|
|
Call->getAttributes().getRetAttrs()));
|
|
|
|
// We cannot RAUW or delete CS.getInstruction() because it could be in the
|
|
// live set of some other safepoint, in which case that safepoint's
|
|
// PartiallyConstructedSafepointRecord will hold a raw pointer to this
|
|
// llvm::Instruction. Instead, we defer the replacement and deletion to
|
|
// after the live sets have been made explicit in the IR, and we no longer
|
|
// have raw pointers to worry about.
|
|
Replacements.emplace_back(
|
|
DeferredReplacement::createRAUW(Call, GCResult));
|
|
} else {
|
|
Replacements.emplace_back(DeferredReplacement::createDelete(Call));
|
|
}
|
|
}
|
|
|
|
Result.StatepointToken = Token;
|
|
|
|
// Second, create a gc.relocate for every live variable
|
|
CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder);
|
|
}
|
|
|
|
// Replace an existing gc.statepoint with a new one and a set of gc.relocates
|
|
// which make the relocations happening at this safepoint explicit.
|
|
//
|
|
// WARNING: Does not do any fixup to adjust users of the original live
|
|
// values. That's the callers responsibility.
|
|
static void
|
|
makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
|
|
PartiallyConstructedSafepointRecord &Result,
|
|
std::vector<DeferredReplacement> &Replacements,
|
|
const PointerToBaseTy &PointerToBase) {
|
|
const auto &LiveSet = Result.LiveSet;
|
|
|
|
// Convert to vector for efficient cross referencing.
|
|
SmallVector<Value *, 64> BaseVec, LiveVec;
|
|
LiveVec.reserve(LiveSet.size());
|
|
BaseVec.reserve(LiveSet.size());
|
|
for (Value *L : LiveSet) {
|
|
LiveVec.push_back(L);
|
|
assert(PointerToBase.count(L));
|
|
Value *Base = PointerToBase.find(L)->second;
|
|
BaseVec.push_back(Base);
|
|
}
|
|
assert(LiveVec.size() == BaseVec.size());
|
|
|
|
// Do the actual rewriting and delete the old statepoint
|
|
makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements,
|
|
PointerToBase);
|
|
}
|
|
|
|
// Helper function for the relocationViaAlloca.
|
|
//
|
|
// It receives iterator to the statepoint gc relocates and emits a store to the
|
|
// assigned location (via allocaMap) for the each one of them. It adds the
|
|
// visited values into the visitedLiveValues set, which we will later use them
|
|
// for validation checking.
|
|
static void
|
|
insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
|
|
DenseMap<Value *, AllocaInst *> &AllocaMap,
|
|
DenseSet<Value *> &VisitedLiveValues) {
|
|
for (User *U : GCRelocs) {
|
|
GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
|
|
if (!Relocate)
|
|
continue;
|
|
|
|
Value *OriginalValue = Relocate->getDerivedPtr();
|
|
assert(AllocaMap.count(OriginalValue));
|
|
Value *Alloca = AllocaMap[OriginalValue];
|
|
|
|
// Emit store into the related alloca
|
|
// All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
|
|
// the correct type according to alloca.
|
|
assert(Relocate->getNextNode() &&
|
|
"Should always have one since it's not a terminator");
|
|
IRBuilder<> Builder(Relocate->getNextNode());
|
|
Value *CastedRelocatedValue =
|
|
Builder.CreateBitCast(Relocate,
|
|
cast<AllocaInst>(Alloca)->getAllocatedType(),
|
|
suffixed_name_or(Relocate, ".casted", ""));
|
|
|
|
new StoreInst(CastedRelocatedValue, Alloca,
|
|
cast<Instruction>(CastedRelocatedValue)->getNextNode());
|
|
|
|
#ifndef NDEBUG
|
|
VisitedLiveValues.insert(OriginalValue);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Helper function for the "relocationViaAlloca". Similar to the
|
|
// "insertRelocationStores" but works for rematerialized values.
|
|
static void insertRematerializationStores(
|
|
const RematerializedValueMapTy &RematerializedValues,
|
|
DenseMap<Value *, AllocaInst *> &AllocaMap,
|
|
DenseSet<Value *> &VisitedLiveValues) {
|
|
for (auto RematerializedValuePair: RematerializedValues) {
|
|
Instruction *RematerializedValue = RematerializedValuePair.first;
|
|
Value *OriginalValue = RematerializedValuePair.second;
|
|
|
|
assert(AllocaMap.count(OriginalValue) &&
|
|
"Can not find alloca for rematerialized value");
|
|
Value *Alloca = AllocaMap[OriginalValue];
|
|
|
|
new StoreInst(RematerializedValue, Alloca,
|
|
RematerializedValue->getNextNode());
|
|
|
|
#ifndef NDEBUG
|
|
VisitedLiveValues.insert(OriginalValue);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/// Do all the relocation update via allocas and mem2reg
|
|
static void relocationViaAlloca(
|
|
Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
|
|
ArrayRef<PartiallyConstructedSafepointRecord> Records) {
|
|
#ifndef NDEBUG
|
|
// record initial number of (static) allocas; we'll check we have the same
|
|
// number when we get done.
|
|
int InitialAllocaNum = 0;
|
|
for (Instruction &I : F.getEntryBlock())
|
|
if (isa<AllocaInst>(I))
|
|
InitialAllocaNum++;
|
|
#endif
|
|
|
|
// TODO-PERF: change data structures, reserve
|
|
DenseMap<Value *, AllocaInst *> AllocaMap;
|
|
SmallVector<AllocaInst *, 200> PromotableAllocas;
|
|
// Used later to chack that we have enough allocas to store all values
|
|
std::size_t NumRematerializedValues = 0;
|
|
PromotableAllocas.reserve(Live.size());
|
|
|
|
// Emit alloca for "LiveValue" and record it in "allocaMap" and
|
|
// "PromotableAllocas"
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
auto emitAllocaFor = [&](Value *LiveValue) {
|
|
AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
|
|
DL.getAllocaAddrSpace(), "",
|
|
F.getEntryBlock().getFirstNonPHI());
|
|
AllocaMap[LiveValue] = Alloca;
|
|
PromotableAllocas.push_back(Alloca);
|
|
};
|
|
|
|
// Emit alloca for each live gc pointer
|
|
for (Value *V : Live)
|
|
emitAllocaFor(V);
|
|
|
|
// Emit allocas for rematerialized values
|
|
for (const auto &Info : Records)
|
|
for (auto RematerializedValuePair : Info.RematerializedValues) {
|
|
Value *OriginalValue = RematerializedValuePair.second;
|
|
if (AllocaMap.count(OriginalValue) != 0)
|
|
continue;
|
|
|
|
emitAllocaFor(OriginalValue);
|
|
++NumRematerializedValues;
|
|
}
|
|
|
|
// The next two loops are part of the same conceptual operation. We need to
|
|
// insert a store to the alloca after the original def and at each
|
|
// redefinition. We need to insert a load before each use. These are split
|
|
// into distinct loops for performance reasons.
|
|
|
|
// Update gc pointer after each statepoint: either store a relocated value or
|
|
// null (if no relocated value was found for this gc pointer and it is not a
|
|
// gc_result). This must happen before we update the statepoint with load of
|
|
// alloca otherwise we lose the link between statepoint and old def.
|
|
for (const auto &Info : Records) {
|
|
Value *Statepoint = Info.StatepointToken;
|
|
|
|
// This will be used for consistency check
|
|
DenseSet<Value *> VisitedLiveValues;
|
|
|
|
// Insert stores for normal statepoint gc relocates
|
|
insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
|
|
|
|
// In case if it was invoke statepoint
|
|
// we will insert stores for exceptional path gc relocates.
|
|
if (isa<InvokeInst>(Statepoint)) {
|
|
insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
|
|
VisitedLiveValues);
|
|
}
|
|
|
|
// Do similar thing with rematerialized values
|
|
insertRematerializationStores(Info.RematerializedValues, AllocaMap,
|
|
VisitedLiveValues);
|
|
|
|
if (ClobberNonLive) {
|
|
// As a debugging aid, pretend that an unrelocated pointer becomes null at
|
|
// the gc.statepoint. This will turn some subtle GC problems into
|
|
// slightly easier to debug SEGVs. Note that on large IR files with
|
|
// lots of gc.statepoints this is extremely costly both memory and time
|
|
// wise.
|
|
SmallVector<AllocaInst *, 64> ToClobber;
|
|
for (auto Pair : AllocaMap) {
|
|
Value *Def = Pair.first;
|
|
AllocaInst *Alloca = Pair.second;
|
|
|
|
// This value was relocated
|
|
if (VisitedLiveValues.count(Def)) {
|
|
continue;
|
|
}
|
|
ToClobber.push_back(Alloca);
|
|
}
|
|
|
|
auto InsertClobbersAt = [&](Instruction *IP) {
|
|
for (auto *AI : ToClobber) {
|
|
auto AT = AI->getAllocatedType();
|
|
Constant *CPN;
|
|
if (AT->isVectorTy())
|
|
CPN = ConstantAggregateZero::get(AT);
|
|
else
|
|
CPN = ConstantPointerNull::get(cast<PointerType>(AT));
|
|
new StoreInst(CPN, AI, IP);
|
|
}
|
|
};
|
|
|
|
// Insert the clobbering stores. These may get intermixed with the
|
|
// gc.results and gc.relocates, but that's fine.
|
|
if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
|
|
InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
|
|
InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
|
|
} else {
|
|
InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update use with load allocas and add store for gc_relocated.
|
|
for (auto Pair : AllocaMap) {
|
|
Value *Def = Pair.first;
|
|
AllocaInst *Alloca = Pair.second;
|
|
|
|
// We pre-record the uses of allocas so that we dont have to worry about
|
|
// later update that changes the user information..
|
|
|
|
SmallVector<Instruction *, 20> Uses;
|
|
// PERF: trade a linear scan for repeated reallocation
|
|
Uses.reserve(Def->getNumUses());
|
|
for (User *U : Def->users()) {
|
|
if (!isa<ConstantExpr>(U)) {
|
|
// If the def has a ConstantExpr use, then the def is either a
|
|
// ConstantExpr use itself or null. In either case
|
|
// (recursively in the first, directly in the second), the oop
|
|
// it is ultimately dependent on is null and this particular
|
|
// use does not need to be fixed up.
|
|
Uses.push_back(cast<Instruction>(U));
|
|
}
|
|
}
|
|
|
|
llvm::sort(Uses);
|
|
auto Last = std::unique(Uses.begin(), Uses.end());
|
|
Uses.erase(Last, Uses.end());
|
|
|
|
for (Instruction *Use : Uses) {
|
|
if (isa<PHINode>(Use)) {
|
|
PHINode *Phi = cast<PHINode>(Use);
|
|
for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
|
|
if (Def == Phi->getIncomingValue(i)) {
|
|
LoadInst *Load =
|
|
new LoadInst(Alloca->getAllocatedType(), Alloca, "",
|
|
Phi->getIncomingBlock(i)->getTerminator());
|
|
Phi->setIncomingValue(i, Load);
|
|
}
|
|
}
|
|
} else {
|
|
LoadInst *Load =
|
|
new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
|
|
Use->replaceUsesOfWith(Def, Load);
|
|
}
|
|
}
|
|
|
|
// Emit store for the initial gc value. Store must be inserted after load,
|
|
// otherwise store will be in alloca's use list and an extra load will be
|
|
// inserted before it.
|
|
StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false,
|
|
DL.getABITypeAlign(Def->getType()));
|
|
if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
|
|
if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
|
|
// InvokeInst is a terminator so the store need to be inserted into its
|
|
// normal destination block.
|
|
BasicBlock *NormalDest = Invoke->getNormalDest();
|
|
Store->insertBefore(NormalDest->getFirstNonPHI());
|
|
} else {
|
|
assert(!Inst->isTerminator() &&
|
|
"The only terminator that can produce a value is "
|
|
"InvokeInst which is handled above.");
|
|
Store->insertAfter(Inst);
|
|
}
|
|
} else {
|
|
assert(isa<Argument>(Def));
|
|
Store->insertAfter(cast<Instruction>(Alloca));
|
|
}
|
|
}
|
|
|
|
assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
|
|
"we must have the same allocas with lives");
|
|
(void) NumRematerializedValues;
|
|
if (!PromotableAllocas.empty()) {
|
|
// Apply mem2reg to promote alloca to SSA
|
|
PromoteMemToReg(PromotableAllocas, DT);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
for (auto &I : F.getEntryBlock())
|
|
if (isa<AllocaInst>(I))
|
|
InitialAllocaNum--;
|
|
assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
|
|
#endif
|
|
}
|
|
|
|
/// Implement a unique function which doesn't require we sort the input
|
|
/// vector. Doing so has the effect of changing the output of a couple of
|
|
/// tests in ways which make them less useful in testing fused safepoints.
|
|
template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
|
|
SmallSet<T, 8> Seen;
|
|
erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; });
|
|
}
|
|
|
|
/// Insert holders so that each Value is obviously live through the entire
|
|
/// lifetime of the call.
|
|
static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
|
|
SmallVectorImpl<CallInst *> &Holders) {
|
|
if (Values.empty())
|
|
// No values to hold live, might as well not insert the empty holder
|
|
return;
|
|
|
|
Module *M = Call->getModule();
|
|
// Use a dummy vararg function to actually hold the values live
|
|
FunctionCallee Func = M->getOrInsertFunction(
|
|
"__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
|
|
if (isa<CallInst>(Call)) {
|
|
// For call safepoints insert dummy calls right after safepoint
|
|
Holders.push_back(
|
|
CallInst::Create(Func, Values, "", &*++Call->getIterator()));
|
|
return;
|
|
}
|
|
// For invoke safepooints insert dummy calls both in normal and
|
|
// exceptional destination blocks
|
|
auto *II = cast<InvokeInst>(Call);
|
|
Holders.push_back(CallInst::Create(
|
|
Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
|
|
Holders.push_back(CallInst::Create(
|
|
Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
|
|
}
|
|
|
|
static void findLiveReferences(
|
|
Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
|
|
MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
|
|
GCPtrLivenessData OriginalLivenessData;
|
|
computeLiveInValues(DT, F, OriginalLivenessData);
|
|
for (size_t i = 0; i < records.size(); i++) {
|
|
struct PartiallyConstructedSafepointRecord &info = records[i];
|
|
analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
|
|
}
|
|
}
|
|
|
|
// Helper function for the "rematerializeLiveValues". It walks use chain
|
|
// starting from the "CurrentValue" until it reaches the root of the chain, i.e.
|
|
// the base or a value it cannot process. Only "simple" values are processed
|
|
// (currently it is GEP's and casts). The returned root is examined by the
|
|
// callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array
|
|
// with all visited values.
|
|
static Value* findRematerializableChainToBasePointer(
|
|
SmallVectorImpl<Instruction*> &ChainToBase,
|
|
Value *CurrentValue) {
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
|
|
ChainToBase.push_back(GEP);
|
|
return findRematerializableChainToBasePointer(ChainToBase,
|
|
GEP->getPointerOperand());
|
|
}
|
|
|
|
if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
|
|
if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
|
|
return CI;
|
|
|
|
ChainToBase.push_back(CI);
|
|
return findRematerializableChainToBasePointer(ChainToBase,
|
|
CI->getOperand(0));
|
|
}
|
|
|
|
// We have reached the root of the chain, which is either equal to the base or
|
|
// is the first unsupported value along the use chain.
|
|
return CurrentValue;
|
|
}
|
|
|
|
// Helper function for the "rematerializeLiveValues". Compute cost of the use
|
|
// chain we are going to rematerialize.
|
|
static InstructionCost
|
|
chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain,
|
|
TargetTransformInfo &TTI) {
|
|
InstructionCost Cost = 0;
|
|
|
|
for (Instruction *Instr : Chain) {
|
|
if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
|
|
assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
|
|
"non noop cast is found during rematerialization");
|
|
|
|
Type *SrcTy = CI->getOperand(0)->getType();
|
|
Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy,
|
|
TTI::getCastContextHint(CI),
|
|
TargetTransformInfo::TCK_SizeAndLatency, CI);
|
|
|
|
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
|
|
// Cost of the address calculation
|
|
Type *ValTy = GEP->getSourceElementType();
|
|
Cost += TTI.getAddressComputationCost(ValTy);
|
|
|
|
// And cost of the GEP itself
|
|
// TODO: Use TTI->getGEPCost here (it exists, but appears to be not
|
|
// allowed for the external usage)
|
|
if (!GEP->hasAllConstantIndices())
|
|
Cost += 2;
|
|
|
|
} else {
|
|
llvm_unreachable("unsupported instruction type during rematerialization");
|
|
}
|
|
}
|
|
|
|
return Cost;
|
|
}
|
|
|
|
static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
|
|
unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
|
|
if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
|
|
OrigRootPhi.getParent() != AlternateRootPhi.getParent())
|
|
return false;
|
|
// Map of incoming values and their corresponding basic blocks of
|
|
// OrigRootPhi.
|
|
SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
|
|
for (unsigned i = 0; i < PhiNum; i++)
|
|
CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
|
|
OrigRootPhi.getIncomingBlock(i);
|
|
|
|
// Both current and base PHIs should have same incoming values and
|
|
// the same basic blocks corresponding to the incoming values.
|
|
for (unsigned i = 0; i < PhiNum; i++) {
|
|
auto CIVI =
|
|
CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
|
|
if (CIVI == CurrentIncomingValues.end())
|
|
return false;
|
|
BasicBlock *CurrentIncomingBB = CIVI->second;
|
|
if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Find derived pointers that can be recomputed cheap enough and fill
|
|
// RematerizationCandidates with such candidates.
|
|
static void
|
|
findRematerializationCandidates(PointerToBaseTy PointerToBase,
|
|
RematCandTy &RematerizationCandidates,
|
|
TargetTransformInfo &TTI) {
|
|
const unsigned int ChainLengthThreshold = 10;
|
|
|
|
for (auto P2B : PointerToBase) {
|
|
auto *Derived = P2B.first;
|
|
auto *Base = P2B.second;
|
|
// Consider only derived pointers.
|
|
if (Derived == Base)
|
|
continue;
|
|
|
|
// For each live pointer find its defining chain.
|
|
SmallVector<Instruction *, 3> ChainToBase;
|
|
Value *RootOfChain =
|
|
findRematerializableChainToBasePointer(ChainToBase, Derived);
|
|
|
|
// Nothing to do, or chain is too long
|
|
if ( ChainToBase.size() == 0 ||
|
|
ChainToBase.size() > ChainLengthThreshold)
|
|
continue;
|
|
|
|
// Handle the scenario where the RootOfChain is not equal to the
|
|
// Base Value, but they are essentially the same phi values.
|
|
if (RootOfChain != PointerToBase[Derived]) {
|
|
PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
|
|
PHINode *AlternateRootPhi = dyn_cast<PHINode>(PointerToBase[Derived]);
|
|
if (!OrigRootPhi || !AlternateRootPhi)
|
|
continue;
|
|
// PHI nodes that have the same incoming values, and belonging to the same
|
|
// basic blocks are essentially the same SSA value. When the original phi
|
|
// has incoming values with different base pointers, the original phi is
|
|
// marked as conflict, and an additional `AlternateRootPhi` with the same
|
|
// incoming values get generated by the findBasePointer function. We need
|
|
// to identify the newly generated AlternateRootPhi (.base version of phi)
|
|
// and RootOfChain (the original phi node itself) are the same, so that we
|
|
// can rematerialize the gep and casts. This is a workaround for the
|
|
// deficiency in the findBasePointer algorithm.
|
|
if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
|
|
continue;
|
|
}
|
|
// Compute cost of this chain.
|
|
InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI);
|
|
// TODO: We can also account for cases when we will be able to remove some
|
|
// of the rematerialized values by later optimization passes. I.e if
|
|
// we rematerialized several intersecting chains. Or if original values
|
|
// don't have any uses besides this statepoint.
|
|
|
|
// Ok, there is a candidate.
|
|
RematerizlizationCandidateRecord Record;
|
|
Record.ChainToBase = ChainToBase;
|
|
Record.RootOfChain = RootOfChain;
|
|
Record.Cost = Cost;
|
|
RematerizationCandidates.insert({ Derived, Record });
|
|
}
|
|
}
|
|
|
|
// From the statepoint live set pick values that are cheaper to recompute then
|
|
// to relocate. Remove this values from the live set, rematerialize them after
|
|
// statepoint and record them in "Info" structure. Note that similar to
|
|
// relocated values we don't do any user adjustments here.
|
|
static void rematerializeLiveValues(CallBase *Call,
|
|
PartiallyConstructedSafepointRecord &Info,
|
|
PointerToBaseTy &PointerToBase,
|
|
RematCandTy &RematerizationCandidates,
|
|
TargetTransformInfo &TTI) {
|
|
// Record values we are going to delete from this statepoint live set.
|
|
// We can not di this in following loop due to iterator invalidation.
|
|
SmallVector<Value *, 32> LiveValuesToBeDeleted;
|
|
|
|
for (Value *LiveValue : Info.LiveSet) {
|
|
auto It = RematerizationCandidates.find(LiveValue);
|
|
if (It == RematerizationCandidates.end())
|
|
continue;
|
|
|
|
RematerizlizationCandidateRecord &Record = It->second;
|
|
|
|
InstructionCost Cost = Record.Cost;
|
|
// For invokes we need to rematerialize each chain twice - for normal and
|
|
// for unwind basic blocks. Model this by multiplying cost by two.
|
|
if (isa<InvokeInst>(Call))
|
|
Cost *= 2;
|
|
|
|
// If it's too expensive - skip it.
|
|
if (Cost >= RematerializationThreshold)
|
|
continue;
|
|
|
|
// Remove value from the live set
|
|
LiveValuesToBeDeleted.push_back(LiveValue);
|
|
|
|
// Clone instructions and record them inside "Info" structure.
|
|
|
|
// For each live pointer find get its defining chain.
|
|
SmallVector<Instruction *, 3> ChainToBase = Record.ChainToBase;
|
|
// Walk backwards to visit top-most instructions first.
|
|
std::reverse(ChainToBase.begin(), ChainToBase.end());
|
|
|
|
// Utility function which clones all instructions from "ChainToBase"
|
|
// and inserts them before "InsertBefore". Returns rematerialized value
|
|
// which should be used after statepoint.
|
|
auto rematerializeChain = [&ChainToBase](
|
|
Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
|
|
Instruction *LastClonedValue = nullptr;
|
|
Instruction *LastValue = nullptr;
|
|
for (Instruction *Instr: ChainToBase) {
|
|
// Only GEP's and casts are supported as we need to be careful to not
|
|
// introduce any new uses of pointers not in the liveset.
|
|
// Note that it's fine to introduce new uses of pointers which were
|
|
// otherwise not used after this statepoint.
|
|
assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
|
|
|
|
Instruction *ClonedValue = Instr->clone();
|
|
ClonedValue->insertBefore(InsertBefore);
|
|
ClonedValue->setName(Instr->getName() + ".remat");
|
|
|
|
// If it is not first instruction in the chain then it uses previously
|
|
// cloned value. We should update it to use cloned value.
|
|
if (LastClonedValue) {
|
|
assert(LastValue);
|
|
ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
|
|
#ifndef NDEBUG
|
|
for (auto *OpValue : ClonedValue->operand_values()) {
|
|
// Assert that cloned instruction does not use any instructions from
|
|
// this chain other than LastClonedValue
|
|
assert(!is_contained(ChainToBase, OpValue) &&
|
|
"incorrect use in rematerialization chain");
|
|
// Assert that the cloned instruction does not use the RootOfChain
|
|
// or the AlternateLiveBase.
|
|
assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
|
|
}
|
|
#endif
|
|
} else {
|
|
// For the first instruction, replace the use of unrelocated base i.e.
|
|
// RootOfChain/OrigRootPhi, with the corresponding PHI present in the
|
|
// live set. They have been proved to be the same PHI nodes. Note
|
|
// that the *only* use of the RootOfChain in the ChainToBase list is
|
|
// the first Value in the list.
|
|
if (RootOfChain != AlternateLiveBase)
|
|
ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
|
|
}
|
|
|
|
LastClonedValue = ClonedValue;
|
|
LastValue = Instr;
|
|
}
|
|
assert(LastClonedValue);
|
|
return LastClonedValue;
|
|
};
|
|
|
|
// Different cases for calls and invokes. For invokes we need to clone
|
|
// instructions both on normal and unwind path.
|
|
if (isa<CallInst>(Call)) {
|
|
Instruction *InsertBefore = Call->getNextNode();
|
|
assert(InsertBefore);
|
|
Instruction *RematerializedValue = rematerializeChain(
|
|
InsertBefore, Record.RootOfChain, PointerToBase[LiveValue]);
|
|
Info.RematerializedValues[RematerializedValue] = LiveValue;
|
|
} else {
|
|
auto *Invoke = cast<InvokeInst>(Call);
|
|
|
|
Instruction *NormalInsertBefore =
|
|
&*Invoke->getNormalDest()->getFirstInsertionPt();
|
|
Instruction *UnwindInsertBefore =
|
|
&*Invoke->getUnwindDest()->getFirstInsertionPt();
|
|
|
|
Instruction *NormalRematerializedValue = rematerializeChain(
|
|
NormalInsertBefore, Record.RootOfChain, PointerToBase[LiveValue]);
|
|
Instruction *UnwindRematerializedValue = rematerializeChain(
|
|
UnwindInsertBefore, Record.RootOfChain, PointerToBase[LiveValue]);
|
|
|
|
Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
|
|
Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
|
|
}
|
|
}
|
|
|
|
// Remove rematerializaed values from the live set
|
|
for (auto *LiveValue: LiveValuesToBeDeleted) {
|
|
Info.LiveSet.remove(LiveValue);
|
|
}
|
|
}
|
|
|
|
static bool inlineGetBaseAndOffset(Function &F,
|
|
SmallVectorImpl<CallInst *> &Intrinsics,
|
|
DefiningValueMapTy &DVCache,
|
|
IsKnownBaseMapTy &KnownBases) {
|
|
auto &Context = F.getContext();
|
|
auto &DL = F.getParent()->getDataLayout();
|
|
bool Changed = false;
|
|
|
|
for (auto *Callsite : Intrinsics)
|
|
switch (Callsite->getIntrinsicID()) {
|
|
case Intrinsic::experimental_gc_get_pointer_base: {
|
|
Changed = true;
|
|
Value *Base =
|
|
findBasePointer(Callsite->getOperand(0), DVCache, KnownBases);
|
|
assert(!DVCache.count(Callsite));
|
|
auto *BaseBC = IRBuilder<>(Callsite).CreateBitCast(
|
|
Base, Callsite->getType(), suffixed_name_or(Base, ".cast", ""));
|
|
if (BaseBC != Base)
|
|
DVCache[BaseBC] = Base;
|
|
Callsite->replaceAllUsesWith(BaseBC);
|
|
if (!BaseBC->hasName())
|
|
BaseBC->takeName(Callsite);
|
|
Callsite->eraseFromParent();
|
|
break;
|
|
}
|
|
case Intrinsic::experimental_gc_get_pointer_offset: {
|
|
Changed = true;
|
|
Value *Derived = Callsite->getOperand(0);
|
|
Value *Base = findBasePointer(Derived, DVCache, KnownBases);
|
|
assert(!DVCache.count(Callsite));
|
|
unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
|
|
unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
|
|
IRBuilder<> Builder(Callsite);
|
|
Value *BaseInt =
|
|
Builder.CreatePtrToInt(Base, Type::getIntNTy(Context, IntPtrSize),
|
|
suffixed_name_or(Base, ".int", ""));
|
|
Value *DerivedInt =
|
|
Builder.CreatePtrToInt(Derived, Type::getIntNTy(Context, IntPtrSize),
|
|
suffixed_name_or(Derived, ".int", ""));
|
|
Value *Offset = Builder.CreateSub(DerivedInt, BaseInt);
|
|
Callsite->replaceAllUsesWith(Offset);
|
|
Offset->takeName(Callsite);
|
|
Callsite->eraseFromParent();
|
|
break;
|
|
}
|
|
default:
|
|
llvm_unreachable("Unknown intrinsic");
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
static bool insertParsePoints(Function &F, DominatorTree &DT,
|
|
TargetTransformInfo &TTI,
|
|
SmallVectorImpl<CallBase *> &ToUpdate,
|
|
DefiningValueMapTy &DVCache,
|
|
IsKnownBaseMapTy &KnownBases) {
|
|
#ifndef NDEBUG
|
|
// Validate the input
|
|
std::set<CallBase *> Uniqued;
|
|
Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
|
|
assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
|
|
|
|
for (CallBase *Call : ToUpdate)
|
|
assert(Call->getFunction() == &F);
|
|
#endif
|
|
|
|
// When inserting gc.relocates for invokes, we need to be able to insert at
|
|
// the top of the successor blocks. See the comment on
|
|
// normalForInvokeSafepoint on exactly what is needed. Note that this step
|
|
// may restructure the CFG.
|
|
for (CallBase *Call : ToUpdate) {
|
|
auto *II = dyn_cast<InvokeInst>(Call);
|
|
if (!II)
|
|
continue;
|
|
normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
|
|
normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
|
|
}
|
|
|
|
// A list of dummy calls added to the IR to keep various values obviously
|
|
// live in the IR. We'll remove all of these when done.
|
|
SmallVector<CallInst *, 64> Holders;
|
|
|
|
// Insert a dummy call with all of the deopt operands we'll need for the
|
|
// actual safepoint insertion as arguments. This ensures reference operands
|
|
// in the deopt argument list are considered live through the safepoint (and
|
|
// thus makes sure they get relocated.)
|
|
for (CallBase *Call : ToUpdate) {
|
|
SmallVector<Value *, 64> DeoptValues;
|
|
|
|
for (Value *Arg : GetDeoptBundleOperands(Call)) {
|
|
assert(!isUnhandledGCPointerType(Arg->getType()) &&
|
|
"support for FCA unimplemented");
|
|
if (isHandledGCPointerType(Arg->getType()))
|
|
DeoptValues.push_back(Arg);
|
|
}
|
|
|
|
insertUseHolderAfter(Call, DeoptValues, Holders);
|
|
}
|
|
|
|
SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
|
|
|
|
// A) Identify all gc pointers which are statically live at the given call
|
|
// site.
|
|
findLiveReferences(F, DT, ToUpdate, Records);
|
|
|
|
/// Global mapping from live pointers to a base-defining-value.
|
|
PointerToBaseTy PointerToBase;
|
|
|
|
// B) Find the base pointers for each live pointer
|
|
for (size_t i = 0; i < Records.size(); i++) {
|
|
PartiallyConstructedSafepointRecord &info = Records[i];
|
|
findBasePointers(DT, DVCache, ToUpdate[i], info, PointerToBase, KnownBases);
|
|
}
|
|
if (PrintBasePointers) {
|
|
errs() << "Base Pairs (w/o Relocation):\n";
|
|
for (auto &Pair : PointerToBase) {
|
|
errs() << " derived ";
|
|
Pair.first->printAsOperand(errs(), false);
|
|
errs() << " base ";
|
|
Pair.second->printAsOperand(errs(), false);
|
|
errs() << "\n";
|
|
;
|
|
}
|
|
}
|
|
|
|
// The base phi insertion logic (for any safepoint) may have inserted new
|
|
// instructions which are now live at some safepoint. The simplest such
|
|
// example is:
|
|
// loop:
|
|
// phi a <-- will be a new base_phi here
|
|
// safepoint 1 <-- that needs to be live here
|
|
// gep a + 1
|
|
// safepoint 2
|
|
// br loop
|
|
// We insert some dummy calls after each safepoint to definitely hold live
|
|
// the base pointers which were identified for that safepoint. We'll then
|
|
// ask liveness for _every_ base inserted to see what is now live. Then we
|
|
// remove the dummy calls.
|
|
Holders.reserve(Holders.size() + Records.size());
|
|
for (size_t i = 0; i < Records.size(); i++) {
|
|
PartiallyConstructedSafepointRecord &Info = Records[i];
|
|
|
|
SmallVector<Value *, 128> Bases;
|
|
for (auto *Derived : Info.LiveSet) {
|
|
assert(PointerToBase.count(Derived) && "Missed base for derived pointer");
|
|
Bases.push_back(PointerToBase[Derived]);
|
|
}
|
|
|
|
insertUseHolderAfter(ToUpdate[i], Bases, Holders);
|
|
}
|
|
|
|
// By selecting base pointers, we've effectively inserted new uses. Thus, we
|
|
// need to rerun liveness. We may *also* have inserted new defs, but that's
|
|
// not the key issue.
|
|
recomputeLiveInValues(F, DT, ToUpdate, Records, PointerToBase);
|
|
|
|
if (PrintBasePointers) {
|
|
errs() << "Base Pairs: (w/Relocation)\n";
|
|
for (auto Pair : PointerToBase) {
|
|
errs() << " derived ";
|
|
Pair.first->printAsOperand(errs(), false);
|
|
errs() << " base ";
|
|
Pair.second->printAsOperand(errs(), false);
|
|
errs() << "\n";
|
|
}
|
|
}
|
|
|
|
// It is possible that non-constant live variables have a constant base. For
|
|
// example, a GEP with a variable offset from a global. In this case we can
|
|
// remove it from the liveset. We already don't add constants to the liveset
|
|
// because we assume they won't move at runtime and the GC doesn't need to be
|
|
// informed about them. The same reasoning applies if the base is constant.
|
|
// Note that the relocation placement code relies on this filtering for
|
|
// correctness as it expects the base to be in the liveset, which isn't true
|
|
// if the base is constant.
|
|
for (auto &Info : Records) {
|
|
Info.LiveSet.remove_if([&](Value *LiveV) {
|
|
assert(PointerToBase.count(LiveV) && "Missed base for derived pointer");
|
|
return isa<Constant>(PointerToBase[LiveV]);
|
|
});
|
|
}
|
|
|
|
for (CallInst *CI : Holders)
|
|
CI->eraseFromParent();
|
|
|
|
Holders.clear();
|
|
|
|
// Compute the cost of possible re-materialization of derived pointers.
|
|
RematCandTy RematerizationCandidates;
|
|
findRematerializationCandidates(PointerToBase, RematerizationCandidates, TTI);
|
|
|
|
// In order to reduce live set of statepoint we might choose to rematerialize
|
|
// some values instead of relocating them. This is purely an optimization and
|
|
// does not influence correctness.
|
|
for (size_t i = 0; i < Records.size(); i++)
|
|
rematerializeLiveValues(ToUpdate[i], Records[i], PointerToBase,
|
|
RematerizationCandidates, TTI);
|
|
|
|
// We need this to safely RAUW and delete call or invoke return values that
|
|
// may themselves be live over a statepoint. For details, please see usage in
|
|
// makeStatepointExplicitImpl.
|
|
std::vector<DeferredReplacement> Replacements;
|
|
|
|
// Now run through and replace the existing statepoints with new ones with
|
|
// the live variables listed. We do not yet update uses of the values being
|
|
// relocated. We have references to live variables that need to
|
|
// survive to the last iteration of this loop. (By construction, the
|
|
// previous statepoint can not be a live variable, thus we can and remove
|
|
// the old statepoint calls as we go.)
|
|
for (size_t i = 0; i < Records.size(); i++)
|
|
makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements,
|
|
PointerToBase);
|
|
|
|
ToUpdate.clear(); // prevent accident use of invalid calls.
|
|
|
|
for (auto &PR : Replacements)
|
|
PR.doReplacement();
|
|
|
|
Replacements.clear();
|
|
|
|
for (auto &Info : Records) {
|
|
// These live sets may contain state Value pointers, since we replaced calls
|
|
// with operand bundles with calls wrapped in gc.statepoint, and some of
|
|
// those calls may have been def'ing live gc pointers. Clear these out to
|
|
// avoid accidentally using them.
|
|
//
|
|
// TODO: We should create a separate data structure that does not contain
|
|
// these live sets, and migrate to using that data structure from this point
|
|
// onward.
|
|
Info.LiveSet.clear();
|
|
}
|
|
PointerToBase.clear();
|
|
|
|
// Do all the fixups of the original live variables to their relocated selves
|
|
SmallVector<Value *, 128> Live;
|
|
for (size_t i = 0; i < Records.size(); i++) {
|
|
PartiallyConstructedSafepointRecord &Info = Records[i];
|
|
|
|
// We can't simply save the live set from the original insertion. One of
|
|
// the live values might be the result of a call which needs a safepoint.
|
|
// That Value* no longer exists and we need to use the new gc_result.
|
|
// Thankfully, the live set is embedded in the statepoint (and updated), so
|
|
// we just grab that.
|
|
llvm::append_range(Live, Info.StatepointToken->gc_args());
|
|
#ifndef NDEBUG
|
|
// Do some basic validation checking on our liveness results before
|
|
// performing relocation. Relocation can and will turn mistakes in liveness
|
|
// results into non-sensical code which is must harder to debug.
|
|
// TODO: It would be nice to test consistency as well
|
|
assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
|
|
"statepoint must be reachable or liveness is meaningless");
|
|
for (Value *V : Info.StatepointToken->gc_args()) {
|
|
if (!isa<Instruction>(V))
|
|
// Non-instruction values trivial dominate all possible uses
|
|
continue;
|
|
auto *LiveInst = cast<Instruction>(V);
|
|
assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
|
|
"unreachable values should never be live");
|
|
assert(DT.dominates(LiveInst, Info.StatepointToken) &&
|
|
"basic SSA liveness expectation violated by liveness analysis");
|
|
}
|
|
#endif
|
|
}
|
|
unique_unsorted(Live);
|
|
|
|
#ifndef NDEBUG
|
|
// Validation check
|
|
for (auto *Ptr : Live)
|
|
assert(isHandledGCPointerType(Ptr->getType()) &&
|
|
"must be a gc pointer type");
|
|
#endif
|
|
|
|
relocationViaAlloca(F, DT, Live, Records);
|
|
return !Records.empty();
|
|
}
|
|
|
|
// List of all parameter and return attributes which must be stripped when
|
|
// lowering from the abstract machine model. Note that we list attributes
|
|
// here which aren't valid as return attributes, that is okay.
|
|
static AttributeMask getParamAndReturnAttributesToRemove() {
|
|
AttributeMask R;
|
|
R.addAttribute(Attribute::Dereferenceable);
|
|
R.addAttribute(Attribute::DereferenceableOrNull);
|
|
R.addAttribute(Attribute::ReadNone);
|
|
R.addAttribute(Attribute::ReadOnly);
|
|
R.addAttribute(Attribute::WriteOnly);
|
|
R.addAttribute(Attribute::NoAlias);
|
|
R.addAttribute(Attribute::NoFree);
|
|
return R;
|
|
}
|
|
|
|
static void stripNonValidAttributesFromPrototype(Function &F) {
|
|
LLVMContext &Ctx = F.getContext();
|
|
|
|
// Intrinsics are very delicate. Lowering sometimes depends the presence
|
|
// of certain attributes for correctness, but we may have also inferred
|
|
// additional ones in the abstract machine model which need stripped. This
|
|
// assumes that the attributes defined in Intrinsic.td are conservatively
|
|
// correct for both physical and abstract model.
|
|
if (Intrinsic::ID id = F.getIntrinsicID()) {
|
|
F.setAttributes(Intrinsic::getAttributes(Ctx, id));
|
|
return;
|
|
}
|
|
|
|
AttributeMask R = getParamAndReturnAttributesToRemove();
|
|
for (Argument &A : F.args())
|
|
if (isa<PointerType>(A.getType()))
|
|
F.removeParamAttrs(A.getArgNo(), R);
|
|
|
|
if (isa<PointerType>(F.getReturnType()))
|
|
F.removeRetAttrs(R);
|
|
|
|
for (auto Attr : FnAttrsToStrip)
|
|
F.removeFnAttr(Attr);
|
|
}
|
|
|
|
/// Certain metadata on instructions are invalid after running RS4GC.
|
|
/// Optimizations that run after RS4GC can incorrectly use this metadata to
|
|
/// optimize functions. We drop such metadata on the instruction.
|
|
static void stripInvalidMetadataFromInstruction(Instruction &I) {
|
|
if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
|
|
return;
|
|
// These are the attributes that are still valid on loads and stores after
|
|
// RS4GC.
|
|
// The metadata implying dereferenceability and noalias are (conservatively)
|
|
// dropped. This is because semantically, after RewriteStatepointsForGC runs,
|
|
// all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
|
|
// touch the entire heap including noalias objects. Note: The reasoning is
|
|
// same as stripping the dereferenceability and noalias attributes that are
|
|
// analogous to the metadata counterparts.
|
|
// We also drop the invariant.load metadata on the load because that metadata
|
|
// implies the address operand to the load points to memory that is never
|
|
// changed once it became dereferenceable. This is no longer true after RS4GC.
|
|
// Similar reasoning applies to invariant.group metadata, which applies to
|
|
// loads within a group.
|
|
unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
|
|
LLVMContext::MD_range,
|
|
LLVMContext::MD_alias_scope,
|
|
LLVMContext::MD_nontemporal,
|
|
LLVMContext::MD_nonnull,
|
|
LLVMContext::MD_align,
|
|
LLVMContext::MD_type};
|
|
|
|
// Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
|
|
I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
|
|
}
|
|
|
|
static void stripNonValidDataFromBody(Function &F) {
|
|
if (F.empty())
|
|
return;
|
|
|
|
LLVMContext &Ctx = F.getContext();
|
|
MDBuilder Builder(Ctx);
|
|
|
|
// Set of invariantstart instructions that we need to remove.
|
|
// Use this to avoid invalidating the instruction iterator.
|
|
SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
|
|
|
|
for (Instruction &I : instructions(F)) {
|
|
// invariant.start on memory location implies that the referenced memory
|
|
// location is constant and unchanging. This is no longer true after
|
|
// RewriteStatepointsForGC runs because there can be calls to gc.statepoint
|
|
// which frees the entire heap and the presence of invariant.start allows
|
|
// the optimizer to sink the load of a memory location past a statepoint,
|
|
// which is incorrect.
|
|
if (auto *II = dyn_cast<IntrinsicInst>(&I))
|
|
if (II->getIntrinsicID() == Intrinsic::invariant_start) {
|
|
InvariantStartInstructions.push_back(II);
|
|
continue;
|
|
}
|
|
|
|
if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
|
|
MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
|
|
I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
|
|
}
|
|
|
|
stripInvalidMetadataFromInstruction(I);
|
|
|
|
AttributeMask R = getParamAndReturnAttributesToRemove();
|
|
if (auto *Call = dyn_cast<CallBase>(&I)) {
|
|
for (int i = 0, e = Call->arg_size(); i != e; i++)
|
|
if (isa<PointerType>(Call->getArgOperand(i)->getType()))
|
|
Call->removeParamAttrs(i, R);
|
|
if (isa<PointerType>(Call->getType()))
|
|
Call->removeRetAttrs(R);
|
|
}
|
|
}
|
|
|
|
// Delete the invariant.start instructions and RAUW undef.
|
|
for (auto *II : InvariantStartInstructions) {
|
|
II->replaceAllUsesWith(UndefValue::get(II->getType()));
|
|
II->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
/// Returns true if this function should be rewritten by this pass. The main
|
|
/// point of this function is as an extension point for custom logic.
|
|
static bool shouldRewriteStatepointsIn(Function &F) {
|
|
// TODO: This should check the GCStrategy
|
|
if (F.hasGC()) {
|
|
const auto &FunctionGCName = F.getGC();
|
|
const StringRef StatepointExampleName("statepoint-example");
|
|
const StringRef CoreCLRName("coreclr");
|
|
return (StatepointExampleName == FunctionGCName) ||
|
|
(CoreCLRName == FunctionGCName);
|
|
} else
|
|
return false;
|
|
}
|
|
|
|
static void stripNonValidData(Module &M) {
|
|
#ifndef NDEBUG
|
|
assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
|
|
#endif
|
|
|
|
for (Function &F : M)
|
|
stripNonValidAttributesFromPrototype(F);
|
|
|
|
for (Function &F : M)
|
|
stripNonValidDataFromBody(F);
|
|
}
|
|
|
|
bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
|
|
TargetTransformInfo &TTI,
|
|
const TargetLibraryInfo &TLI) {
|
|
assert(!F.isDeclaration() && !F.empty() &&
|
|
"need function body to rewrite statepoints in");
|
|
assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
|
|
|
|
auto NeedsRewrite = [&TLI](Instruction &I) {
|
|
if (const auto *Call = dyn_cast<CallBase>(&I)) {
|
|
if (isa<GCStatepointInst>(Call))
|
|
return false;
|
|
if (callsGCLeafFunction(Call, TLI))
|
|
return false;
|
|
|
|
// Normally it's up to the frontend to make sure that non-leaf calls also
|
|
// have proper deopt state if it is required. We make an exception for
|
|
// element atomic memcpy/memmove intrinsics here. Unlike other intrinsics
|
|
// these are non-leaf by default. They might be generated by the optimizer
|
|
// which doesn't know how to produce a proper deopt state. So if we see a
|
|
// non-leaf memcpy/memmove without deopt state just treat it as a leaf
|
|
// copy and don't produce a statepoint.
|
|
if (!AllowStatepointWithNoDeoptInfo &&
|
|
!Call->getOperandBundle(LLVMContext::OB_deopt)) {
|
|
assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) &&
|
|
"Don't expect any other calls here!");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
// Delete any unreachable statepoints so that we don't have unrewritten
|
|
// statepoints surviving this pass. This makes testing easier and the
|
|
// resulting IR less confusing to human readers.
|
|
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
|
|
bool MadeChange = removeUnreachableBlocks(F, &DTU);
|
|
// Flush the Dominator Tree.
|
|
DTU.getDomTree();
|
|
|
|
// Gather all the statepoints which need rewritten. Be careful to only
|
|
// consider those in reachable code since we need to ask dominance queries
|
|
// when rewriting. We'll delete the unreachable ones in a moment.
|
|
SmallVector<CallBase *, 64> ParsePointNeeded;
|
|
SmallVector<CallInst *, 64> Intrinsics;
|
|
for (Instruction &I : instructions(F)) {
|
|
// TODO: only the ones with the flag set!
|
|
if (NeedsRewrite(I)) {
|
|
// NOTE removeUnreachableBlocks() is stronger than
|
|
// DominatorTree::isReachableFromEntry(). In other words
|
|
// removeUnreachableBlocks can remove some blocks for which
|
|
// isReachableFromEntry() returns true.
|
|
assert(DT.isReachableFromEntry(I.getParent()) &&
|
|
"no unreachable blocks expected");
|
|
ParsePointNeeded.push_back(cast<CallBase>(&I));
|
|
}
|
|
if (auto *CI = dyn_cast<CallInst>(&I))
|
|
if (CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_base ||
|
|
CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_offset)
|
|
Intrinsics.emplace_back(CI);
|
|
}
|
|
|
|
// Return early if no work to do.
|
|
if (ParsePointNeeded.empty() && Intrinsics.empty())
|
|
return MadeChange;
|
|
|
|
// As a prepass, go ahead and aggressively destroy single entry phi nodes.
|
|
// These are created by LCSSA. They have the effect of increasing the size
|
|
// of liveness sets for no good reason. It may be harder to do this post
|
|
// insertion since relocations and base phis can confuse things.
|
|
for (BasicBlock &BB : F)
|
|
if (BB.getUniquePredecessor())
|
|
MadeChange |= FoldSingleEntryPHINodes(&BB);
|
|
|
|
// Before we start introducing relocations, we want to tweak the IR a bit to
|
|
// avoid unfortunate code generation effects. The main example is that we
|
|
// want to try to make sure the comparison feeding a branch is after any
|
|
// safepoints. Otherwise, we end up with a comparison of pre-relocation
|
|
// values feeding a branch after relocation. This is semantically correct,
|
|
// but results in extra register pressure since both the pre-relocation and
|
|
// post-relocation copies must be available in registers. For code without
|
|
// relocations this is handled elsewhere, but teaching the scheduler to
|
|
// reverse the transform we're about to do would be slightly complex.
|
|
// Note: This may extend the live range of the inputs to the icmp and thus
|
|
// increase the liveset of any statepoint we move over. This is profitable
|
|
// as long as all statepoints are in rare blocks. If we had in-register
|
|
// lowering for live values this would be a much safer transform.
|
|
auto getConditionInst = [](Instruction *TI) -> Instruction * {
|
|
if (auto *BI = dyn_cast<BranchInst>(TI))
|
|
if (BI->isConditional())
|
|
return dyn_cast<Instruction>(BI->getCondition());
|
|
// TODO: Extend this to handle switches
|
|
return nullptr;
|
|
};
|
|
for (BasicBlock &BB : F) {
|
|
Instruction *TI = BB.getTerminator();
|
|
if (auto *Cond = getConditionInst(TI))
|
|
// TODO: Handle more than just ICmps here. We should be able to move
|
|
// most instructions without side effects or memory access.
|
|
if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
|
|
MadeChange = true;
|
|
Cond->moveBefore(TI);
|
|
}
|
|
}
|
|
|
|
// Nasty workaround - The base computation code in the main algorithm doesn't
|
|
// consider the fact that a GEP can be used to convert a scalar to a vector.
|
|
// The right fix for this is to integrate GEPs into the base rewriting
|
|
// algorithm properly, this is just a short term workaround to prevent
|
|
// crashes by canonicalizing such GEPs into fully vector GEPs.
|
|
for (Instruction &I : instructions(F)) {
|
|
if (!isa<GetElementPtrInst>(I))
|
|
continue;
|
|
|
|
unsigned VF = 0;
|
|
for (unsigned i = 0; i < I.getNumOperands(); i++)
|
|
if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) {
|
|
assert(VF == 0 ||
|
|
VF == cast<FixedVectorType>(OpndVTy)->getNumElements());
|
|
VF = cast<FixedVectorType>(OpndVTy)->getNumElements();
|
|
}
|
|
|
|
// It's the vector to scalar traversal through the pointer operand which
|
|
// confuses base pointer rewriting, so limit ourselves to that case.
|
|
if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
|
|
IRBuilder<> B(&I);
|
|
auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
|
|
I.setOperand(0, Splat);
|
|
MadeChange = true;
|
|
}
|
|
}
|
|
|
|
// Cache the 'defining value' relation used in the computation and
|
|
// insertion of base phis and selects. This ensures that we don't insert
|
|
// large numbers of duplicate base_phis. Use one cache for both
|
|
// inlineGetBaseAndOffset() and insertParsePoints().
|
|
DefiningValueMapTy DVCache;
|
|
|
|
// Mapping between a base values and a flag indicating whether it's a known
|
|
// base or not.
|
|
IsKnownBaseMapTy KnownBases;
|
|
|
|
if (!Intrinsics.empty())
|
|
// Inline @gc.get.pointer.base() and @gc.get.pointer.offset() before finding
|
|
// live references.
|
|
MadeChange |= inlineGetBaseAndOffset(F, Intrinsics, DVCache, KnownBases);
|
|
|
|
if (!ParsePointNeeded.empty())
|
|
MadeChange |=
|
|
insertParsePoints(F, DT, TTI, ParsePointNeeded, DVCache, KnownBases);
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
// liveness computation via standard dataflow
|
|
// -------------------------------------------------------------------
|
|
|
|
// TODO: Consider using bitvectors for liveness, the set of potentially
|
|
// interesting values should be small and easy to pre-compute.
|
|
|
|
/// Compute the live-in set for the location rbegin starting from
|
|
/// the live-out set of the basic block
|
|
static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
|
|
BasicBlock::reverse_iterator End,
|
|
SetVector<Value *> &LiveTmp) {
|
|
for (auto &I : make_range(Begin, End)) {
|
|
// KILL/Def - Remove this definition from LiveIn
|
|
LiveTmp.remove(&I);
|
|
|
|
// Don't consider *uses* in PHI nodes, we handle their contribution to
|
|
// predecessor blocks when we seed the LiveOut sets
|
|
if (isa<PHINode>(I))
|
|
continue;
|
|
|
|
// USE - Add to the LiveIn set for this instruction
|
|
for (Value *V : I.operands()) {
|
|
assert(!isUnhandledGCPointerType(V->getType()) &&
|
|
"support for FCA unimplemented");
|
|
if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
|
|
// The choice to exclude all things constant here is slightly subtle.
|
|
// There are two independent reasons:
|
|
// - We assume that things which are constant (from LLVM's definition)
|
|
// do not move at runtime. For example, the address of a global
|
|
// variable is fixed, even though it's contents may not be.
|
|
// - Second, we can't disallow arbitrary inttoptr constants even
|
|
// if the language frontend does. Optimization passes are free to
|
|
// locally exploit facts without respect to global reachability. This
|
|
// can create sections of code which are dynamically unreachable and
|
|
// contain just about anything. (see constants.ll in tests)
|
|
LiveTmp.insert(V);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
|
|
for (BasicBlock *Succ : successors(BB)) {
|
|
for (auto &I : *Succ) {
|
|
PHINode *PN = dyn_cast<PHINode>(&I);
|
|
if (!PN)
|
|
break;
|
|
|
|
Value *V = PN->getIncomingValueForBlock(BB);
|
|
assert(!isUnhandledGCPointerType(V->getType()) &&
|
|
"support for FCA unimplemented");
|
|
if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
|
|
LiveTmp.insert(V);
|
|
}
|
|
}
|
|
}
|
|
|
|
static SetVector<Value *> computeKillSet(BasicBlock *BB) {
|
|
SetVector<Value *> KillSet;
|
|
for (Instruction &I : *BB)
|
|
if (isHandledGCPointerType(I.getType()))
|
|
KillSet.insert(&I);
|
|
return KillSet;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/// Check that the items in 'Live' dominate 'TI'. This is used as a basic
|
|
/// validation check for the liveness computation.
|
|
static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
|
|
Instruction *TI, bool TermOkay = false) {
|
|
for (Value *V : Live) {
|
|
if (auto *I = dyn_cast<Instruction>(V)) {
|
|
// The terminator can be a member of the LiveOut set. LLVM's definition
|
|
// of instruction dominance states that V does not dominate itself. As
|
|
// such, we need to special case this to allow it.
|
|
if (TermOkay && TI == I)
|
|
continue;
|
|
assert(DT.dominates(I, TI) &&
|
|
"basic SSA liveness expectation violated by liveness analysis");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Check that all the liveness sets used during the computation of liveness
|
|
/// obey basic SSA properties. This is useful for finding cases where we miss
|
|
/// a def.
|
|
static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
|
|
BasicBlock &BB) {
|
|
checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
|
|
checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
|
|
checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
|
|
}
|
|
#endif
|
|
|
|
static void computeLiveInValues(DominatorTree &DT, Function &F,
|
|
GCPtrLivenessData &Data) {
|
|
SmallSetVector<BasicBlock *, 32> Worklist;
|
|
|
|
// Seed the liveness for each individual block
|
|
for (BasicBlock &BB : F) {
|
|
Data.KillSet[&BB] = computeKillSet(&BB);
|
|
Data.LiveSet[&BB].clear();
|
|
computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
|
|
|
|
#ifndef NDEBUG
|
|
for (Value *Kill : Data.KillSet[&BB])
|
|
assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
|
|
#endif
|
|
|
|
Data.LiveOut[&BB] = SetVector<Value *>();
|
|
computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
|
|
Data.LiveIn[&BB] = Data.LiveSet[&BB];
|
|
Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
|
|
Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
|
|
if (!Data.LiveIn[&BB].empty())
|
|
Worklist.insert(pred_begin(&BB), pred_end(&BB));
|
|
}
|
|
|
|
// Propagate that liveness until stable
|
|
while (!Worklist.empty()) {
|
|
BasicBlock *BB = Worklist.pop_back_val();
|
|
|
|
// Compute our new liveout set, then exit early if it hasn't changed despite
|
|
// the contribution of our successor.
|
|
SetVector<Value *> LiveOut = Data.LiveOut[BB];
|
|
const auto OldLiveOutSize = LiveOut.size();
|
|
for (BasicBlock *Succ : successors(BB)) {
|
|
assert(Data.LiveIn.count(Succ));
|
|
LiveOut.set_union(Data.LiveIn[Succ]);
|
|
}
|
|
// assert OutLiveOut is a subset of LiveOut
|
|
if (OldLiveOutSize == LiveOut.size()) {
|
|
// If the sets are the same size, then we didn't actually add anything
|
|
// when unioning our successors LiveIn. Thus, the LiveIn of this block
|
|
// hasn't changed.
|
|
continue;
|
|
}
|
|
Data.LiveOut[BB] = LiveOut;
|
|
|
|
// Apply the effects of this basic block
|
|
SetVector<Value *> LiveTmp = LiveOut;
|
|
LiveTmp.set_union(Data.LiveSet[BB]);
|
|
LiveTmp.set_subtract(Data.KillSet[BB]);
|
|
|
|
assert(Data.LiveIn.count(BB));
|
|
const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
|
|
// assert: OldLiveIn is a subset of LiveTmp
|
|
if (OldLiveIn.size() != LiveTmp.size()) {
|
|
Data.LiveIn[BB] = LiveTmp;
|
|
Worklist.insert(pred_begin(BB), pred_end(BB));
|
|
}
|
|
} // while (!Worklist.empty())
|
|
|
|
#ifndef NDEBUG
|
|
// Verify our output against SSA properties. This helps catch any
|
|
// missing kills during the above iteration.
|
|
for (BasicBlock &BB : F)
|
|
checkBasicSSA(DT, Data, BB);
|
|
#endif
|
|
}
|
|
|
|
static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
|
|
StatepointLiveSetTy &Out) {
|
|
BasicBlock *BB = Inst->getParent();
|
|
|
|
// Note: The copy is intentional and required
|
|
assert(Data.LiveOut.count(BB));
|
|
SetVector<Value *> LiveOut = Data.LiveOut[BB];
|
|
|
|
// We want to handle the statepoint itself oddly. It's
|
|
// call result is not live (normal), nor are it's arguments
|
|
// (unless they're used again later). This adjustment is
|
|
// specifically what we need to relocate
|
|
computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
|
|
LiveOut);
|
|
LiveOut.remove(Inst);
|
|
Out.insert(LiveOut.begin(), LiveOut.end());
|
|
}
|
|
|
|
static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
|
|
CallBase *Call,
|
|
PartiallyConstructedSafepointRecord &Info,
|
|
PointerToBaseTy &PointerToBase) {
|
|
StatepointLiveSetTy Updated;
|
|
findLiveSetAtInst(Call, RevisedLivenessData, Updated);
|
|
|
|
// We may have base pointers which are now live that weren't before. We need
|
|
// to update the PointerToBase structure to reflect this.
|
|
for (auto *V : Updated)
|
|
PointerToBase.insert({ V, V });
|
|
|
|
Info.LiveSet = Updated;
|
|
}
|