11672 lines
460 KiB
C++
11672 lines
460 KiB
C++
//===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that RISCV uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "RISCVISelLowering.h"
|
|
#include "MCTargetDesc/RISCVMatInt.h"
|
|
#include "RISCV.h"
|
|
#include "RISCVMachineFunctionInfo.h"
|
|
#include "RISCVRegisterInfo.h"
|
|
#include "RISCVSubtarget.h"
|
|
#include "RISCVTargetMachine.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/DiagnosticPrinter.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/IntrinsicsRISCV.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "riscv-lower"
|
|
|
|
STATISTIC(NumTailCalls, "Number of tail calls");
|
|
|
|
RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
|
|
const RISCVSubtarget &STI)
|
|
: TargetLowering(TM), Subtarget(STI) {
|
|
|
|
if (Subtarget.isRV32E())
|
|
report_fatal_error("Codegen not yet implemented for RV32E");
|
|
|
|
RISCVABI::ABI ABI = Subtarget.getTargetABI();
|
|
assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
|
|
|
|
if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
|
|
!Subtarget.hasStdExtF()) {
|
|
errs() << "Hard-float 'f' ABI can't be used for a target that "
|
|
"doesn't support the F instruction set extension (ignoring "
|
|
"target-abi)\n";
|
|
ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
|
|
} else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
|
|
!Subtarget.hasStdExtD()) {
|
|
errs() << "Hard-float 'd' ABI can't be used for a target that "
|
|
"doesn't support the D instruction set extension (ignoring "
|
|
"target-abi)\n";
|
|
ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
|
|
}
|
|
|
|
switch (ABI) {
|
|
default:
|
|
report_fatal_error("Don't know how to lower this ABI");
|
|
case RISCVABI::ABI_ILP32:
|
|
case RISCVABI::ABI_ILP32F:
|
|
case RISCVABI::ABI_ILP32D:
|
|
case RISCVABI::ABI_LP64:
|
|
case RISCVABI::ABI_LP64F:
|
|
case RISCVABI::ABI_LP64D:
|
|
break;
|
|
}
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
// Set up the register classes.
|
|
addRegisterClass(XLenVT, &RISCV::GPRRegClass);
|
|
|
|
if (Subtarget.hasStdExtZfh())
|
|
addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
|
|
if (Subtarget.hasStdExtF())
|
|
addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
|
|
if (Subtarget.hasStdExtD())
|
|
addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
|
|
|
|
static const MVT::SimpleValueType BoolVecVTs[] = {
|
|
MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1,
|
|
MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
|
|
static const MVT::SimpleValueType IntVecVTs[] = {
|
|
MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8,
|
|
MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16,
|
|
MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
|
|
MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
|
|
MVT::nxv4i64, MVT::nxv8i64};
|
|
static const MVT::SimpleValueType F16VecVTs[] = {
|
|
MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16,
|
|
MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
|
|
static const MVT::SimpleValueType F32VecVTs[] = {
|
|
MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
|
|
static const MVT::SimpleValueType F64VecVTs[] = {
|
|
MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
|
|
|
|
if (Subtarget.hasVInstructions()) {
|
|
auto addRegClassForRVV = [this](MVT VT) {
|
|
unsigned Size = VT.getSizeInBits().getKnownMinValue();
|
|
assert(Size <= 512 && isPowerOf2_32(Size));
|
|
const TargetRegisterClass *RC;
|
|
if (Size <= 64)
|
|
RC = &RISCV::VRRegClass;
|
|
else if (Size == 128)
|
|
RC = &RISCV::VRM2RegClass;
|
|
else if (Size == 256)
|
|
RC = &RISCV::VRM4RegClass;
|
|
else
|
|
RC = &RISCV::VRM8RegClass;
|
|
|
|
addRegisterClass(VT, RC);
|
|
};
|
|
|
|
for (MVT VT : BoolVecVTs)
|
|
addRegClassForRVV(VT);
|
|
for (MVT VT : IntVecVTs) {
|
|
if (VT.getVectorElementType() == MVT::i64 &&
|
|
!Subtarget.hasVInstructionsI64())
|
|
continue;
|
|
addRegClassForRVV(VT);
|
|
}
|
|
|
|
if (Subtarget.hasVInstructionsF16())
|
|
for (MVT VT : F16VecVTs)
|
|
addRegClassForRVV(VT);
|
|
|
|
if (Subtarget.hasVInstructionsF32())
|
|
for (MVT VT : F32VecVTs)
|
|
addRegClassForRVV(VT);
|
|
|
|
if (Subtarget.hasVInstructionsF64())
|
|
for (MVT VT : F64VecVTs)
|
|
addRegClassForRVV(VT);
|
|
|
|
if (Subtarget.useRVVForFixedLengthVectors()) {
|
|
auto addRegClassForFixedVectors = [this](MVT VT) {
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VT);
|
|
unsigned RCID = getRegClassIDForVecVT(ContainerVT);
|
|
const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
|
|
addRegisterClass(VT, TRI.getRegClass(RCID));
|
|
};
|
|
for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
|
|
if (useRVVForFixedLengthVectorVT(VT))
|
|
addRegClassForFixedVectors(VT);
|
|
|
|
for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
|
|
if (useRVVForFixedLengthVectorVT(VT))
|
|
addRegClassForFixedVectors(VT);
|
|
}
|
|
}
|
|
|
|
// Compute derived properties from the register classes.
|
|
computeRegisterProperties(STI.getRegisterInfo());
|
|
|
|
setStackPointerRegisterToSaveRestore(RISCV::X2);
|
|
|
|
for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
|
|
setLoadExtAction(N, XLenVT, MVT::i1, Promote);
|
|
|
|
// TODO: add all necessary setOperationAction calls.
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
|
|
|
|
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
|
|
setOperationAction(ISD::BR_CC, XLenVT, Expand);
|
|
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
|
|
setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
|
|
|
|
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
|
|
|
|
setOperationAction(ISD::VASTART, MVT::Other, Custom);
|
|
setOperationAction(ISD::VAARG, MVT::Other, Expand);
|
|
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
|
|
setOperationAction(ISD::VAEND, MVT::Other, Expand);
|
|
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
|
|
if (!Subtarget.hasStdExtZbb()) {
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
|
|
}
|
|
|
|
if (Subtarget.is64Bit()) {
|
|
setOperationAction(ISD::ADD, MVT::i32, Custom);
|
|
setOperationAction(ISD::SUB, MVT::i32, Custom);
|
|
setOperationAction(ISD::SHL, MVT::i32, Custom);
|
|
setOperationAction(ISD::SRA, MVT::i32, Custom);
|
|
setOperationAction(ISD::SRL, MVT::i32, Custom);
|
|
|
|
setOperationAction(ISD::UADDO, MVT::i32, Custom);
|
|
setOperationAction(ISD::USUBO, MVT::i32, Custom);
|
|
setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
|
|
setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
|
|
} else {
|
|
setLibcallName(RTLIB::SHL_I128, nullptr);
|
|
setLibcallName(RTLIB::SRL_I128, nullptr);
|
|
setLibcallName(RTLIB::SRA_I128, nullptr);
|
|
setLibcallName(RTLIB::MUL_I128, nullptr);
|
|
setLibcallName(RTLIB::MULO_I64, nullptr);
|
|
}
|
|
|
|
if (!Subtarget.hasStdExtM()) {
|
|
setOperationAction(ISD::MUL, XLenVT, Expand);
|
|
setOperationAction(ISD::MULHS, XLenVT, Expand);
|
|
setOperationAction(ISD::MULHU, XLenVT, Expand);
|
|
setOperationAction(ISD::SDIV, XLenVT, Expand);
|
|
setOperationAction(ISD::UDIV, XLenVT, Expand);
|
|
setOperationAction(ISD::SREM, XLenVT, Expand);
|
|
setOperationAction(ISD::UREM, XLenVT, Expand);
|
|
} else {
|
|
if (Subtarget.is64Bit()) {
|
|
setOperationAction(ISD::MUL, MVT::i32, Custom);
|
|
setOperationAction(ISD::MUL, MVT::i128, Custom);
|
|
|
|
setOperationAction(ISD::SDIV, MVT::i8, Custom);
|
|
setOperationAction(ISD::UDIV, MVT::i8, Custom);
|
|
setOperationAction(ISD::UREM, MVT::i8, Custom);
|
|
setOperationAction(ISD::SDIV, MVT::i16, Custom);
|
|
setOperationAction(ISD::UDIV, MVT::i16, Custom);
|
|
setOperationAction(ISD::UREM, MVT::i16, Custom);
|
|
setOperationAction(ISD::SDIV, MVT::i32, Custom);
|
|
setOperationAction(ISD::UDIV, MVT::i32, Custom);
|
|
setOperationAction(ISD::UREM, MVT::i32, Custom);
|
|
} else {
|
|
setOperationAction(ISD::MUL, MVT::i64, Custom);
|
|
}
|
|
}
|
|
|
|
setOperationAction(ISD::SDIVREM, XLenVT, Expand);
|
|
setOperationAction(ISD::UDIVREM, XLenVT, Expand);
|
|
setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
|
|
|
|
setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
|
|
setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
|
|
setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
|
|
|
|
if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
|
|
Subtarget.hasStdExtZbkb()) {
|
|
if (Subtarget.is64Bit()) {
|
|
setOperationAction(ISD::ROTL, MVT::i32, Custom);
|
|
setOperationAction(ISD::ROTR, MVT::i32, Custom);
|
|
}
|
|
} else {
|
|
setOperationAction(ISD::ROTL, XLenVT, Expand);
|
|
setOperationAction(ISD::ROTR, XLenVT, Expand);
|
|
}
|
|
|
|
if (Subtarget.hasStdExtZbp()) {
|
|
// Custom lower bswap/bitreverse so we can convert them to GREVI to enable
|
|
// more combining.
|
|
setOperationAction(ISD::BITREVERSE, XLenVT, Custom);
|
|
setOperationAction(ISD::BSWAP, XLenVT, Custom);
|
|
setOperationAction(ISD::BITREVERSE, MVT::i8, Custom);
|
|
// BSWAP i8 doesn't exist.
|
|
setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
|
|
setOperationAction(ISD::BSWAP, MVT::i16, Custom);
|
|
|
|
if (Subtarget.is64Bit()) {
|
|
setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
|
|
setOperationAction(ISD::BSWAP, MVT::i32, Custom);
|
|
}
|
|
} else {
|
|
// With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
|
|
// pattern match it directly in isel.
|
|
setOperationAction(ISD::BSWAP, XLenVT,
|
|
(Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
|
|
? Legal
|
|
: Expand);
|
|
// Zbkb can use rev8+brev8 to implement bitreverse.
|
|
setOperationAction(ISD::BITREVERSE, XLenVT,
|
|
Subtarget.hasStdExtZbkb() ? Custom : Expand);
|
|
}
|
|
|
|
if (Subtarget.hasStdExtZbb()) {
|
|
setOperationAction(ISD::SMIN, XLenVT, Legal);
|
|
setOperationAction(ISD::SMAX, XLenVT, Legal);
|
|
setOperationAction(ISD::UMIN, XLenVT, Legal);
|
|
setOperationAction(ISD::UMAX, XLenVT, Legal);
|
|
|
|
if (Subtarget.is64Bit()) {
|
|
setOperationAction(ISD::CTTZ, MVT::i32, Custom);
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
|
|
setOperationAction(ISD::CTLZ, MVT::i32, Custom);
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
|
|
}
|
|
} else {
|
|
setOperationAction(ISD::CTTZ, XLenVT, Expand);
|
|
setOperationAction(ISD::CTLZ, XLenVT, Expand);
|
|
setOperationAction(ISD::CTPOP, XLenVT, Expand);
|
|
|
|
if (Subtarget.is64Bit())
|
|
setOperationAction(ISD::ABS, MVT::i32, Custom);
|
|
}
|
|
|
|
if (Subtarget.hasStdExtZbt()) {
|
|
setOperationAction(ISD::FSHL, XLenVT, Custom);
|
|
setOperationAction(ISD::FSHR, XLenVT, Custom);
|
|
setOperationAction(ISD::SELECT, XLenVT, Legal);
|
|
|
|
if (Subtarget.is64Bit()) {
|
|
setOperationAction(ISD::FSHL, MVT::i32, Custom);
|
|
setOperationAction(ISD::FSHR, MVT::i32, Custom);
|
|
}
|
|
} else {
|
|
setOperationAction(ISD::SELECT, XLenVT, Custom);
|
|
}
|
|
|
|
static constexpr ISD::NodeType FPLegalNodeTypes[] = {
|
|
ISD::FMINNUM, ISD::FMAXNUM, ISD::LRINT,
|
|
ISD::LLRINT, ISD::LROUND, ISD::LLROUND,
|
|
ISD::STRICT_LRINT, ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
|
|
ISD::STRICT_LLROUND, ISD::STRICT_FMA, ISD::STRICT_FADD,
|
|
ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV,
|
|
ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
|
|
|
|
static const ISD::CondCode FPCCToExpand[] = {
|
|
ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
|
|
ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
|
|
ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO};
|
|
|
|
static const ISD::NodeType FPOpToExpand[] = {
|
|
ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW,
|
|
ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
|
|
|
|
if (Subtarget.hasStdExtZfh())
|
|
setOperationAction(ISD::BITCAST, MVT::i16, Custom);
|
|
|
|
if (Subtarget.hasStdExtZfh()) {
|
|
for (auto NT : FPLegalNodeTypes)
|
|
setOperationAction(NT, MVT::f16, Legal);
|
|
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
|
|
setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
|
|
for (auto CC : FPCCToExpand)
|
|
setCondCodeAction(CC, MVT::f16, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::f16, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::f16, Expand);
|
|
|
|
setOperationAction(ISD::FREM, MVT::f16, Promote);
|
|
setOperationAction(ISD::FCEIL, MVT::f16, Promote);
|
|
setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
|
|
setOperationAction(ISD::FRINT, MVT::f16, Promote);
|
|
setOperationAction(ISD::FROUND, MVT::f16, Promote);
|
|
setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote);
|
|
setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
|
|
setOperationAction(ISD::FPOW, MVT::f16, Promote);
|
|
setOperationAction(ISD::FPOWI, MVT::f16, Promote);
|
|
setOperationAction(ISD::FCOS, MVT::f16, Promote);
|
|
setOperationAction(ISD::FSIN, MVT::f16, Promote);
|
|
setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
|
|
setOperationAction(ISD::FEXP, MVT::f16, Promote);
|
|
setOperationAction(ISD::FEXP2, MVT::f16, Promote);
|
|
setOperationAction(ISD::FLOG, MVT::f16, Promote);
|
|
setOperationAction(ISD::FLOG2, MVT::f16, Promote);
|
|
setOperationAction(ISD::FLOG10, MVT::f16, Promote);
|
|
|
|
// FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
|
|
// complete support for all operations in LegalizeDAG.
|
|
|
|
// We need to custom promote this.
|
|
if (Subtarget.is64Bit())
|
|
setOperationAction(ISD::FPOWI, MVT::i32, Custom);
|
|
}
|
|
|
|
if (Subtarget.hasStdExtF()) {
|
|
for (auto NT : FPLegalNodeTypes)
|
|
setOperationAction(NT, MVT::f32, Legal);
|
|
for (auto CC : FPCCToExpand)
|
|
setCondCodeAction(CC, MVT::f32, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::f32, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::f32, Expand);
|
|
for (auto Op : FPOpToExpand)
|
|
setOperationAction(Op, MVT::f32, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
|
|
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
|
|
}
|
|
|
|
if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
|
|
setOperationAction(ISD::BITCAST, MVT::i32, Custom);
|
|
|
|
if (Subtarget.hasStdExtD()) {
|
|
for (auto NT : FPLegalNodeTypes)
|
|
setOperationAction(NT, MVT::f64, Legal);
|
|
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
|
|
setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
|
|
for (auto CC : FPCCToExpand)
|
|
setCondCodeAction(CC, MVT::f64, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::f64, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::f64, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
|
|
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
|
|
for (auto Op : FPOpToExpand)
|
|
setOperationAction(Op, MVT::f64, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
|
|
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
|
|
}
|
|
|
|
if (Subtarget.is64Bit()) {
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
|
|
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
|
|
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
|
|
}
|
|
|
|
if (Subtarget.hasStdExtF()) {
|
|
setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
|
|
|
|
setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal);
|
|
setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal);
|
|
setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal);
|
|
setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal);
|
|
|
|
setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
|
|
setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
|
|
setOperationAction(ISD::BlockAddress, XLenVT, Custom);
|
|
setOperationAction(ISD::ConstantPool, XLenVT, Custom);
|
|
setOperationAction(ISD::JumpTable, XLenVT, Custom);
|
|
|
|
setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
|
|
|
|
// TODO: On M-mode only targets, the cycle[h] CSR may not be present.
|
|
// Unfortunately this can't be determined just from the ISA naming string.
|
|
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
|
|
Subtarget.is64Bit() ? Legal : Custom);
|
|
|
|
setOperationAction(ISD::TRAP, MVT::Other, Legal);
|
|
setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
|
|
if (Subtarget.is64Bit())
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
|
|
|
|
if (Subtarget.hasStdExtA()) {
|
|
setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
|
|
setMinCmpXchgSizeInBits(32);
|
|
} else {
|
|
setMaxAtomicSizeInBitsSupported(0);
|
|
}
|
|
|
|
setBooleanContents(ZeroOrOneBooleanContent);
|
|
|
|
if (Subtarget.hasVInstructions()) {
|
|
setBooleanVectorContents(ZeroOrOneBooleanContent);
|
|
|
|
setOperationAction(ISD::VSCALE, XLenVT, Custom);
|
|
|
|
// RVV intrinsics may have illegal operands.
|
|
// We also need to custom legalize vmv.x.s.
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
|
|
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
|
|
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
|
|
if (Subtarget.is64Bit()) {
|
|
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
|
|
} else {
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
|
|
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
|
|
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
|
|
|
|
static const unsigned IntegerVPOps[] = {
|
|
ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL,
|
|
ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM,
|
|
ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR,
|
|
ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR,
|
|
ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND,
|
|
ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX,
|
|
ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
|
|
ISD::VP_MERGE, ISD::VP_SELECT};
|
|
|
|
static const unsigned FloatingPointVPOps[] = {
|
|
ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL,
|
|
ISD::VP_FDIV, ISD::VP_FNEG, ISD::VP_FMA,
|
|
ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, ISD::VP_REDUCE_FMIN,
|
|
ISD::VP_REDUCE_FMAX, ISD::VP_MERGE, ISD::VP_SELECT};
|
|
|
|
if (!Subtarget.is64Bit()) {
|
|
// We must custom-lower certain vXi64 operations on RV32 due to the vector
|
|
// element type being illegal.
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
|
|
|
|
setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
|
|
setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
|
|
setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
|
|
setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
|
|
setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
|
|
setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
|
|
setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
|
|
setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
|
|
|
|
setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
|
|
setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
|
|
setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
|
|
setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
|
|
setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
|
|
setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
|
|
setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
|
|
setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
|
|
}
|
|
|
|
for (MVT VT : BoolVecVTs) {
|
|
setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
|
|
|
|
// Mask VTs are custom-expanded into a series of standard nodes
|
|
setOperationAction(ISD::TRUNCATE, VT, Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
|
|
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
|
|
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
|
|
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
|
|
|
|
setOperationAction(ISD::SELECT, VT, Custom);
|
|
setOperationAction(ISD::SELECT_CC, VT, Expand);
|
|
setOperationAction(ISD::VSELECT, VT, Expand);
|
|
setOperationAction(ISD::VP_MERGE, VT, Expand);
|
|
setOperationAction(ISD::VP_SELECT, VT, Expand);
|
|
|
|
setOperationAction(ISD::VP_AND, VT, Custom);
|
|
setOperationAction(ISD::VP_OR, VT, Custom);
|
|
setOperationAction(ISD::VP_XOR, VT, Custom);
|
|
|
|
setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
|
|
|
|
setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
|
|
setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
|
|
setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
|
|
|
|
// RVV has native int->float & float->int conversions where the
|
|
// element type sizes are within one power-of-two of each other. Any
|
|
// wider distances between type sizes have to be lowered as sequences
|
|
// which progressively narrow the gap in stages.
|
|
setOperationAction(ISD::SINT_TO_FP, VT, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, VT, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, VT, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, VT, Custom);
|
|
|
|
// Expand all extending loads to types larger than this, and truncating
|
|
// stores from types larger than this.
|
|
for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
|
|
setTruncStoreAction(OtherVT, VT, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
|
|
setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
|
|
setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
|
|
}
|
|
}
|
|
|
|
for (MVT VT : IntVecVTs) {
|
|
if (VT.getVectorElementType() == MVT::i64 &&
|
|
!Subtarget.hasVInstructionsI64())
|
|
continue;
|
|
|
|
setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
|
|
setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
|
|
|
|
// Vectors implement MULHS/MULHU.
|
|
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
|
|
|
|
// nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
|
|
if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) {
|
|
setOperationAction(ISD::MULHU, VT, Expand);
|
|
setOperationAction(ISD::MULHS, VT, Expand);
|
|
}
|
|
|
|
setOperationAction(ISD::SMIN, VT, Legal);
|
|
setOperationAction(ISD::SMAX, VT, Legal);
|
|
setOperationAction(ISD::UMIN, VT, Legal);
|
|
setOperationAction(ISD::UMAX, VT, Legal);
|
|
|
|
setOperationAction(ISD::ROTL, VT, Expand);
|
|
setOperationAction(ISD::ROTR, VT, Expand);
|
|
|
|
setOperationAction(ISD::CTTZ, VT, Expand);
|
|
setOperationAction(ISD::CTLZ, VT, Expand);
|
|
setOperationAction(ISD::CTPOP, VT, Expand);
|
|
|
|
setOperationAction(ISD::BSWAP, VT, Expand);
|
|
|
|
// Custom-lower extensions and truncations from/to mask types.
|
|
setOperationAction(ISD::ANY_EXTEND, VT, Custom);
|
|
setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
|
|
setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
|
|
|
|
// RVV has native int->float & float->int conversions where the
|
|
// element type sizes are within one power-of-two of each other. Any
|
|
// wider distances between type sizes have to be lowered as sequences
|
|
// which progressively narrow the gap in stages.
|
|
setOperationAction(ISD::SINT_TO_FP, VT, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, VT, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, VT, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, VT, Custom);
|
|
|
|
setOperationAction(ISD::SADDSAT, VT, Legal);
|
|
setOperationAction(ISD::UADDSAT, VT, Legal);
|
|
setOperationAction(ISD::SSUBSAT, VT, Legal);
|
|
setOperationAction(ISD::USUBSAT, VT, Legal);
|
|
|
|
// Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
|
|
// nodes which truncate by one power of two at a time.
|
|
setOperationAction(ISD::TRUNCATE, VT, Custom);
|
|
|
|
// Custom-lower insert/extract operations to simplify patterns.
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
|
|
|
|
// Custom-lower reduction operations to set up the corresponding custom
|
|
// nodes' operands.
|
|
setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
|
|
|
|
for (unsigned VPOpc : IntegerVPOps)
|
|
setOperationAction(VPOpc, VT, Custom);
|
|
|
|
setOperationAction(ISD::LOAD, VT, Custom);
|
|
setOperationAction(ISD::STORE, VT, Custom);
|
|
|
|
setOperationAction(ISD::MLOAD, VT, Custom);
|
|
setOperationAction(ISD::MSTORE, VT, Custom);
|
|
setOperationAction(ISD::MGATHER, VT, Custom);
|
|
setOperationAction(ISD::MSCATTER, VT, Custom);
|
|
|
|
setOperationAction(ISD::VP_LOAD, VT, Custom);
|
|
setOperationAction(ISD::VP_STORE, VT, Custom);
|
|
setOperationAction(ISD::VP_GATHER, VT, Custom);
|
|
setOperationAction(ISD::VP_SCATTER, VT, Custom);
|
|
|
|
setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
|
|
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
|
|
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
|
|
|
|
setOperationAction(ISD::SELECT, VT, Custom);
|
|
setOperationAction(ISD::SELECT_CC, VT, Expand);
|
|
|
|
setOperationAction(ISD::STEP_VECTOR, VT, Custom);
|
|
setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
|
|
|
|
for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
|
|
setTruncStoreAction(VT, OtherVT, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
|
|
setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
|
|
setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
|
|
}
|
|
|
|
// Splice
|
|
setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
|
|
|
|
// Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
|
|
// type that can represent the value exactly.
|
|
if (VT.getVectorElementType() != MVT::i64) {
|
|
MVT FloatEltVT =
|
|
VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
|
|
EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
|
|
if (isTypeLegal(FloatVT)) {
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Expand various CCs to best match the RVV ISA, which natively supports UNE
|
|
// but no other unordered comparisons, and supports all ordered comparisons
|
|
// except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
|
|
// purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
|
|
// and we pattern-match those back to the "original", swapping operands once
|
|
// more. This way we catch both operations and both "vf" and "fv" forms with
|
|
// fewer patterns.
|
|
static const ISD::CondCode VFPCCToExpand[] = {
|
|
ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
|
|
ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
|
|
ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE,
|
|
};
|
|
|
|
// Sets common operation actions on RVV floating-point vector types.
|
|
const auto SetCommonVFPActions = [&](MVT VT) {
|
|
setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
|
|
// RVV has native FP_ROUND & FP_EXTEND conversions where the element type
|
|
// sizes are within one power-of-two of each other. Therefore conversions
|
|
// between vXf16 and vXf64 must be lowered as sequences which convert via
|
|
// vXf32.
|
|
setOperationAction(ISD::FP_ROUND, VT, Custom);
|
|
setOperationAction(ISD::FP_EXTEND, VT, Custom);
|
|
// Custom-lower insert/extract operations to simplify patterns.
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
|
|
// Expand various condition codes (explained above).
|
|
for (auto CC : VFPCCToExpand)
|
|
setCondCodeAction(CC, VT, Expand);
|
|
|
|
setOperationAction(ISD::FMINNUM, VT, Legal);
|
|
setOperationAction(ISD::FMAXNUM, VT, Legal);
|
|
|
|
setOperationAction(ISD::FTRUNC, VT, Custom);
|
|
setOperationAction(ISD::FCEIL, VT, Custom);
|
|
setOperationAction(ISD::FFLOOR, VT, Custom);
|
|
setOperationAction(ISD::FROUND, VT, Custom);
|
|
|
|
setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
|
|
|
|
setOperationAction(ISD::FCOPYSIGN, VT, Legal);
|
|
|
|
setOperationAction(ISD::LOAD, VT, Custom);
|
|
setOperationAction(ISD::STORE, VT, Custom);
|
|
|
|
setOperationAction(ISD::MLOAD, VT, Custom);
|
|
setOperationAction(ISD::MSTORE, VT, Custom);
|
|
setOperationAction(ISD::MGATHER, VT, Custom);
|
|
setOperationAction(ISD::MSCATTER, VT, Custom);
|
|
|
|
setOperationAction(ISD::VP_LOAD, VT, Custom);
|
|
setOperationAction(ISD::VP_STORE, VT, Custom);
|
|
setOperationAction(ISD::VP_GATHER, VT, Custom);
|
|
setOperationAction(ISD::VP_SCATTER, VT, Custom);
|
|
|
|
setOperationAction(ISD::SELECT, VT, Custom);
|
|
setOperationAction(ISD::SELECT_CC, VT, Expand);
|
|
|
|
setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
|
|
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
|
|
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
|
|
|
|
setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
|
|
setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
|
|
|
|
for (unsigned VPOpc : FloatingPointVPOps)
|
|
setOperationAction(VPOpc, VT, Custom);
|
|
};
|
|
|
|
// Sets common extload/truncstore actions on RVV floating-point vector
|
|
// types.
|
|
const auto SetCommonVFPExtLoadTruncStoreActions =
|
|
[&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
|
|
for (auto SmallVT : SmallerVTs) {
|
|
setTruncStoreAction(VT, SmallVT, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
|
|
}
|
|
};
|
|
|
|
if (Subtarget.hasVInstructionsF16())
|
|
for (MVT VT : F16VecVTs)
|
|
SetCommonVFPActions(VT);
|
|
|
|
for (MVT VT : F32VecVTs) {
|
|
if (Subtarget.hasVInstructionsF32())
|
|
SetCommonVFPActions(VT);
|
|
SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
|
|
}
|
|
|
|
for (MVT VT : F64VecVTs) {
|
|
if (Subtarget.hasVInstructionsF64())
|
|
SetCommonVFPActions(VT);
|
|
SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
|
|
SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
|
|
}
|
|
|
|
if (Subtarget.useRVVForFixedLengthVectors()) {
|
|
for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
|
|
if (!useRVVForFixedLengthVectorVT(VT))
|
|
continue;
|
|
|
|
// By default everything must be expanded.
|
|
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
|
|
setOperationAction(Op, VT, Expand);
|
|
for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
|
|
setTruncStoreAction(VT, OtherVT, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
|
|
setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
|
|
setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
|
|
}
|
|
|
|
// We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
|
|
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
|
|
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
|
|
|
|
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
|
|
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
|
|
|
|
setOperationAction(ISD::LOAD, VT, Custom);
|
|
setOperationAction(ISD::STORE, VT, Custom);
|
|
|
|
setOperationAction(ISD::SETCC, VT, Custom);
|
|
|
|
setOperationAction(ISD::SELECT, VT, Custom);
|
|
|
|
setOperationAction(ISD::TRUNCATE, VT, Custom);
|
|
|
|
setOperationAction(ISD::BITCAST, VT, Custom);
|
|
|
|
setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
|
|
|
|
setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
|
|
setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
|
|
setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
|
|
|
|
setOperationAction(ISD::SINT_TO_FP, VT, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, VT, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, VT, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, VT, Custom);
|
|
|
|
// Operations below are different for between masks and other vectors.
|
|
if (VT.getVectorElementType() == MVT::i1) {
|
|
setOperationAction(ISD::VP_AND, VT, Custom);
|
|
setOperationAction(ISD::VP_OR, VT, Custom);
|
|
setOperationAction(ISD::VP_XOR, VT, Custom);
|
|
setOperationAction(ISD::AND, VT, Custom);
|
|
setOperationAction(ISD::OR, VT, Custom);
|
|
setOperationAction(ISD::XOR, VT, Custom);
|
|
continue;
|
|
}
|
|
|
|
// Use SPLAT_VECTOR to prevent type legalization from destroying the
|
|
// splats when type legalizing i64 scalar on RV32.
|
|
// FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
|
|
// improvements first.
|
|
if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
|
|
setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
|
|
setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
|
|
|
|
setOperationAction(ISD::MLOAD, VT, Custom);
|
|
setOperationAction(ISD::MSTORE, VT, Custom);
|
|
setOperationAction(ISD::MGATHER, VT, Custom);
|
|
setOperationAction(ISD::MSCATTER, VT, Custom);
|
|
|
|
setOperationAction(ISD::VP_LOAD, VT, Custom);
|
|
setOperationAction(ISD::VP_STORE, VT, Custom);
|
|
setOperationAction(ISD::VP_GATHER, VT, Custom);
|
|
setOperationAction(ISD::VP_SCATTER, VT, Custom);
|
|
|
|
setOperationAction(ISD::ADD, VT, Custom);
|
|
setOperationAction(ISD::MUL, VT, Custom);
|
|
setOperationAction(ISD::SUB, VT, Custom);
|
|
setOperationAction(ISD::AND, VT, Custom);
|
|
setOperationAction(ISD::OR, VT, Custom);
|
|
setOperationAction(ISD::XOR, VT, Custom);
|
|
setOperationAction(ISD::SDIV, VT, Custom);
|
|
setOperationAction(ISD::SREM, VT, Custom);
|
|
setOperationAction(ISD::UDIV, VT, Custom);
|
|
setOperationAction(ISD::UREM, VT, Custom);
|
|
setOperationAction(ISD::SHL, VT, Custom);
|
|
setOperationAction(ISD::SRA, VT, Custom);
|
|
setOperationAction(ISD::SRL, VT, Custom);
|
|
|
|
setOperationAction(ISD::SMIN, VT, Custom);
|
|
setOperationAction(ISD::SMAX, VT, Custom);
|
|
setOperationAction(ISD::UMIN, VT, Custom);
|
|
setOperationAction(ISD::UMAX, VT, Custom);
|
|
setOperationAction(ISD::ABS, VT, Custom);
|
|
|
|
// vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
|
|
if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) {
|
|
setOperationAction(ISD::MULHS, VT, Custom);
|
|
setOperationAction(ISD::MULHU, VT, Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::SADDSAT, VT, Custom);
|
|
setOperationAction(ISD::UADDSAT, VT, Custom);
|
|
setOperationAction(ISD::SSUBSAT, VT, Custom);
|
|
setOperationAction(ISD::USUBSAT, VT, Custom);
|
|
|
|
setOperationAction(ISD::VSELECT, VT, Custom);
|
|
setOperationAction(ISD::SELECT_CC, VT, Expand);
|
|
|
|
setOperationAction(ISD::ANY_EXTEND, VT, Custom);
|
|
setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
|
|
setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
|
|
|
|
// Custom-lower reduction operations to set up the corresponding custom
|
|
// nodes' operands.
|
|
setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
|
|
|
|
for (unsigned VPOpc : IntegerVPOps)
|
|
setOperationAction(VPOpc, VT, Custom);
|
|
|
|
// Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
|
|
// type that can represent the value exactly.
|
|
if (VT.getVectorElementType() != MVT::i64) {
|
|
MVT FloatEltVT =
|
|
VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
|
|
EVT FloatVT =
|
|
MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
|
|
if (isTypeLegal(FloatVT)) {
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
|
|
if (!useRVVForFixedLengthVectorVT(VT))
|
|
continue;
|
|
|
|
// By default everything must be expanded.
|
|
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
|
|
setOperationAction(Op, VT, Expand);
|
|
for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
|
|
setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
|
|
setTruncStoreAction(VT, OtherVT, Expand);
|
|
}
|
|
|
|
// We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
|
|
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
|
|
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
|
|
|
|
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
|
|
|
|
setOperationAction(ISD::LOAD, VT, Custom);
|
|
setOperationAction(ISD::STORE, VT, Custom);
|
|
setOperationAction(ISD::MLOAD, VT, Custom);
|
|
setOperationAction(ISD::MSTORE, VT, Custom);
|
|
setOperationAction(ISD::MGATHER, VT, Custom);
|
|
setOperationAction(ISD::MSCATTER, VT, Custom);
|
|
|
|
setOperationAction(ISD::VP_LOAD, VT, Custom);
|
|
setOperationAction(ISD::VP_STORE, VT, Custom);
|
|
setOperationAction(ISD::VP_GATHER, VT, Custom);
|
|
setOperationAction(ISD::VP_SCATTER, VT, Custom);
|
|
|
|
setOperationAction(ISD::FADD, VT, Custom);
|
|
setOperationAction(ISD::FSUB, VT, Custom);
|
|
setOperationAction(ISD::FMUL, VT, Custom);
|
|
setOperationAction(ISD::FDIV, VT, Custom);
|
|
setOperationAction(ISD::FNEG, VT, Custom);
|
|
setOperationAction(ISD::FABS, VT, Custom);
|
|
setOperationAction(ISD::FCOPYSIGN, VT, Custom);
|
|
setOperationAction(ISD::FSQRT, VT, Custom);
|
|
setOperationAction(ISD::FMA, VT, Custom);
|
|
setOperationAction(ISD::FMINNUM, VT, Custom);
|
|
setOperationAction(ISD::FMAXNUM, VT, Custom);
|
|
|
|
setOperationAction(ISD::FP_ROUND, VT, Custom);
|
|
setOperationAction(ISD::FP_EXTEND, VT, Custom);
|
|
|
|
setOperationAction(ISD::FTRUNC, VT, Custom);
|
|
setOperationAction(ISD::FCEIL, VT, Custom);
|
|
setOperationAction(ISD::FFLOOR, VT, Custom);
|
|
setOperationAction(ISD::FROUND, VT, Custom);
|
|
|
|
for (auto CC : VFPCCToExpand)
|
|
setCondCodeAction(CC, VT, Expand);
|
|
|
|
setOperationAction(ISD::VSELECT, VT, Custom);
|
|
setOperationAction(ISD::SELECT, VT, Custom);
|
|
setOperationAction(ISD::SELECT_CC, VT, Expand);
|
|
|
|
setOperationAction(ISD::BITCAST, VT, Custom);
|
|
|
|
setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
|
|
|
|
for (unsigned VPOpc : FloatingPointVPOps)
|
|
setOperationAction(VPOpc, VT, Custom);
|
|
}
|
|
|
|
// Custom-legalize bitcasts from fixed-length vectors to scalar types.
|
|
setOperationAction(ISD::BITCAST, MVT::i8, Custom);
|
|
setOperationAction(ISD::BITCAST, MVT::i16, Custom);
|
|
setOperationAction(ISD::BITCAST, MVT::i32, Custom);
|
|
setOperationAction(ISD::BITCAST, MVT::i64, Custom);
|
|
if (Subtarget.hasStdExtZfh())
|
|
setOperationAction(ISD::BITCAST, MVT::f16, Custom);
|
|
if (Subtarget.hasStdExtF())
|
|
setOperationAction(ISD::BITCAST, MVT::f32, Custom);
|
|
if (Subtarget.hasStdExtD())
|
|
setOperationAction(ISD::BITCAST, MVT::f64, Custom);
|
|
}
|
|
}
|
|
|
|
// Function alignments.
|
|
const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
|
|
setMinFunctionAlignment(FunctionAlignment);
|
|
setPrefFunctionAlignment(FunctionAlignment);
|
|
|
|
setMinimumJumpTableEntries(5);
|
|
|
|
// Jumps are expensive, compared to logic
|
|
setJumpIsExpensive();
|
|
|
|
setTargetDAGCombine(ISD::ADD);
|
|
setTargetDAGCombine(ISD::SUB);
|
|
setTargetDAGCombine(ISD::AND);
|
|
setTargetDAGCombine(ISD::OR);
|
|
setTargetDAGCombine(ISD::XOR);
|
|
if (Subtarget.hasStdExtZbp()) {
|
|
setTargetDAGCombine(ISD::ROTL);
|
|
setTargetDAGCombine(ISD::ROTR);
|
|
}
|
|
if (Subtarget.hasStdExtZbkb())
|
|
setTargetDAGCombine(ISD::BITREVERSE);
|
|
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
|
|
if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb())
|
|
setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
|
|
if (Subtarget.hasStdExtF()) {
|
|
setTargetDAGCombine(ISD::ZERO_EXTEND);
|
|
setTargetDAGCombine(ISD::FP_TO_SINT);
|
|
setTargetDAGCombine(ISD::FP_TO_UINT);
|
|
setTargetDAGCombine(ISD::FP_TO_SINT_SAT);
|
|
setTargetDAGCombine(ISD::FP_TO_UINT_SAT);
|
|
}
|
|
if (Subtarget.hasVInstructions()) {
|
|
setTargetDAGCombine(ISD::FCOPYSIGN);
|
|
setTargetDAGCombine(ISD::MGATHER);
|
|
setTargetDAGCombine(ISD::MSCATTER);
|
|
setTargetDAGCombine(ISD::VP_GATHER);
|
|
setTargetDAGCombine(ISD::VP_SCATTER);
|
|
setTargetDAGCombine(ISD::SRA);
|
|
setTargetDAGCombine(ISD::SRL);
|
|
setTargetDAGCombine(ISD::SHL);
|
|
setTargetDAGCombine(ISD::STORE);
|
|
setTargetDAGCombine(ISD::SPLAT_VECTOR);
|
|
}
|
|
|
|
setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
|
|
setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
|
|
}
|
|
|
|
EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
|
|
LLVMContext &Context,
|
|
EVT VT) const {
|
|
if (!VT.isVector())
|
|
return getPointerTy(DL);
|
|
if (Subtarget.hasVInstructions() &&
|
|
(VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
|
|
return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
|
|
return VT.changeVectorElementTypeToInteger();
|
|
}
|
|
|
|
MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
|
|
return Subtarget.getXLenVT();
|
|
}
|
|
|
|
bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
|
|
const CallInst &I,
|
|
MachineFunction &MF,
|
|
unsigned Intrinsic) const {
|
|
auto &DL = I.getModule()->getDataLayout();
|
|
switch (Intrinsic) {
|
|
default:
|
|
return false;
|
|
case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
|
|
case Intrinsic::riscv_masked_atomicrmw_add_i32:
|
|
case Intrinsic::riscv_masked_atomicrmw_sub_i32:
|
|
case Intrinsic::riscv_masked_atomicrmw_nand_i32:
|
|
case Intrinsic::riscv_masked_atomicrmw_max_i32:
|
|
case Intrinsic::riscv_masked_atomicrmw_min_i32:
|
|
case Intrinsic::riscv_masked_atomicrmw_umax_i32:
|
|
case Intrinsic::riscv_masked_atomicrmw_umin_i32:
|
|
case Intrinsic::riscv_masked_cmpxchg_i32:
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::i32;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.align = Align(4);
|
|
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
|
|
MachineMemOperand::MOVolatile;
|
|
return true;
|
|
case Intrinsic::riscv_masked_strided_load:
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.ptrVal = I.getArgOperand(1);
|
|
Info.memVT = getValueType(DL, I.getType()->getScalarType());
|
|
Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
|
|
Info.size = MemoryLocation::UnknownSize;
|
|
Info.flags |= MachineMemOperand::MOLoad;
|
|
return true;
|
|
case Intrinsic::riscv_masked_strided_store:
|
|
Info.opc = ISD::INTRINSIC_VOID;
|
|
Info.ptrVal = I.getArgOperand(1);
|
|
Info.memVT =
|
|
getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
|
|
Info.align = Align(
|
|
DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
|
|
8);
|
|
Info.size = MemoryLocation::UnknownSize;
|
|
Info.flags |= MachineMemOperand::MOStore;
|
|
return true;
|
|
case Intrinsic::riscv_seg2_load:
|
|
case Intrinsic::riscv_seg3_load:
|
|
case Intrinsic::riscv_seg4_load:
|
|
case Intrinsic::riscv_seg5_load:
|
|
case Intrinsic::riscv_seg6_load:
|
|
case Intrinsic::riscv_seg7_load:
|
|
case Intrinsic::riscv_seg8_load:
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.memVT =
|
|
getValueType(DL, I.getType()->getStructElementType(0)->getScalarType());
|
|
Info.align =
|
|
Align(DL.getTypeSizeInBits(
|
|
I.getType()->getStructElementType(0)->getScalarType()) /
|
|
8);
|
|
Info.size = MemoryLocation::UnknownSize;
|
|
Info.flags |= MachineMemOperand::MOLoad;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
|
|
const AddrMode &AM, Type *Ty,
|
|
unsigned AS,
|
|
Instruction *I) const {
|
|
// No global is ever allowed as a base.
|
|
if (AM.BaseGV)
|
|
return false;
|
|
|
|
// Require a 12-bit signed offset.
|
|
if (!isInt<12>(AM.BaseOffs))
|
|
return false;
|
|
|
|
switch (AM.Scale) {
|
|
case 0: // "r+i" or just "i", depending on HasBaseReg.
|
|
break;
|
|
case 1:
|
|
if (!AM.HasBaseReg) // allow "r+i".
|
|
break;
|
|
return false; // disallow "r+r" or "r+r+i".
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
|
|
return isInt<12>(Imm);
|
|
}
|
|
|
|
bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
|
|
return isInt<12>(Imm);
|
|
}
|
|
|
|
// On RV32, 64-bit integers are split into their high and low parts and held
|
|
// in two different registers, so the trunc is free since the low register can
|
|
// just be used.
|
|
bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
|
|
if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
|
|
return false;
|
|
unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
|
|
unsigned DestBits = DstTy->getPrimitiveSizeInBits();
|
|
return (SrcBits == 64 && DestBits == 32);
|
|
}
|
|
|
|
bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
|
|
if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
|
|
!SrcVT.isInteger() || !DstVT.isInteger())
|
|
return false;
|
|
unsigned SrcBits = SrcVT.getSizeInBits();
|
|
unsigned DestBits = DstVT.getSizeInBits();
|
|
return (SrcBits == 64 && DestBits == 32);
|
|
}
|
|
|
|
bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
|
|
// Zexts are free if they can be combined with a load.
|
|
// Don't advertise i32->i64 zextload as being free for RV64. It interacts
|
|
// poorly with type legalization of compares preferring sext.
|
|
if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
|
|
EVT MemVT = LD->getMemoryVT();
|
|
if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
|
|
(LD->getExtensionType() == ISD::NON_EXTLOAD ||
|
|
LD->getExtensionType() == ISD::ZEXTLOAD))
|
|
return true;
|
|
}
|
|
|
|
return TargetLowering::isZExtFree(Val, VT2);
|
|
}
|
|
|
|
bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
|
|
return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
|
|
}
|
|
|
|
bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
|
|
return Subtarget.hasStdExtZbb();
|
|
}
|
|
|
|
bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
|
|
return Subtarget.hasStdExtZbb();
|
|
}
|
|
|
|
bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
|
|
EVT VT = Y.getValueType();
|
|
|
|
// FIXME: Support vectors once we have tests.
|
|
if (VT.isVector())
|
|
return false;
|
|
|
|
return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
|
|
Subtarget.hasStdExtZbkb()) &&
|
|
!isa<ConstantSDNode>(Y);
|
|
}
|
|
|
|
/// Check if sinking \p I's operands to I's basic block is profitable, because
|
|
/// the operands can be folded into a target instruction, e.g.
|
|
/// splats of scalars can fold into vector instructions.
|
|
bool RISCVTargetLowering::shouldSinkOperands(
|
|
Instruction *I, SmallVectorImpl<Use *> &Ops) const {
|
|
using namespace llvm::PatternMatch;
|
|
|
|
if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
|
|
return false;
|
|
|
|
auto IsSinker = [&](Instruction *I, int Operand) {
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::FAdd:
|
|
case Instruction::FSub:
|
|
case Instruction::FMul:
|
|
case Instruction::FDiv:
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
return true;
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
return Operand == 1;
|
|
case Instruction::Call:
|
|
if (auto *II = dyn_cast<IntrinsicInst>(I)) {
|
|
switch (II->getIntrinsicID()) {
|
|
case Intrinsic::fma:
|
|
case Intrinsic::vp_fma:
|
|
return Operand == 0 || Operand == 1;
|
|
// FIXME: Our patterns can only match vx/vf instructions when the splat
|
|
// it on the RHS, because TableGen doesn't recognize our VP operations
|
|
// as commutative.
|
|
case Intrinsic::vp_add:
|
|
case Intrinsic::vp_mul:
|
|
case Intrinsic::vp_and:
|
|
case Intrinsic::vp_or:
|
|
case Intrinsic::vp_xor:
|
|
case Intrinsic::vp_fadd:
|
|
case Intrinsic::vp_fmul:
|
|
case Intrinsic::vp_shl:
|
|
case Intrinsic::vp_lshr:
|
|
case Intrinsic::vp_ashr:
|
|
case Intrinsic::vp_udiv:
|
|
case Intrinsic::vp_sdiv:
|
|
case Intrinsic::vp_urem:
|
|
case Intrinsic::vp_srem:
|
|
return Operand == 1;
|
|
// ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
|
|
// explicit patterns for both LHS and RHS (as 'vr' versions).
|
|
case Intrinsic::vp_sub:
|
|
case Intrinsic::vp_fsub:
|
|
case Intrinsic::vp_fdiv:
|
|
return Operand == 0 || Operand == 1;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
return false;
|
|
default:
|
|
return false;
|
|
}
|
|
};
|
|
|
|
for (auto OpIdx : enumerate(I->operands())) {
|
|
if (!IsSinker(I, OpIdx.index()))
|
|
continue;
|
|
|
|
Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
|
|
// Make sure we are not already sinking this operand
|
|
if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
|
|
continue;
|
|
|
|
// We are looking for a splat that can be sunk.
|
|
if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
|
|
m_Undef(), m_ZeroMask())))
|
|
continue;
|
|
|
|
// All uses of the shuffle should be sunk to avoid duplicating it across gpr
|
|
// and vector registers
|
|
for (Use &U : Op->uses()) {
|
|
Instruction *Insn = cast<Instruction>(U.getUser());
|
|
if (!IsSinker(Insn, U.getOperandNo()))
|
|
return false;
|
|
}
|
|
|
|
Ops.push_back(&Op->getOperandUse(0));
|
|
Ops.push_back(&OpIdx.value());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
|
|
bool ForCodeSize) const {
|
|
// FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
|
|
if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
|
|
return false;
|
|
if (VT == MVT::f32 && !Subtarget.hasStdExtF())
|
|
return false;
|
|
if (VT == MVT::f64 && !Subtarget.hasStdExtD())
|
|
return false;
|
|
return Imm.isZero();
|
|
}
|
|
|
|
bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
|
|
return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
|
|
(VT == MVT::f32 && Subtarget.hasStdExtF()) ||
|
|
(VT == MVT::f64 && Subtarget.hasStdExtD());
|
|
}
|
|
|
|
MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
|
|
CallingConv::ID CC,
|
|
EVT VT) const {
|
|
// Use f32 to pass f16 if it is legal and Zfh is not enabled.
|
|
// We might still end up using a GPR but that will be decided based on ABI.
|
|
// FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
|
|
if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
|
|
return MVT::f32;
|
|
|
|
return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
|
|
}
|
|
|
|
unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
|
|
CallingConv::ID CC,
|
|
EVT VT) const {
|
|
// Use f32 to pass f16 if it is legal and Zfh is not enabled.
|
|
// We might still end up using a GPR but that will be decided based on ABI.
|
|
// FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
|
|
if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
|
|
return 1;
|
|
|
|
return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
|
|
}
|
|
|
|
// Changes the condition code and swaps operands if necessary, so the SetCC
|
|
// operation matches one of the comparisons supported directly by branches
|
|
// in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
|
|
// with 1/-1.
|
|
static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
|
|
ISD::CondCode &CC, SelectionDAG &DAG) {
|
|
// Convert X > -1 to X >= 0.
|
|
if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
|
|
RHS = DAG.getConstant(0, DL, RHS.getValueType());
|
|
CC = ISD::SETGE;
|
|
return;
|
|
}
|
|
// Convert X < 1 to 0 >= X.
|
|
if (CC == ISD::SETLT && isOneConstant(RHS)) {
|
|
RHS = LHS;
|
|
LHS = DAG.getConstant(0, DL, RHS.getValueType());
|
|
CC = ISD::SETGE;
|
|
return;
|
|
}
|
|
|
|
switch (CC) {
|
|
default:
|
|
break;
|
|
case ISD::SETGT:
|
|
case ISD::SETLE:
|
|
case ISD::SETUGT:
|
|
case ISD::SETULE:
|
|
CC = ISD::getSetCCSwappedOperands(CC);
|
|
std::swap(LHS, RHS);
|
|
break;
|
|
}
|
|
}
|
|
|
|
RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
|
|
assert(VT.isScalableVector() && "Expecting a scalable vector type");
|
|
unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
|
|
if (VT.getVectorElementType() == MVT::i1)
|
|
KnownSize *= 8;
|
|
|
|
switch (KnownSize) {
|
|
default:
|
|
llvm_unreachable("Invalid LMUL.");
|
|
case 8:
|
|
return RISCVII::VLMUL::LMUL_F8;
|
|
case 16:
|
|
return RISCVII::VLMUL::LMUL_F4;
|
|
case 32:
|
|
return RISCVII::VLMUL::LMUL_F2;
|
|
case 64:
|
|
return RISCVII::VLMUL::LMUL_1;
|
|
case 128:
|
|
return RISCVII::VLMUL::LMUL_2;
|
|
case 256:
|
|
return RISCVII::VLMUL::LMUL_4;
|
|
case 512:
|
|
return RISCVII::VLMUL::LMUL_8;
|
|
}
|
|
}
|
|
|
|
unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
|
|
switch (LMul) {
|
|
default:
|
|
llvm_unreachable("Invalid LMUL.");
|
|
case RISCVII::VLMUL::LMUL_F8:
|
|
case RISCVII::VLMUL::LMUL_F4:
|
|
case RISCVII::VLMUL::LMUL_F2:
|
|
case RISCVII::VLMUL::LMUL_1:
|
|
return RISCV::VRRegClassID;
|
|
case RISCVII::VLMUL::LMUL_2:
|
|
return RISCV::VRM2RegClassID;
|
|
case RISCVII::VLMUL::LMUL_4:
|
|
return RISCV::VRM4RegClassID;
|
|
case RISCVII::VLMUL::LMUL_8:
|
|
return RISCV::VRM8RegClassID;
|
|
}
|
|
}
|
|
|
|
unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
|
|
RISCVII::VLMUL LMUL = getLMUL(VT);
|
|
if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
|
|
LMUL == RISCVII::VLMUL::LMUL_F4 ||
|
|
LMUL == RISCVII::VLMUL::LMUL_F2 ||
|
|
LMUL == RISCVII::VLMUL::LMUL_1) {
|
|
static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
|
|
"Unexpected subreg numbering");
|
|
return RISCV::sub_vrm1_0 + Index;
|
|
}
|
|
if (LMUL == RISCVII::VLMUL::LMUL_2) {
|
|
static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
|
|
"Unexpected subreg numbering");
|
|
return RISCV::sub_vrm2_0 + Index;
|
|
}
|
|
if (LMUL == RISCVII::VLMUL::LMUL_4) {
|
|
static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
|
|
"Unexpected subreg numbering");
|
|
return RISCV::sub_vrm4_0 + Index;
|
|
}
|
|
llvm_unreachable("Invalid vector type.");
|
|
}
|
|
|
|
unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
|
|
if (VT.getVectorElementType() == MVT::i1)
|
|
return RISCV::VRRegClassID;
|
|
return getRegClassIDForLMUL(getLMUL(VT));
|
|
}
|
|
|
|
// Attempt to decompose a subvector insert/extract between VecVT and
|
|
// SubVecVT via subregister indices. Returns the subregister index that
|
|
// can perform the subvector insert/extract with the given element index, as
|
|
// well as the index corresponding to any leftover subvectors that must be
|
|
// further inserted/extracted within the register class for SubVecVT.
|
|
std::pair<unsigned, unsigned>
|
|
RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
|
|
MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
|
|
const RISCVRegisterInfo *TRI) {
|
|
static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
|
|
RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
|
|
RISCV::VRM2RegClassID > RISCV::VRRegClassID),
|
|
"Register classes not ordered");
|
|
unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
|
|
unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
|
|
// Try to compose a subregister index that takes us from the incoming
|
|
// LMUL>1 register class down to the outgoing one. At each step we half
|
|
// the LMUL:
|
|
// nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
|
|
// Note that this is not guaranteed to find a subregister index, such as
|
|
// when we are extracting from one VR type to another.
|
|
unsigned SubRegIdx = RISCV::NoSubRegister;
|
|
for (const unsigned RCID :
|
|
{RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
|
|
if (VecRegClassID > RCID && SubRegClassID <= RCID) {
|
|
VecVT = VecVT.getHalfNumVectorElementsVT();
|
|
bool IsHi =
|
|
InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
|
|
SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
|
|
getSubregIndexByMVT(VecVT, IsHi));
|
|
if (IsHi)
|
|
InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
|
|
}
|
|
return {SubRegIdx, InsertExtractIdx};
|
|
}
|
|
|
|
// Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
|
|
// stores for those types.
|
|
bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
|
|
return !Subtarget.useRVVForFixedLengthVectors() ||
|
|
(VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
|
|
}
|
|
|
|
bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
|
|
if (ScalarTy->isPointerTy())
|
|
return true;
|
|
|
|
if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
|
|
ScalarTy->isIntegerTy(32))
|
|
return true;
|
|
|
|
if (ScalarTy->isIntegerTy(64))
|
|
return Subtarget.hasVInstructionsI64();
|
|
|
|
if (ScalarTy->isHalfTy())
|
|
return Subtarget.hasVInstructionsF16();
|
|
if (ScalarTy->isFloatTy())
|
|
return Subtarget.hasVInstructionsF32();
|
|
if (ScalarTy->isDoubleTy())
|
|
return Subtarget.hasVInstructionsF64();
|
|
|
|
return false;
|
|
}
|
|
|
|
static SDValue getVLOperand(SDValue Op) {
|
|
assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
|
|
"Unexpected opcode");
|
|
bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
|
|
unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
|
|
const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
|
|
RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
|
|
if (!II)
|
|
return SDValue();
|
|
return Op.getOperand(II->VLOperand + 1 + HasChain);
|
|
}
|
|
|
|
static bool useRVVForFixedLengthVectorVT(MVT VT,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
|
|
if (!Subtarget.useRVVForFixedLengthVectors())
|
|
return false;
|
|
|
|
// We only support a set of vector types with a consistent maximum fixed size
|
|
// across all supported vector element types to avoid legalization issues.
|
|
// Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
|
|
// fixed-length vector type we support is 1024 bytes.
|
|
if (VT.getFixedSizeInBits() > 1024 * 8)
|
|
return false;
|
|
|
|
unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
|
|
|
|
MVT EltVT = VT.getVectorElementType();
|
|
|
|
// Don't use RVV for vectors we cannot scalarize if required.
|
|
switch (EltVT.SimpleTy) {
|
|
// i1 is supported but has different rules.
|
|
default:
|
|
return false;
|
|
case MVT::i1:
|
|
// Masks can only use a single register.
|
|
if (VT.getVectorNumElements() > MinVLen)
|
|
return false;
|
|
MinVLen /= 8;
|
|
break;
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
break;
|
|
case MVT::i64:
|
|
if (!Subtarget.hasVInstructionsI64())
|
|
return false;
|
|
break;
|
|
case MVT::f16:
|
|
if (!Subtarget.hasVInstructionsF16())
|
|
return false;
|
|
break;
|
|
case MVT::f32:
|
|
if (!Subtarget.hasVInstructionsF32())
|
|
return false;
|
|
break;
|
|
case MVT::f64:
|
|
if (!Subtarget.hasVInstructionsF64())
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
// Reject elements larger than ELEN.
|
|
if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
|
|
return false;
|
|
|
|
unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
|
|
// Don't use RVV for types that don't fit.
|
|
if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
|
|
return false;
|
|
|
|
// TODO: Perhaps an artificial restriction, but worth having whilst getting
|
|
// the base fixed length RVV support in place.
|
|
if (!VT.isPow2VectorType())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
|
|
return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
|
|
}
|
|
|
|
// Return the largest legal scalable vector type that matches VT's element type.
|
|
static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
|
|
const RISCVSubtarget &Subtarget) {
|
|
// This may be called before legal types are setup.
|
|
assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
|
|
useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
|
|
"Expected legal fixed length vector!");
|
|
|
|
unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
|
|
unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
|
|
|
|
MVT EltVT = VT.getVectorElementType();
|
|
switch (EltVT.SimpleTy) {
|
|
default:
|
|
llvm_unreachable("unexpected element type for RVV container");
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
case MVT::i64:
|
|
case MVT::f16:
|
|
case MVT::f32:
|
|
case MVT::f64: {
|
|
// We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
|
|
// narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
|
|
// each fractional LMUL we support SEW between 8 and LMUL*ELEN.
|
|
unsigned NumElts =
|
|
(VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
|
|
NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
|
|
assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
|
|
return MVT::getScalableVectorVT(EltVT, NumElts);
|
|
}
|
|
}
|
|
}
|
|
|
|
static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
|
|
const RISCVSubtarget &Subtarget) {
|
|
return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
|
|
Subtarget);
|
|
}
|
|
|
|
MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
|
|
return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
|
|
}
|
|
|
|
// Grow V to consume an entire RVV register.
|
|
static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(VT.isScalableVector() &&
|
|
"Expected to convert into a scalable vector!");
|
|
assert(V.getValueType().isFixedLengthVector() &&
|
|
"Expected a fixed length vector operand!");
|
|
SDLoc DL(V);
|
|
SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
|
|
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
|
|
}
|
|
|
|
// Shrink V so it's just big enough to maintain a VT's worth of data.
|
|
static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(VT.isFixedLengthVector() &&
|
|
"Expected to convert into a fixed length vector!");
|
|
assert(V.getValueType().isScalableVector() &&
|
|
"Expected a scalable vector operand!");
|
|
SDLoc DL(V);
|
|
SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
|
|
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
|
|
}
|
|
|
|
// Gets the two common "VL" operands: an all-ones mask and the vector length.
|
|
// VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
|
|
// the vector type that it is contained in.
|
|
static std::pair<SDValue, SDValue>
|
|
getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
SDValue VL = VecVT.isFixedLengthVector()
|
|
? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
|
|
: DAG.getRegister(RISCV::X0, XLenVT);
|
|
MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
|
|
SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
|
|
return {Mask, VL};
|
|
}
|
|
|
|
// As above but assuming the given type is a scalable vector type.
|
|
static std::pair<SDValue, SDValue>
|
|
getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(VecVT.isScalableVector() && "Expecting a scalable vector");
|
|
return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
|
|
}
|
|
|
|
// The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
|
|
// of either is (currently) supported. This can get us into an infinite loop
|
|
// where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
|
|
// as a ..., etc.
|
|
// Until either (or both) of these can reliably lower any node, reporting that
|
|
// we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
|
|
// the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
|
|
// which is not desirable.
|
|
bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
|
|
EVT VT, unsigned DefinedValues) const {
|
|
return false;
|
|
}
|
|
|
|
static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
// RISCV FP-to-int conversions saturate to the destination register size, but
|
|
// don't produce 0 for nan. We can use a conversion instruction and fix the
|
|
// nan case with a compare and a select.
|
|
SDValue Src = Op.getOperand(0);
|
|
|
|
EVT DstVT = Op.getValueType();
|
|
EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
|
|
|
|
bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
|
|
unsigned Opc;
|
|
if (SatVT == DstVT)
|
|
Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
|
|
else if (DstVT == MVT::i64 && SatVT == MVT::i32)
|
|
Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
|
|
else
|
|
return SDValue();
|
|
// FIXME: Support other SatVTs by clamping before or after the conversion.
|
|
|
|
SDLoc DL(Op);
|
|
SDValue FpToInt = DAG.getNode(
|
|
Opc, DL, DstVT, Src,
|
|
DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
|
|
|
|
SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
|
|
return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
|
|
}
|
|
|
|
// Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
|
|
// and back. Taking care to avoid converting values that are nan or already
|
|
// correct.
|
|
// TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
|
|
// have FRM dependencies modeled yet.
|
|
static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
|
|
MVT VT = Op.getSimpleValueType();
|
|
assert(VT.isVector() && "Unexpected type");
|
|
|
|
SDLoc DL(Op);
|
|
|
|
// Freeze the source since we are increasing the number of uses.
|
|
SDValue Src = DAG.getFreeze(Op.getOperand(0));
|
|
|
|
// Truncate to integer and convert back to FP.
|
|
MVT IntVT = VT.changeVectorElementTypeToInteger();
|
|
SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
|
|
Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
|
|
|
|
MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
|
|
|
|
if (Op.getOpcode() == ISD::FCEIL) {
|
|
// If the truncated value is the greater than or equal to the original
|
|
// value, we've computed the ceil. Otherwise, we went the wrong way and
|
|
// need to increase by 1.
|
|
// FIXME: This should use a masked operation. Handle here or in isel?
|
|
SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
|
|
DAG.getConstantFP(1.0, DL, VT));
|
|
SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
|
|
Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
|
|
} else if (Op.getOpcode() == ISD::FFLOOR) {
|
|
// If the truncated value is the less than or equal to the original value,
|
|
// we've computed the floor. Otherwise, we went the wrong way and need to
|
|
// decrease by 1.
|
|
// FIXME: This should use a masked operation. Handle here or in isel?
|
|
SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
|
|
DAG.getConstantFP(1.0, DL, VT));
|
|
SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
|
|
Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
|
|
}
|
|
|
|
// Restore the original sign so that -0.0 is preserved.
|
|
Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
|
|
|
|
// Determine the largest integer that can be represented exactly. This and
|
|
// values larger than it don't have any fractional bits so don't need to
|
|
// be converted.
|
|
const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
|
|
unsigned Precision = APFloat::semanticsPrecision(FltSem);
|
|
APFloat MaxVal = APFloat(FltSem);
|
|
MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
|
|
/*IsSigned*/ false, APFloat::rmNearestTiesToEven);
|
|
SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
|
|
|
|
// If abs(Src) was larger than MaxVal or nan, keep it.
|
|
SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
|
|
SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
|
|
return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
|
|
}
|
|
|
|
// ISD::FROUND is defined to round to nearest with ties rounding away from 0.
|
|
// This mode isn't supported in vector hardware on RISCV. But as long as we
|
|
// aren't compiling with trapping math, we can emulate this with
|
|
// floor(X + copysign(nextafter(0.5, 0.0), X)).
|
|
// FIXME: Could be shorter by changing rounding mode, but we don't have FRM
|
|
// dependencies modeled yet.
|
|
// FIXME: Use masked operations to avoid final merge.
|
|
static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
|
|
MVT VT = Op.getSimpleValueType();
|
|
assert(VT.isVector() && "Unexpected type");
|
|
|
|
SDLoc DL(Op);
|
|
|
|
// Freeze the source since we are increasing the number of uses.
|
|
SDValue Src = DAG.getFreeze(Op.getOperand(0));
|
|
|
|
// We do the conversion on the absolute value and fix the sign at the end.
|
|
SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
|
|
|
|
const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
|
|
bool Ignored;
|
|
APFloat Point5Pred = APFloat(0.5f);
|
|
Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
|
|
Point5Pred.next(/*nextDown*/ true);
|
|
|
|
// Add the adjustment.
|
|
SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
|
|
DAG.getConstantFP(Point5Pred, DL, VT));
|
|
|
|
// Truncate to integer and convert back to fp.
|
|
MVT IntVT = VT.changeVectorElementTypeToInteger();
|
|
SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
|
|
Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
|
|
|
|
// Restore the original sign.
|
|
Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
|
|
|
|
// Determine the largest integer that can be represented exactly. This and
|
|
// values larger than it don't have any fractional bits so don't need to
|
|
// be converted.
|
|
unsigned Precision = APFloat::semanticsPrecision(FltSem);
|
|
APFloat MaxVal = APFloat(FltSem);
|
|
MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
|
|
/*IsSigned*/ false, APFloat::rmNearestTiesToEven);
|
|
SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
|
|
|
|
// If abs(Src) was larger than MaxVal or nan, keep it.
|
|
MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
|
|
SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
|
|
return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
|
|
}
|
|
|
|
static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
MVT VT = Op.getSimpleValueType();
|
|
assert(VT.isFixedLengthVector() && "Unexpected vector!");
|
|
|
|
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
|
|
|
|
SDLoc DL(Op);
|
|
SDValue Mask, VL;
|
|
std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
unsigned Opc =
|
|
VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
|
|
SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
|
|
Op.getOperand(0), VL);
|
|
return convertFromScalableVector(VT, Splat, DAG, Subtarget);
|
|
}
|
|
|
|
struct VIDSequence {
|
|
int64_t StepNumerator;
|
|
unsigned StepDenominator;
|
|
int64_t Addend;
|
|
};
|
|
|
|
// Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
|
|
// to the (non-zero) step S and start value X. This can be then lowered as the
|
|
// RVV sequence (VID * S) + X, for example.
|
|
// The step S is represented as an integer numerator divided by a positive
|
|
// denominator. Note that the implementation currently only identifies
|
|
// sequences in which either the numerator is +/- 1 or the denominator is 1. It
|
|
// cannot detect 2/3, for example.
|
|
// Note that this method will also match potentially unappealing index
|
|
// sequences, like <i32 0, i32 50939494>, however it is left to the caller to
|
|
// determine whether this is worth generating code for.
|
|
static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
|
|
unsigned NumElts = Op.getNumOperands();
|
|
assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
|
|
if (!Op.getValueType().isInteger())
|
|
return None;
|
|
|
|
Optional<unsigned> SeqStepDenom;
|
|
Optional<int64_t> SeqStepNum, SeqAddend;
|
|
Optional<std::pair<uint64_t, unsigned>> PrevElt;
|
|
unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
|
|
for (unsigned Idx = 0; Idx < NumElts; Idx++) {
|
|
// Assume undef elements match the sequence; we just have to be careful
|
|
// when interpolating across them.
|
|
if (Op.getOperand(Idx).isUndef())
|
|
continue;
|
|
// The BUILD_VECTOR must be all constants.
|
|
if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
|
|
return None;
|
|
|
|
uint64_t Val = Op.getConstantOperandVal(Idx) &
|
|
maskTrailingOnes<uint64_t>(EltSizeInBits);
|
|
|
|
if (PrevElt) {
|
|
// Calculate the step since the last non-undef element, and ensure
|
|
// it's consistent across the entire sequence.
|
|
unsigned IdxDiff = Idx - PrevElt->second;
|
|
int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
|
|
|
|
// A zero-value value difference means that we're somewhere in the middle
|
|
// of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
|
|
// step change before evaluating the sequence.
|
|
if (ValDiff != 0) {
|
|
int64_t Remainder = ValDiff % IdxDiff;
|
|
// Normalize the step if it's greater than 1.
|
|
if (Remainder != ValDiff) {
|
|
// The difference must cleanly divide the element span.
|
|
if (Remainder != 0)
|
|
return None;
|
|
ValDiff /= IdxDiff;
|
|
IdxDiff = 1;
|
|
}
|
|
|
|
if (!SeqStepNum)
|
|
SeqStepNum = ValDiff;
|
|
else if (ValDiff != SeqStepNum)
|
|
return None;
|
|
|
|
if (!SeqStepDenom)
|
|
SeqStepDenom = IdxDiff;
|
|
else if (IdxDiff != *SeqStepDenom)
|
|
return None;
|
|
}
|
|
}
|
|
|
|
// Record and/or check any addend.
|
|
if (SeqStepNum && SeqStepDenom) {
|
|
uint64_t ExpectedVal =
|
|
(int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
|
|
int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
|
|
if (!SeqAddend)
|
|
SeqAddend = Addend;
|
|
else if (SeqAddend != Addend)
|
|
return None;
|
|
}
|
|
|
|
// Record this non-undef element for later.
|
|
if (!PrevElt || PrevElt->first != Val)
|
|
PrevElt = std::make_pair(Val, Idx);
|
|
}
|
|
// We need to have logged both a step and an addend for this to count as
|
|
// a legal index sequence.
|
|
if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
|
|
return None;
|
|
|
|
return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
|
|
}
|
|
|
|
// Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
|
|
// and lower it as a VRGATHER_VX_VL from the source vector.
|
|
static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
|
|
SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
|
|
return SDValue();
|
|
SDValue Vec = SplatVal.getOperand(0);
|
|
// Only perform this optimization on vectors of the same size for simplicity.
|
|
if (Vec.getValueType() != VT)
|
|
return SDValue();
|
|
SDValue Idx = SplatVal.getOperand(1);
|
|
// The index must be a legal type.
|
|
if (Idx.getValueType() != Subtarget.getXLenVT())
|
|
return SDValue();
|
|
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
|
|
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue Mask, VL;
|
|
std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
|
|
Idx, Mask, VL);
|
|
|
|
if (!VT.isFixedLengthVector())
|
|
return Gather;
|
|
|
|
return convertFromScalableVector(VT, Gather, DAG, Subtarget);
|
|
}
|
|
|
|
static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
MVT VT = Op.getSimpleValueType();
|
|
assert(VT.isFixedLengthVector() && "Unexpected vector!");
|
|
|
|
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
|
|
|
|
SDLoc DL(Op);
|
|
SDValue Mask, VL;
|
|
std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
unsigned NumElts = Op.getNumOperands();
|
|
|
|
if (VT.getVectorElementType() == MVT::i1) {
|
|
if (ISD::isBuildVectorAllZeros(Op.getNode())) {
|
|
SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
|
|
return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
|
|
}
|
|
|
|
if (ISD::isBuildVectorAllOnes(Op.getNode())) {
|
|
SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
|
|
return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
|
|
}
|
|
|
|
// Lower constant mask BUILD_VECTORs via an integer vector type, in
|
|
// scalar integer chunks whose bit-width depends on the number of mask
|
|
// bits and XLEN.
|
|
// First, determine the most appropriate scalar integer type to use. This
|
|
// is at most XLenVT, but may be shrunk to a smaller vector element type
|
|
// according to the size of the final vector - use i8 chunks rather than
|
|
// XLenVT if we're producing a v8i1. This results in more consistent
|
|
// codegen across RV32 and RV64.
|
|
unsigned NumViaIntegerBits =
|
|
std::min(std::max(NumElts, 8u), Subtarget.getXLen());
|
|
NumViaIntegerBits = std::min(NumViaIntegerBits,
|
|
Subtarget.getMaxELENForFixedLengthVectors());
|
|
if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
|
|
// If we have to use more than one INSERT_VECTOR_ELT then this
|
|
// optimization is likely to increase code size; avoid peforming it in
|
|
// such a case. We can use a load from a constant pool in this case.
|
|
if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
|
|
return SDValue();
|
|
// Now we can create our integer vector type. Note that it may be larger
|
|
// than the resulting mask type: v4i1 would use v1i8 as its integer type.
|
|
MVT IntegerViaVecVT =
|
|
MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
|
|
divideCeil(NumElts, NumViaIntegerBits));
|
|
|
|
uint64_t Bits = 0;
|
|
unsigned BitPos = 0, IntegerEltIdx = 0;
|
|
SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
|
|
|
|
for (unsigned I = 0; I < NumElts; I++, BitPos++) {
|
|
// Once we accumulate enough bits to fill our scalar type, insert into
|
|
// our vector and clear our accumulated data.
|
|
if (I != 0 && I % NumViaIntegerBits == 0) {
|
|
if (NumViaIntegerBits <= 32)
|
|
Bits = SignExtend64(Bits, 32);
|
|
SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
|
|
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
|
|
Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
|
|
Bits = 0;
|
|
BitPos = 0;
|
|
IntegerEltIdx++;
|
|
}
|
|
SDValue V = Op.getOperand(I);
|
|
bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
|
|
Bits |= ((uint64_t)BitValue << BitPos);
|
|
}
|
|
|
|
// Insert the (remaining) scalar value into position in our integer
|
|
// vector type.
|
|
if (NumViaIntegerBits <= 32)
|
|
Bits = SignExtend64(Bits, 32);
|
|
SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
|
|
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
|
|
DAG.getConstant(IntegerEltIdx, DL, XLenVT));
|
|
|
|
if (NumElts < NumViaIntegerBits) {
|
|
// If we're producing a smaller vector than our minimum legal integer
|
|
// type, bitcast to the equivalent (known-legal) mask type, and extract
|
|
// our final mask.
|
|
assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
|
|
Vec = DAG.getBitcast(MVT::v8i1, Vec);
|
|
Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
|
|
DAG.getConstant(0, DL, XLenVT));
|
|
} else {
|
|
// Else we must have produced an integer type with the same size as the
|
|
// mask type; bitcast for the final result.
|
|
assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
|
|
Vec = DAG.getBitcast(VT, Vec);
|
|
}
|
|
|
|
return Vec;
|
|
}
|
|
|
|
// A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
|
|
// vector type, we have a legal equivalently-sized i8 type, so we can use
|
|
// that.
|
|
MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
|
|
SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
|
|
|
|
SDValue WideVec;
|
|
if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
|
|
// For a splat, perform a scalar truncate before creating the wider
|
|
// vector.
|
|
assert(Splat.getValueType() == XLenVT &&
|
|
"Unexpected type for i1 splat value");
|
|
Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
|
|
DAG.getConstant(1, DL, XLenVT));
|
|
WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
|
|
} else {
|
|
SmallVector<SDValue, 8> Ops(Op->op_values());
|
|
WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
|
|
SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
|
|
WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
|
|
}
|
|
|
|
return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
|
|
}
|
|
|
|
if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
|
|
if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
|
|
return Gather;
|
|
unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
|
|
: RISCVISD::VMV_V_X_VL;
|
|
Splat =
|
|
DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
|
|
return convertFromScalableVector(VT, Splat, DAG, Subtarget);
|
|
}
|
|
|
|
// Try and match index sequences, which we can lower to the vid instruction
|
|
// with optional modifications. An all-undef vector is matched by
|
|
// getSplatValue, above.
|
|
if (auto SimpleVID = isSimpleVIDSequence(Op)) {
|
|
int64_t StepNumerator = SimpleVID->StepNumerator;
|
|
unsigned StepDenominator = SimpleVID->StepDenominator;
|
|
int64_t Addend = SimpleVID->Addend;
|
|
|
|
assert(StepNumerator != 0 && "Invalid step");
|
|
bool Negate = false;
|
|
int64_t SplatStepVal = StepNumerator;
|
|
unsigned StepOpcode = ISD::MUL;
|
|
if (StepNumerator != 1) {
|
|
if (isPowerOf2_64(std::abs(StepNumerator))) {
|
|
Negate = StepNumerator < 0;
|
|
StepOpcode = ISD::SHL;
|
|
SplatStepVal = Log2_64(std::abs(StepNumerator));
|
|
}
|
|
}
|
|
|
|
// Only emit VIDs with suitably-small steps/addends. We use imm5 is a
|
|
// threshold since it's the immediate value many RVV instructions accept.
|
|
// There is no vmul.vi instruction so ensure multiply constant can fit in
|
|
// a single addi instruction.
|
|
if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
|
|
(StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
|
|
isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) {
|
|
SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
|
|
// Convert right out of the scalable type so we can use standard ISD
|
|
// nodes for the rest of the computation. If we used scalable types with
|
|
// these, we'd lose the fixed-length vector info and generate worse
|
|
// vsetvli code.
|
|
VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
|
|
if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
|
|
(StepOpcode == ISD::SHL && SplatStepVal != 0)) {
|
|
SDValue SplatStep = DAG.getSplatVector(
|
|
VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
|
|
VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
|
|
}
|
|
if (StepDenominator != 1) {
|
|
SDValue SplatStep = DAG.getSplatVector(
|
|
VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
|
|
VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
|
|
}
|
|
if (Addend != 0 || Negate) {
|
|
SDValue SplatAddend =
|
|
DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
|
|
VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
|
|
}
|
|
return VID;
|
|
}
|
|
}
|
|
|
|
// Attempt to detect "hidden" splats, which only reveal themselves as splats
|
|
// when re-interpreted as a vector with a larger element type. For example,
|
|
// v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
|
|
// could be instead splat as
|
|
// v2i32 = build_vector i32 0x00010000, i32 0x00010000
|
|
// TODO: This optimization could also work on non-constant splats, but it
|
|
// would require bit-manipulation instructions to construct the splat value.
|
|
SmallVector<SDValue> Sequence;
|
|
unsigned EltBitSize = VT.getScalarSizeInBits();
|
|
const auto *BV = cast<BuildVectorSDNode>(Op);
|
|
if (VT.isInteger() && EltBitSize < 64 &&
|
|
ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
|
|
BV->getRepeatedSequence(Sequence) &&
|
|
(Sequence.size() * EltBitSize) <= 64) {
|
|
unsigned SeqLen = Sequence.size();
|
|
MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
|
|
MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
|
|
assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
|
|
ViaIntVT == MVT::i64) &&
|
|
"Unexpected sequence type");
|
|
|
|
unsigned EltIdx = 0;
|
|
uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
|
|
uint64_t SplatValue = 0;
|
|
// Construct the amalgamated value which can be splatted as this larger
|
|
// vector type.
|
|
for (const auto &SeqV : Sequence) {
|
|
if (!SeqV.isUndef())
|
|
SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
|
|
<< (EltIdx * EltBitSize));
|
|
EltIdx++;
|
|
}
|
|
|
|
// On RV64, sign-extend from 32 to 64 bits where possible in order to
|
|
// achieve better constant materializion.
|
|
if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
|
|
SplatValue = SignExtend64(SplatValue, 32);
|
|
|
|
// Since we can't introduce illegal i64 types at this stage, we can only
|
|
// perform an i64 splat on RV32 if it is its own sign-extended value. That
|
|
// way we can use RVV instructions to splat.
|
|
assert((ViaIntVT.bitsLE(XLenVT) ||
|
|
(!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
|
|
"Unexpected bitcast sequence");
|
|
if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
|
|
SDValue ViaVL =
|
|
DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
|
|
MVT ViaContainerVT =
|
|
getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
|
|
SDValue Splat =
|
|
DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
|
|
DAG.getUNDEF(ViaContainerVT),
|
|
DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
|
|
Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
|
|
return DAG.getBitcast(VT, Splat);
|
|
}
|
|
}
|
|
|
|
// Try and optimize BUILD_VECTORs with "dominant values" - these are values
|
|
// which constitute a large proportion of the elements. In such cases we can
|
|
// splat a vector with the dominant element and make up the shortfall with
|
|
// INSERT_VECTOR_ELTs.
|
|
// Note that this includes vectors of 2 elements by association. The
|
|
// upper-most element is the "dominant" one, allowing us to use a splat to
|
|
// "insert" the upper element, and an insert of the lower element at position
|
|
// 0, which improves codegen.
|
|
SDValue DominantValue;
|
|
unsigned MostCommonCount = 0;
|
|
DenseMap<SDValue, unsigned> ValueCounts;
|
|
unsigned NumUndefElts =
|
|
count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
|
|
|
|
// Track the number of scalar loads we know we'd be inserting, estimated as
|
|
// any non-zero floating-point constant. Other kinds of element are either
|
|
// already in registers or are materialized on demand. The threshold at which
|
|
// a vector load is more desirable than several scalar materializion and
|
|
// vector-insertion instructions is not known.
|
|
unsigned NumScalarLoads = 0;
|
|
|
|
for (SDValue V : Op->op_values()) {
|
|
if (V.isUndef())
|
|
continue;
|
|
|
|
ValueCounts.insert(std::make_pair(V, 0));
|
|
unsigned &Count = ValueCounts[V];
|
|
|
|
if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
|
|
NumScalarLoads += !CFP->isExactlyValue(+0.0);
|
|
|
|
// Is this value dominant? In case of a tie, prefer the highest element as
|
|
// it's cheaper to insert near the beginning of a vector than it is at the
|
|
// end.
|
|
if (++Count >= MostCommonCount) {
|
|
DominantValue = V;
|
|
MostCommonCount = Count;
|
|
}
|
|
}
|
|
|
|
assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
|
|
unsigned NumDefElts = NumElts - NumUndefElts;
|
|
unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
|
|
|
|
// Don't perform this optimization when optimizing for size, since
|
|
// materializing elements and inserting them tends to cause code bloat.
|
|
if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
|
|
((MostCommonCount > DominantValueCountThreshold) ||
|
|
(ValueCounts.size() <= Log2_32(NumDefElts)))) {
|
|
// Start by splatting the most common element.
|
|
SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
|
|
|
|
DenseSet<SDValue> Processed{DominantValue};
|
|
MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
|
|
for (const auto &OpIdx : enumerate(Op->ops())) {
|
|
const SDValue &V = OpIdx.value();
|
|
if (V.isUndef() || !Processed.insert(V).second)
|
|
continue;
|
|
if (ValueCounts[V] == 1) {
|
|
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
|
|
DAG.getConstant(OpIdx.index(), DL, XLenVT));
|
|
} else {
|
|
// Blend in all instances of this value using a VSELECT, using a
|
|
// mask where each bit signals whether that element is the one
|
|
// we're after.
|
|
SmallVector<SDValue> Ops;
|
|
transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
|
|
return DAG.getConstant(V == V1, DL, XLenVT);
|
|
});
|
|
Vec = DAG.getNode(ISD::VSELECT, DL, VT,
|
|
DAG.getBuildVector(SelMaskTy, DL, Ops),
|
|
DAG.getSplatBuildVector(VT, DL, V), Vec);
|
|
}
|
|
}
|
|
|
|
return Vec;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
|
|
SDValue Lo, SDValue Hi, SDValue VL,
|
|
SelectionDAG &DAG) {
|
|
bool HasPassthru = Passthru && !Passthru.isUndef();
|
|
if (!HasPassthru && !Passthru)
|
|
Passthru = DAG.getUNDEF(VT);
|
|
if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
|
|
int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
|
|
int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
|
|
// If Hi constant is all the same sign bit as Lo, lower this as a custom
|
|
// node in order to try and match RVV vector/scalar instructions.
|
|
if ((LoC >> 31) == HiC)
|
|
return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
|
|
|
|
// If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
|
|
// vmv.v.x whose EEW = 32 to lower it.
|
|
auto *Const = dyn_cast<ConstantSDNode>(VL);
|
|
if (LoC == HiC && Const && Const->isAllOnesValue()) {
|
|
MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
|
|
// TODO: if vl <= min(VLMAX), we can also do this. But we could not
|
|
// access the subtarget here now.
|
|
auto InterVec = DAG.getNode(
|
|
RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
|
|
DAG.getRegister(RISCV::X0, MVT::i32));
|
|
return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
|
|
}
|
|
}
|
|
|
|
// Fall back to a stack store and stride x0 vector load.
|
|
return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
|
|
Hi, VL);
|
|
}
|
|
|
|
// Called by type legalization to handle splat of i64 on RV32.
|
|
// FIXME: We can optimize this when the type has sign or zero bits in one
|
|
// of the halves.
|
|
static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
|
|
SDValue Scalar, SDValue VL,
|
|
SelectionDAG &DAG) {
|
|
assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
|
|
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
|
|
DAG.getConstant(0, DL, MVT::i32));
|
|
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
|
|
DAG.getConstant(1, DL, MVT::i32));
|
|
return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
|
|
}
|
|
|
|
// This function lowers a splat of a scalar operand Splat with the vector
|
|
// length VL. It ensures the final sequence is type legal, which is useful when
|
|
// lowering a splat after type legalization.
|
|
static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
|
|
MVT VT, SDLoc DL, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
bool HasPassthru = Passthru && !Passthru.isUndef();
|
|
if (!HasPassthru && !Passthru)
|
|
Passthru = DAG.getUNDEF(VT);
|
|
if (VT.isFloatingPoint()) {
|
|
// If VL is 1, we could use vfmv.s.f.
|
|
if (isOneConstant(VL))
|
|
return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
|
|
return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
|
|
}
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
// Simplest case is that the operand needs to be promoted to XLenVT.
|
|
if (Scalar.getValueType().bitsLE(XLenVT)) {
|
|
// If the operand is a constant, sign extend to increase our chances
|
|
// of being able to use a .vi instruction. ANY_EXTEND would become a
|
|
// a zero extend and the simm5 check in isel would fail.
|
|
// FIXME: Should we ignore the upper bits in isel instead?
|
|
unsigned ExtOpc =
|
|
isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
|
|
Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
|
|
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
|
|
// If VL is 1 and the scalar value won't benefit from immediate, we could
|
|
// use vmv.s.x.
|
|
if (isOneConstant(VL) &&
|
|
(!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
|
|
return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
|
|
return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
|
|
}
|
|
|
|
assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
|
|
"Unexpected scalar for splat lowering!");
|
|
|
|
if (isOneConstant(VL) && isNullConstant(Scalar))
|
|
return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
|
|
DAG.getConstant(0, DL, XLenVT), VL);
|
|
|
|
// Otherwise use the more complicated splatting algorithm.
|
|
return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
|
|
}
|
|
|
|
static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
|
|
const RISCVSubtarget &Subtarget) {
|
|
// We need to be able to widen elements to the next larger integer type.
|
|
if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors())
|
|
return false;
|
|
|
|
int Size = Mask.size();
|
|
assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
|
|
|
|
int Srcs[] = {-1, -1};
|
|
for (int i = 0; i != Size; ++i) {
|
|
// Ignore undef elements.
|
|
if (Mask[i] < 0)
|
|
continue;
|
|
|
|
// Is this an even or odd element.
|
|
int Pol = i % 2;
|
|
|
|
// Ensure we consistently use the same source for this element polarity.
|
|
int Src = Mask[i] / Size;
|
|
if (Srcs[Pol] < 0)
|
|
Srcs[Pol] = Src;
|
|
if (Srcs[Pol] != Src)
|
|
return false;
|
|
|
|
// Make sure the element within the source is appropriate for this element
|
|
// in the destination.
|
|
int Elt = Mask[i] % Size;
|
|
if (Elt != i / 2)
|
|
return false;
|
|
}
|
|
|
|
// We need to find a source for each polarity and they can't be the same.
|
|
if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
|
|
return false;
|
|
|
|
// Swap the sources if the second source was in the even polarity.
|
|
SwapSources = Srcs[0] > Srcs[1];
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Match shuffles that concatenate two vectors, rotate the concatenation,
|
|
/// and then extract the original number of elements from the rotated result.
|
|
/// This is equivalent to vector.splice or X86's PALIGNR instruction. The
|
|
/// returned rotation amount is for a rotate right, where elements move from
|
|
/// higher elements to lower elements. \p LoSrc indicates the first source
|
|
/// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
|
|
/// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
|
|
/// 0 or 1 if a rotation is found.
|
|
///
|
|
/// NOTE: We talk about rotate to the right which matches how bit shift and
|
|
/// rotate instructions are described where LSBs are on the right, but LLVM IR
|
|
/// and the table below write vectors with the lowest elements on the left.
|
|
static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
|
|
int Size = Mask.size();
|
|
|
|
// We need to detect various ways of spelling a rotation:
|
|
// [11, 12, 13, 14, 15, 0, 1, 2]
|
|
// [-1, 12, 13, 14, -1, -1, 1, -1]
|
|
// [-1, -1, -1, -1, -1, -1, 1, 2]
|
|
// [ 3, 4, 5, 6, 7, 8, 9, 10]
|
|
// [-1, 4, 5, 6, -1, -1, 9, -1]
|
|
// [-1, 4, 5, 6, -1, -1, -1, -1]
|
|
int Rotation = 0;
|
|
LoSrc = -1;
|
|
HiSrc = -1;
|
|
for (int i = 0; i != Size; ++i) {
|
|
int M = Mask[i];
|
|
if (M < 0)
|
|
continue;
|
|
|
|
// Determine where a rotate vector would have started.
|
|
int StartIdx = i - (M % Size);
|
|
// The identity rotation isn't interesting, stop.
|
|
if (StartIdx == 0)
|
|
return -1;
|
|
|
|
// If we found the tail of a vector the rotation must be the missing
|
|
// front. If we found the head of a vector, it must be how much of the
|
|
// head.
|
|
int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
|
|
|
|
if (Rotation == 0)
|
|
Rotation = CandidateRotation;
|
|
else if (Rotation != CandidateRotation)
|
|
// The rotations don't match, so we can't match this mask.
|
|
return -1;
|
|
|
|
// Compute which value this mask is pointing at.
|
|
int MaskSrc = M < Size ? 0 : 1;
|
|
|
|
// Compute which of the two target values this index should be assigned to.
|
|
// This reflects whether the high elements are remaining or the low elemnts
|
|
// are remaining.
|
|
int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
|
|
|
|
// Either set up this value if we've not encountered it before, or check
|
|
// that it remains consistent.
|
|
if (TargetSrc < 0)
|
|
TargetSrc = MaskSrc;
|
|
else if (TargetSrc != MaskSrc)
|
|
// This may be a rotation, but it pulls from the inputs in some
|
|
// unsupported interleaving.
|
|
return -1;
|
|
}
|
|
|
|
// Check that we successfully analyzed the mask, and normalize the results.
|
|
assert(Rotation != 0 && "Failed to locate a viable rotation!");
|
|
assert((LoSrc >= 0 || HiSrc >= 0) &&
|
|
"Failed to find a rotated input vector!");
|
|
|
|
return Rotation;
|
|
}
|
|
|
|
static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
SDLoc DL(Op);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
MVT VT = Op.getSimpleValueType();
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
|
|
|
|
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
|
|
|
|
SDValue TrueMask, VL;
|
|
std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
if (SVN->isSplat()) {
|
|
const int Lane = SVN->getSplatIndex();
|
|
if (Lane >= 0) {
|
|
MVT SVT = VT.getVectorElementType();
|
|
|
|
// Turn splatted vector load into a strided load with an X0 stride.
|
|
SDValue V = V1;
|
|
// Peek through CONCAT_VECTORS as VectorCombine can concat a vector
|
|
// with undef.
|
|
// FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
|
|
int Offset = Lane;
|
|
if (V.getOpcode() == ISD::CONCAT_VECTORS) {
|
|
int OpElements =
|
|
V.getOperand(0).getSimpleValueType().getVectorNumElements();
|
|
V = V.getOperand(Offset / OpElements);
|
|
Offset %= OpElements;
|
|
}
|
|
|
|
// We need to ensure the load isn't atomic or volatile.
|
|
if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
|
|
auto *Ld = cast<LoadSDNode>(V);
|
|
Offset *= SVT.getStoreSize();
|
|
SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
|
|
TypeSize::Fixed(Offset), DL);
|
|
|
|
// If this is SEW=64 on RV32, use a strided load with a stride of x0.
|
|
if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
|
|
SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
|
|
SDValue IntID =
|
|
DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
|
|
SDValue Ops[] = {Ld->getChain(),
|
|
IntID,
|
|
DAG.getUNDEF(ContainerVT),
|
|
NewAddr,
|
|
DAG.getRegister(RISCV::X0, XLenVT),
|
|
VL};
|
|
SDValue NewLoad = DAG.getMemIntrinsicNode(
|
|
ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
|
|
DAG.getMachineFunction().getMachineMemOperand(
|
|
Ld->getMemOperand(), Offset, SVT.getStoreSize()));
|
|
DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
|
|
return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
|
|
}
|
|
|
|
// Otherwise use a scalar load and splat. This will give the best
|
|
// opportunity to fold a splat into the operation. ISel can turn it into
|
|
// the x0 strided load if we aren't able to fold away the select.
|
|
if (SVT.isFloatingPoint())
|
|
V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
|
|
Ld->getPointerInfo().getWithOffset(Offset),
|
|
Ld->getOriginalAlign(),
|
|
Ld->getMemOperand()->getFlags());
|
|
else
|
|
V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
|
|
Ld->getPointerInfo().getWithOffset(Offset), SVT,
|
|
Ld->getOriginalAlign(),
|
|
Ld->getMemOperand()->getFlags());
|
|
DAG.makeEquivalentMemoryOrdering(Ld, V);
|
|
|
|
unsigned Opc =
|
|
VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
|
|
SDValue Splat =
|
|
DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
|
|
return convertFromScalableVector(VT, Splat, DAG, Subtarget);
|
|
}
|
|
|
|
V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
|
|
assert(Lane < (int)NumElts && "Unexpected lane!");
|
|
SDValue Gather =
|
|
DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
|
|
DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
|
|
return convertFromScalableVector(VT, Gather, DAG, Subtarget);
|
|
}
|
|
}
|
|
|
|
ArrayRef<int> Mask = SVN->getMask();
|
|
|
|
// Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
|
|
// be undef which can be handled with a single SLIDEDOWN/UP.
|
|
int LoSrc, HiSrc;
|
|
int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
|
|
if (Rotation > 0) {
|
|
SDValue LoV, HiV;
|
|
if (LoSrc >= 0) {
|
|
LoV = LoSrc == 0 ? V1 : V2;
|
|
LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
|
|
}
|
|
if (HiSrc >= 0) {
|
|
HiV = HiSrc == 0 ? V1 : V2;
|
|
HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
|
|
}
|
|
|
|
// We found a rotation. We need to slide HiV down by Rotation. Then we need
|
|
// to slide LoV up by (NumElts - Rotation).
|
|
unsigned InvRotate = NumElts - Rotation;
|
|
|
|
SDValue Res = DAG.getUNDEF(ContainerVT);
|
|
if (HiV) {
|
|
// If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
|
|
// FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
|
|
// causes multiple vsetvlis in some test cases such as lowering
|
|
// reduce.mul
|
|
SDValue DownVL = VL;
|
|
if (LoV)
|
|
DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
|
|
Res =
|
|
DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
|
|
DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
|
|
}
|
|
if (LoV)
|
|
Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
|
|
DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
|
|
|
|
return convertFromScalableVector(VT, Res, DAG, Subtarget);
|
|
}
|
|
|
|
// Detect an interleave shuffle and lower to
|
|
// (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
|
|
bool SwapSources;
|
|
if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
|
|
// Swap sources if needed.
|
|
if (SwapSources)
|
|
std::swap(V1, V2);
|
|
|
|
// Extract the lower half of the vectors.
|
|
MVT HalfVT = VT.getHalfNumVectorElementsVT();
|
|
V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
|
|
DAG.getConstant(0, DL, XLenVT));
|
|
V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
|
|
DAG.getConstant(0, DL, XLenVT));
|
|
|
|
// Double the element width and halve the number of elements in an int type.
|
|
unsigned EltBits = VT.getScalarSizeInBits();
|
|
MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
|
|
MVT WideIntVT =
|
|
MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
|
|
// Convert this to a scalable vector. We need to base this on the
|
|
// destination size to ensure there's always a type with a smaller LMUL.
|
|
MVT WideIntContainerVT =
|
|
getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
|
|
|
|
// Convert sources to scalable vectors with the same element count as the
|
|
// larger type.
|
|
MVT HalfContainerVT = MVT::getVectorVT(
|
|
VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
|
|
V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
|
|
V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
|
|
|
|
// Cast sources to integer.
|
|
MVT IntEltVT = MVT::getIntegerVT(EltBits);
|
|
MVT IntHalfVT =
|
|
MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
|
|
V1 = DAG.getBitcast(IntHalfVT, V1);
|
|
V2 = DAG.getBitcast(IntHalfVT, V2);
|
|
|
|
// Freeze V2 since we use it twice and we need to be sure that the add and
|
|
// multiply see the same value.
|
|
V2 = DAG.getFreeze(V2);
|
|
|
|
// Recreate TrueMask using the widened type's element count.
|
|
MVT MaskVT =
|
|
MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount());
|
|
TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
|
|
|
|
// Widen V1 and V2 with 0s and add one copy of V2 to V1.
|
|
SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
|
|
V2, TrueMask, VL);
|
|
// Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
|
|
SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
|
|
DAG.getUNDEF(IntHalfVT),
|
|
DAG.getAllOnesConstant(DL, XLenVT));
|
|
SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
|
|
V2, Multiplier, TrueMask, VL);
|
|
// Add the new copies to our previous addition giving us 2^eltbits copies of
|
|
// V2. This is equivalent to shifting V2 left by eltbits. This should
|
|
// combine with the vwmulu.vv above to form vwmaccu.vv.
|
|
Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
|
|
TrueMask, VL);
|
|
// Cast back to ContainerVT. We need to re-create a new ContainerVT in case
|
|
// WideIntContainerVT is a larger fractional LMUL than implied by the fixed
|
|
// vector VT.
|
|
ContainerVT =
|
|
MVT::getVectorVT(VT.getVectorElementType(),
|
|
WideIntContainerVT.getVectorElementCount() * 2);
|
|
Add = DAG.getBitcast(ContainerVT, Add);
|
|
return convertFromScalableVector(VT, Add, DAG, Subtarget);
|
|
}
|
|
|
|
// Detect shuffles which can be re-expressed as vector selects; these are
|
|
// shuffles in which each element in the destination is taken from an element
|
|
// at the corresponding index in either source vectors.
|
|
bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
|
|
int MaskIndex = MaskIdx.value();
|
|
return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
|
|
});
|
|
|
|
assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
|
|
|
|
SmallVector<SDValue> MaskVals;
|
|
// As a backup, shuffles can be lowered via a vrgather instruction, possibly
|
|
// merged with a second vrgather.
|
|
SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
|
|
|
|
// By default we preserve the original operand order, and use a mask to
|
|
// select LHS as true and RHS as false. However, since RVV vector selects may
|
|
// feature splats but only on the LHS, we may choose to invert our mask and
|
|
// instead select between RHS and LHS.
|
|
bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
|
|
bool InvertMask = IsSelect == SwapOps;
|
|
|
|
// Keep a track of which non-undef indices are used by each LHS/RHS shuffle
|
|
// half.
|
|
DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
|
|
|
|
// Now construct the mask that will be used by the vselect or blended
|
|
// vrgather operation. For vrgathers, construct the appropriate indices into
|
|
// each vector.
|
|
for (int MaskIndex : Mask) {
|
|
bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
|
|
MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
|
|
if (!IsSelect) {
|
|
bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
|
|
GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
|
|
? DAG.getConstant(MaskIndex, DL, XLenVT)
|
|
: DAG.getUNDEF(XLenVT));
|
|
GatherIndicesRHS.push_back(
|
|
IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
|
|
: DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
|
|
if (IsLHSOrUndefIndex && MaskIndex >= 0)
|
|
++LHSIndexCounts[MaskIndex];
|
|
if (!IsLHSOrUndefIndex)
|
|
++RHSIndexCounts[MaskIndex - NumElts];
|
|
}
|
|
}
|
|
|
|
if (SwapOps) {
|
|
std::swap(V1, V2);
|
|
std::swap(GatherIndicesLHS, GatherIndicesRHS);
|
|
}
|
|
|
|
assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
|
|
MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
|
|
SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
|
|
|
|
if (IsSelect)
|
|
return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
|
|
|
|
if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
|
|
// On such a large vector we're unable to use i8 as the index type.
|
|
// FIXME: We could promote the index to i16 and use vrgatherei16, but that
|
|
// may involve vector splitting if we're already at LMUL=8, or our
|
|
// user-supplied maximum fixed-length LMUL.
|
|
return SDValue();
|
|
}
|
|
|
|
unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
|
|
unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
|
|
MVT IndexVT = VT.changeTypeToInteger();
|
|
// Since we can't introduce illegal index types at this stage, use i16 and
|
|
// vrgatherei16 if the corresponding index type for plain vrgather is greater
|
|
// than XLenVT.
|
|
if (IndexVT.getScalarType().bitsGT(XLenVT)) {
|
|
GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
|
|
IndexVT = IndexVT.changeVectorElementType(MVT::i16);
|
|
}
|
|
|
|
MVT IndexContainerVT =
|
|
ContainerVT.changeVectorElementType(IndexVT.getScalarType());
|
|
|
|
SDValue Gather;
|
|
// TODO: This doesn't trigger for i64 vectors on RV32, since there we
|
|
// encounter a bitcasted BUILD_VECTOR with low/high i32 values.
|
|
if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
|
|
Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
|
|
Subtarget);
|
|
} else {
|
|
V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
|
|
// If only one index is used, we can use a "splat" vrgather.
|
|
// TODO: We can splat the most-common index and fix-up any stragglers, if
|
|
// that's beneficial.
|
|
if (LHSIndexCounts.size() == 1) {
|
|
int SplatIndex = LHSIndexCounts.begin()->getFirst();
|
|
Gather =
|
|
DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
|
|
DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
|
|
} else {
|
|
SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
|
|
LHSIndices =
|
|
convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
|
|
|
|
Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
|
|
TrueMask, VL);
|
|
}
|
|
}
|
|
|
|
// If a second vector operand is used by this shuffle, blend it in with an
|
|
// additional vrgather.
|
|
if (!V2.isUndef()) {
|
|
V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
|
|
// If only one index is used, we can use a "splat" vrgather.
|
|
// TODO: We can splat the most-common index and fix-up any stragglers, if
|
|
// that's beneficial.
|
|
if (RHSIndexCounts.size() == 1) {
|
|
int SplatIndex = RHSIndexCounts.begin()->getFirst();
|
|
V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
|
|
DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
|
|
} else {
|
|
SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
|
|
RHSIndices =
|
|
convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
|
|
V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
|
|
VL);
|
|
}
|
|
|
|
MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
|
|
SelectMask =
|
|
convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
|
|
|
|
Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
|
|
Gather, VL);
|
|
}
|
|
|
|
return convertFromScalableVector(VT, Gather, DAG, Subtarget);
|
|
}
|
|
|
|
bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
|
|
// Support splats for any type. These should type legalize well.
|
|
if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
|
|
return true;
|
|
|
|
// Only support legal VTs for other shuffles for now.
|
|
if (!isTypeLegal(VT))
|
|
return false;
|
|
|
|
MVT SVT = VT.getSimpleVT();
|
|
|
|
bool SwapSources;
|
|
int LoSrc, HiSrc;
|
|
return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
|
|
isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
|
|
}
|
|
|
|
static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
|
|
SDLoc DL, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
if (VT.isScalableVector())
|
|
return DAG.getFPExtendOrRound(Op, DL, VT);
|
|
assert(VT.isFixedLengthVector() &&
|
|
"Unexpected value type for RVV FP extend/round lowering");
|
|
SDValue Mask, VL;
|
|
std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
|
|
? RISCVISD::FP_EXTEND_VL
|
|
: RISCVISD::FP_ROUND_VL;
|
|
return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
|
|
}
|
|
|
|
// Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
|
|
// the exponent.
|
|
static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
|
|
MVT VT = Op.getSimpleValueType();
|
|
unsigned EltSize = VT.getScalarSizeInBits();
|
|
SDValue Src = Op.getOperand(0);
|
|
SDLoc DL(Op);
|
|
|
|
// We need a FP type that can represent the value.
|
|
// TODO: Use f16 for i8 when possible?
|
|
MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
|
|
MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
|
|
|
|
// Legal types should have been checked in the RISCVTargetLowering
|
|
// constructor.
|
|
// TODO: Splitting may make sense in some cases.
|
|
assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
|
|
"Expected legal float type!");
|
|
|
|
// For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
|
|
// The trailing zero count is equal to log2 of this single bit value.
|
|
if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
|
|
SDValue Neg =
|
|
DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
|
|
Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
|
|
}
|
|
|
|
// We have a legal FP type, convert to it.
|
|
SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
|
|
// Bitcast to integer and shift the exponent to the LSB.
|
|
EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
|
|
SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
|
|
unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
|
|
SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
|
|
DAG.getConstant(ShiftAmt, DL, IntVT));
|
|
// Truncate back to original type to allow vnsrl.
|
|
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
|
|
// The exponent contains log2 of the value in biased form.
|
|
unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
|
|
|
|
// For trailing zeros, we just need to subtract the bias.
|
|
if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
|
|
return DAG.getNode(ISD::SUB, DL, VT, Trunc,
|
|
DAG.getConstant(ExponentBias, DL, VT));
|
|
|
|
// For leading zeros, we need to remove the bias and convert from log2 to
|
|
// leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
|
|
unsigned Adjust = ExponentBias + (EltSize - 1);
|
|
return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
|
|
}
|
|
|
|
// While RVV has alignment restrictions, we should always be able to load as a
|
|
// legal equivalently-sized byte-typed vector instead. This method is
|
|
// responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
|
|
// the load is already correctly-aligned, it returns SDValue().
|
|
SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
auto *Load = cast<LoadSDNode>(Op);
|
|
assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
|
|
|
|
if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
|
|
Load->getMemoryVT(),
|
|
*Load->getMemOperand()))
|
|
return SDValue();
|
|
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
unsigned EltSizeBits = VT.getScalarSizeInBits();
|
|
assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
|
|
"Unexpected unaligned RVV load type");
|
|
MVT NewVT =
|
|
MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
|
|
assert(NewVT.isValid() &&
|
|
"Expecting equally-sized RVV vector types to be legal");
|
|
SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
|
|
Load->getPointerInfo(), Load->getOriginalAlign(),
|
|
Load->getMemOperand()->getFlags());
|
|
return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
|
|
}
|
|
|
|
// While RVV has alignment restrictions, we should always be able to store as a
|
|
// legal equivalently-sized byte-typed vector instead. This method is
|
|
// responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
|
|
// returns SDValue() if the store is already correctly aligned.
|
|
SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
auto *Store = cast<StoreSDNode>(Op);
|
|
assert(Store && Store->getValue().getValueType().isVector() &&
|
|
"Expected vector store");
|
|
|
|
if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
|
|
Store->getMemoryVT(),
|
|
*Store->getMemOperand()))
|
|
return SDValue();
|
|
|
|
SDLoc DL(Op);
|
|
SDValue StoredVal = Store->getValue();
|
|
MVT VT = StoredVal.getSimpleValueType();
|
|
unsigned EltSizeBits = VT.getScalarSizeInBits();
|
|
assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
|
|
"Unexpected unaligned RVV store type");
|
|
MVT NewVT =
|
|
MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
|
|
assert(NewVT.isValid() &&
|
|
"Expecting equally-sized RVV vector types to be legal");
|
|
StoredVal = DAG.getBitcast(NewVT, StoredVal);
|
|
return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
|
|
Store->getPointerInfo(), Store->getOriginalAlign(),
|
|
Store->getMemOperand()->getFlags());
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
report_fatal_error("unimplemented operand");
|
|
case ISD::GlobalAddress:
|
|
return lowerGlobalAddress(Op, DAG);
|
|
case ISD::BlockAddress:
|
|
return lowerBlockAddress(Op, DAG);
|
|
case ISD::ConstantPool:
|
|
return lowerConstantPool(Op, DAG);
|
|
case ISD::JumpTable:
|
|
return lowerJumpTable(Op, DAG);
|
|
case ISD::GlobalTLSAddress:
|
|
return lowerGlobalTLSAddress(Op, DAG);
|
|
case ISD::SELECT:
|
|
return lowerSELECT(Op, DAG);
|
|
case ISD::BRCOND:
|
|
return lowerBRCOND(Op, DAG);
|
|
case ISD::VASTART:
|
|
return lowerVASTART(Op, DAG);
|
|
case ISD::FRAMEADDR:
|
|
return lowerFRAMEADDR(Op, DAG);
|
|
case ISD::RETURNADDR:
|
|
return lowerRETURNADDR(Op, DAG);
|
|
case ISD::SHL_PARTS:
|
|
return lowerShiftLeftParts(Op, DAG);
|
|
case ISD::SRA_PARTS:
|
|
return lowerShiftRightParts(Op, DAG, true);
|
|
case ISD::SRL_PARTS:
|
|
return lowerShiftRightParts(Op, DAG, false);
|
|
case ISD::BITCAST: {
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
SDValue Op0 = Op.getOperand(0);
|
|
EVT Op0VT = Op0.getValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
if (VT.isFixedLengthVector()) {
|
|
// We can handle fixed length vector bitcasts with a simple replacement
|
|
// in isel.
|
|
if (Op0VT.isFixedLengthVector())
|
|
return Op;
|
|
// When bitcasting from scalar to fixed-length vector, insert the scalar
|
|
// into a one-element vector of the result type, and perform a vector
|
|
// bitcast.
|
|
if (!Op0VT.isVector()) {
|
|
EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
|
|
if (!isTypeLegal(BVT))
|
|
return SDValue();
|
|
return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
|
|
DAG.getUNDEF(BVT), Op0,
|
|
DAG.getConstant(0, DL, XLenVT)));
|
|
}
|
|
return SDValue();
|
|
}
|
|
// Custom-legalize bitcasts from fixed-length vector types to scalar types
|
|
// thus: bitcast the vector to a one-element vector type whose element type
|
|
// is the same as the result type, and extract the first element.
|
|
if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
|
|
EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
|
|
if (!isTypeLegal(BVT))
|
|
return SDValue();
|
|
SDValue BVec = DAG.getBitcast(BVT, Op0);
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
|
|
DAG.getConstant(0, DL, XLenVT));
|
|
}
|
|
if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
|
|
SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
|
|
SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
|
|
return FPConv;
|
|
}
|
|
if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
|
|
Subtarget.hasStdExtF()) {
|
|
SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
|
|
SDValue FPConv =
|
|
DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
|
|
return FPConv;
|
|
}
|
|
return SDValue();
|
|
}
|
|
case ISD::INTRINSIC_WO_CHAIN:
|
|
return LowerINTRINSIC_WO_CHAIN(Op, DAG);
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
return LowerINTRINSIC_W_CHAIN(Op, DAG);
|
|
case ISD::INTRINSIC_VOID:
|
|
return LowerINTRINSIC_VOID(Op, DAG);
|
|
case ISD::BSWAP:
|
|
case ISD::BITREVERSE: {
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDLoc DL(Op);
|
|
if (Subtarget.hasStdExtZbp()) {
|
|
// Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
|
|
// Start with the maximum immediate value which is the bitwidth - 1.
|
|
unsigned Imm = VT.getSizeInBits() - 1;
|
|
// If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
|
|
if (Op.getOpcode() == ISD::BSWAP)
|
|
Imm &= ~0x7U;
|
|
return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
|
|
DAG.getConstant(Imm, DL, VT));
|
|
}
|
|
assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
|
|
assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
|
|
// Expand bitreverse to a bswap(rev8) followed by brev8.
|
|
SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
|
|
// We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
|
|
// as brev8 by an isel pattern.
|
|
return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
|
|
DAG.getConstant(7, DL, VT));
|
|
}
|
|
case ISD::FSHL:
|
|
case ISD::FSHR: {
|
|
MVT VT = Op.getSimpleValueType();
|
|
assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
|
|
SDLoc DL(Op);
|
|
// FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
|
|
// use log(XLen) bits. Mask the shift amount accordingly to prevent
|
|
// accidentally setting the extra bit.
|
|
unsigned ShAmtWidth = Subtarget.getXLen() - 1;
|
|
SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
|
|
DAG.getConstant(ShAmtWidth, DL, VT));
|
|
// fshl and fshr concatenate their operands in the same order. fsr and fsl
|
|
// instruction use different orders. fshl will return its first operand for
|
|
// shift of zero, fshr will return its second operand. fsl and fsr both
|
|
// return rs1 so the ISD nodes need to have different operand orders.
|
|
// Shift amount is in rs2.
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
unsigned Opc = RISCVISD::FSL;
|
|
if (Op.getOpcode() == ISD::FSHR) {
|
|
std::swap(Op0, Op1);
|
|
Opc = RISCVISD::FSR;
|
|
}
|
|
return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
|
|
}
|
|
case ISD::TRUNCATE: {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
// Only custom-lower vector truncates
|
|
if (!VT.isVector())
|
|
return Op;
|
|
|
|
// Truncates to mask types are handled differently
|
|
if (VT.getVectorElementType() == MVT::i1)
|
|
return lowerVectorMaskTrunc(Op, DAG);
|
|
|
|
// RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
|
|
// truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
|
|
// truncate by one power of two at a time.
|
|
MVT DstEltVT = VT.getVectorElementType();
|
|
|
|
SDValue Src = Op.getOperand(0);
|
|
MVT SrcVT = Src.getSimpleValueType();
|
|
MVT SrcEltVT = SrcVT.getVectorElementType();
|
|
|
|
assert(DstEltVT.bitsLT(SrcEltVT) &&
|
|
isPowerOf2_64(DstEltVT.getSizeInBits()) &&
|
|
isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
|
|
"Unexpected vector truncate lowering");
|
|
|
|
MVT ContainerVT = SrcVT;
|
|
if (SrcVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(SrcVT);
|
|
Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue Result = Src;
|
|
SDValue Mask, VL;
|
|
std::tie(Mask, VL) =
|
|
getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
|
|
LLVMContext &Context = *DAG.getContext();
|
|
const ElementCount Count = ContainerVT.getVectorElementCount();
|
|
do {
|
|
SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
|
|
EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
|
|
Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
|
|
Mask, VL);
|
|
} while (SrcEltVT != DstEltVT);
|
|
|
|
if (SrcVT.isFixedLengthVector())
|
|
Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
|
|
|
|
return Result;
|
|
}
|
|
case ISD::ANY_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
if (Op.getOperand(0).getValueType().isVector() &&
|
|
Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
|
|
return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
|
|
return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
|
|
case ISD::SIGN_EXTEND:
|
|
if (Op.getOperand(0).getValueType().isVector() &&
|
|
Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
|
|
return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
|
|
return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
|
|
case ISD::SPLAT_VECTOR_PARTS:
|
|
return lowerSPLAT_VECTOR_PARTS(Op, DAG);
|
|
case ISD::INSERT_VECTOR_ELT:
|
|
return lowerINSERT_VECTOR_ELT(Op, DAG);
|
|
case ISD::EXTRACT_VECTOR_ELT:
|
|
return lowerEXTRACT_VECTOR_ELT(Op, DAG);
|
|
case ISD::VSCALE: {
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDLoc DL(Op);
|
|
SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
|
|
// We define our scalable vector types for lmul=1 to use a 64 bit known
|
|
// minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
|
|
// vscale as VLENB / 8.
|
|
static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
|
|
if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock)
|
|
report_fatal_error("Support for VLEN==32 is incomplete.");
|
|
if (isa<ConstantSDNode>(Op.getOperand(0))) {
|
|
// We assume VLENB is a multiple of 8. We manually choose the best shift
|
|
// here because SimplifyDemandedBits isn't always able to simplify it.
|
|
uint64_t Val = Op.getConstantOperandVal(0);
|
|
if (isPowerOf2_64(Val)) {
|
|
uint64_t Log2 = Log2_64(Val);
|
|
if (Log2 < 3)
|
|
return DAG.getNode(ISD::SRL, DL, VT, VLENB,
|
|
DAG.getConstant(3 - Log2, DL, VT));
|
|
if (Log2 > 3)
|
|
return DAG.getNode(ISD::SHL, DL, VT, VLENB,
|
|
DAG.getConstant(Log2 - 3, DL, VT));
|
|
return VLENB;
|
|
}
|
|
// If the multiplier is a multiple of 8, scale it down to avoid needing
|
|
// to shift the VLENB value.
|
|
if ((Val % 8) == 0)
|
|
return DAG.getNode(ISD::MUL, DL, VT, VLENB,
|
|
DAG.getConstant(Val / 8, DL, VT));
|
|
}
|
|
|
|
SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
|
|
DAG.getConstant(3, DL, VT));
|
|
return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
|
|
}
|
|
case ISD::FPOWI: {
|
|
// Custom promote f16 powi with illegal i32 integer type on RV64. Once
|
|
// promoted this will be legalized into a libcall by LegalizeIntegerTypes.
|
|
if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
|
|
Op.getOperand(1).getValueType() == MVT::i32) {
|
|
SDLoc DL(Op);
|
|
SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
|
|
SDValue Powi =
|
|
DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
|
|
return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
|
|
DAG.getIntPtrConstant(0, DL));
|
|
}
|
|
return SDValue();
|
|
}
|
|
case ISD::FP_EXTEND: {
|
|
// RVV can only do fp_extend to types double the size as the source. We
|
|
// custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
|
|
// via f32.
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDValue Src = Op.getOperand(0);
|
|
MVT SrcVT = Src.getSimpleValueType();
|
|
|
|
// Prepare any fixed-length vector operands.
|
|
MVT ContainerVT = VT;
|
|
if (SrcVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
MVT SrcContainerVT =
|
|
ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
|
|
Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
|
|
}
|
|
|
|
if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
|
|
SrcVT.getVectorElementType() != MVT::f16) {
|
|
// For scalable vectors, we only need to close the gap between
|
|
// vXf16->vXf64.
|
|
if (!VT.isFixedLengthVector())
|
|
return Op;
|
|
// For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
|
|
Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
|
|
return convertFromScalableVector(VT, Src, DAG, Subtarget);
|
|
}
|
|
|
|
MVT InterVT = VT.changeVectorElementType(MVT::f32);
|
|
MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
|
|
SDValue IntermediateExtend = getRVVFPExtendOrRound(
|
|
Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
|
|
|
|
SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
|
|
DL, DAG, Subtarget);
|
|
if (VT.isFixedLengthVector())
|
|
return convertFromScalableVector(VT, Extend, DAG, Subtarget);
|
|
return Extend;
|
|
}
|
|
case ISD::FP_ROUND: {
|
|
// RVV can only do fp_round to types half the size as the source. We
|
|
// custom-lower f64->f16 rounds via RVV's round-to-odd float
|
|
// conversion instruction.
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDValue Src = Op.getOperand(0);
|
|
MVT SrcVT = Src.getSimpleValueType();
|
|
|
|
// Prepare any fixed-length vector operands.
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector()) {
|
|
MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
|
|
ContainerVT =
|
|
SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
|
|
Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
|
|
}
|
|
|
|
if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
|
|
SrcVT.getVectorElementType() != MVT::f64) {
|
|
// For scalable vectors, we only need to close the gap between
|
|
// vXf64<->vXf16.
|
|
if (!VT.isFixedLengthVector())
|
|
return Op;
|
|
// For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
|
|
Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
|
|
return convertFromScalableVector(VT, Src, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue Mask, VL;
|
|
std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
|
|
SDValue IntermediateRound =
|
|
DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
|
|
SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
|
|
DL, DAG, Subtarget);
|
|
|
|
if (VT.isFixedLengthVector())
|
|
return convertFromScalableVector(VT, Round, DAG, Subtarget);
|
|
return Round;
|
|
}
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT:
|
|
case ISD::SINT_TO_FP:
|
|
case ISD::UINT_TO_FP: {
|
|
// RVV can only do fp<->int conversions to types half/double the size as
|
|
// the source. We custom-lower any conversions that do two hops into
|
|
// sequences.
|
|
MVT VT = Op.getSimpleValueType();
|
|
if (!VT.isVector())
|
|
return Op;
|
|
SDLoc DL(Op);
|
|
SDValue Src = Op.getOperand(0);
|
|
MVT EltVT = VT.getVectorElementType();
|
|
MVT SrcVT = Src.getSimpleValueType();
|
|
MVT SrcEltVT = SrcVT.getVectorElementType();
|
|
unsigned EltSize = EltVT.getSizeInBits();
|
|
unsigned SrcEltSize = SrcEltVT.getSizeInBits();
|
|
assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
|
|
"Unexpected vector element types");
|
|
|
|
bool IsInt2FP = SrcEltVT.isInteger();
|
|
// Widening conversions
|
|
if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
|
|
if (IsInt2FP) {
|
|
// Do a regular integer sign/zero extension then convert to float.
|
|
MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
|
|
VT.getVectorElementCount());
|
|
unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
|
|
? ISD::ZERO_EXTEND
|
|
: ISD::SIGN_EXTEND;
|
|
SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
|
|
return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
|
|
}
|
|
// FP2Int
|
|
assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
|
|
// Do one doubling fp_extend then complete the operation by converting
|
|
// to int.
|
|
MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
|
|
SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
|
|
return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
|
|
}
|
|
|
|
// Narrowing conversions
|
|
if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
|
|
if (IsInt2FP) {
|
|
// One narrowing int_to_fp, then an fp_round.
|
|
assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
|
|
MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
|
|
SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
|
|
return DAG.getFPExtendOrRound(Int2FP, DL, VT);
|
|
}
|
|
// FP2Int
|
|
// One narrowing fp_to_int, then truncate the integer. If the float isn't
|
|
// representable by the integer, the result is poison.
|
|
MVT IVecVT =
|
|
MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
|
|
VT.getVectorElementCount());
|
|
SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
|
|
return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
|
|
}
|
|
|
|
// Scalable vectors can exit here. Patterns will handle equally-sized
|
|
// conversions halving/doubling ones.
|
|
if (!VT.isFixedLengthVector())
|
|
return Op;
|
|
|
|
// For fixed-length vectors we lower to a custom "VL" node.
|
|
unsigned RVVOpc = 0;
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Impossible opcode");
|
|
case ISD::FP_TO_SINT:
|
|
RVVOpc = RISCVISD::FP_TO_SINT_VL;
|
|
break;
|
|
case ISD::FP_TO_UINT:
|
|
RVVOpc = RISCVISD::FP_TO_UINT_VL;
|
|
break;
|
|
case ISD::SINT_TO_FP:
|
|
RVVOpc = RISCVISD::SINT_TO_FP_VL;
|
|
break;
|
|
case ISD::UINT_TO_FP:
|
|
RVVOpc = RISCVISD::UINT_TO_FP_VL;
|
|
break;
|
|
}
|
|
|
|
MVT ContainerVT, SrcContainerVT;
|
|
// Derive the reference container type from the larger vector type.
|
|
if (SrcEltSize > EltSize) {
|
|
SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
|
|
ContainerVT =
|
|
SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
|
|
} else {
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
|
|
}
|
|
|
|
SDValue Mask, VL;
|
|
std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
|
|
Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
|
|
return convertFromScalableVector(VT, Src, DAG, Subtarget);
|
|
}
|
|
case ISD::FP_TO_SINT_SAT:
|
|
case ISD::FP_TO_UINT_SAT:
|
|
return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
|
|
case ISD::FTRUNC:
|
|
case ISD::FCEIL:
|
|
case ISD::FFLOOR:
|
|
return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
|
|
case ISD::FROUND:
|
|
return lowerFROUND(Op, DAG);
|
|
case ISD::VECREDUCE_ADD:
|
|
case ISD::VECREDUCE_UMAX:
|
|
case ISD::VECREDUCE_SMAX:
|
|
case ISD::VECREDUCE_UMIN:
|
|
case ISD::VECREDUCE_SMIN:
|
|
return lowerVECREDUCE(Op, DAG);
|
|
case ISD::VECREDUCE_AND:
|
|
case ISD::VECREDUCE_OR:
|
|
case ISD::VECREDUCE_XOR:
|
|
if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
|
|
return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
|
|
return lowerVECREDUCE(Op, DAG);
|
|
case ISD::VECREDUCE_FADD:
|
|
case ISD::VECREDUCE_SEQ_FADD:
|
|
case ISD::VECREDUCE_FMIN:
|
|
case ISD::VECREDUCE_FMAX:
|
|
return lowerFPVECREDUCE(Op, DAG);
|
|
case ISD::VP_REDUCE_ADD:
|
|
case ISD::VP_REDUCE_UMAX:
|
|
case ISD::VP_REDUCE_SMAX:
|
|
case ISD::VP_REDUCE_UMIN:
|
|
case ISD::VP_REDUCE_SMIN:
|
|
case ISD::VP_REDUCE_FADD:
|
|
case ISD::VP_REDUCE_SEQ_FADD:
|
|
case ISD::VP_REDUCE_FMIN:
|
|
case ISD::VP_REDUCE_FMAX:
|
|
return lowerVPREDUCE(Op, DAG);
|
|
case ISD::VP_REDUCE_AND:
|
|
case ISD::VP_REDUCE_OR:
|
|
case ISD::VP_REDUCE_XOR:
|
|
if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
|
|
return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
|
|
return lowerVPREDUCE(Op, DAG);
|
|
case ISD::INSERT_SUBVECTOR:
|
|
return lowerINSERT_SUBVECTOR(Op, DAG);
|
|
case ISD::EXTRACT_SUBVECTOR:
|
|
return lowerEXTRACT_SUBVECTOR(Op, DAG);
|
|
case ISD::STEP_VECTOR:
|
|
return lowerSTEP_VECTOR(Op, DAG);
|
|
case ISD::VECTOR_REVERSE:
|
|
return lowerVECTOR_REVERSE(Op, DAG);
|
|
case ISD::VECTOR_SPLICE:
|
|
return lowerVECTOR_SPLICE(Op, DAG);
|
|
case ISD::BUILD_VECTOR:
|
|
return lowerBUILD_VECTOR(Op, DAG, Subtarget);
|
|
case ISD::SPLAT_VECTOR:
|
|
if (Op.getValueType().getVectorElementType() == MVT::i1)
|
|
return lowerVectorMaskSplat(Op, DAG);
|
|
return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
|
|
case ISD::VECTOR_SHUFFLE:
|
|
return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
|
|
case ISD::CONCAT_VECTORS: {
|
|
// Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
|
|
// better than going through the stack, as the default expansion does.
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
unsigned NumOpElts =
|
|
Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
|
|
SDValue Vec = DAG.getUNDEF(VT);
|
|
for (const auto &OpIdx : enumerate(Op->ops())) {
|
|
SDValue SubVec = OpIdx.value();
|
|
// Don't insert undef subvectors.
|
|
if (SubVec.isUndef())
|
|
continue;
|
|
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
|
|
DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
|
|
}
|
|
return Vec;
|
|
}
|
|
case ISD::LOAD:
|
|
if (auto V = expandUnalignedRVVLoad(Op, DAG))
|
|
return V;
|
|
if (Op.getValueType().isFixedLengthVector())
|
|
return lowerFixedLengthVectorLoadToRVV(Op, DAG);
|
|
return Op;
|
|
case ISD::STORE:
|
|
if (auto V = expandUnalignedRVVStore(Op, DAG))
|
|
return V;
|
|
if (Op.getOperand(1).getValueType().isFixedLengthVector())
|
|
return lowerFixedLengthVectorStoreToRVV(Op, DAG);
|
|
return Op;
|
|
case ISD::MLOAD:
|
|
case ISD::VP_LOAD:
|
|
return lowerMaskedLoad(Op, DAG);
|
|
case ISD::MSTORE:
|
|
case ISD::VP_STORE:
|
|
return lowerMaskedStore(Op, DAG);
|
|
case ISD::SETCC:
|
|
return lowerFixedLengthVectorSetccToRVV(Op, DAG);
|
|
case ISD::ADD:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
|
|
case ISD::SUB:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
|
|
case ISD::MUL:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
|
|
case ISD::MULHS:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
|
|
case ISD::MULHU:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
|
|
case ISD::AND:
|
|
return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
|
|
RISCVISD::AND_VL);
|
|
case ISD::OR:
|
|
return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
|
|
RISCVISD::OR_VL);
|
|
case ISD::XOR:
|
|
return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
|
|
RISCVISD::XOR_VL);
|
|
case ISD::SDIV:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
|
|
case ISD::SREM:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
|
|
case ISD::UDIV:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
|
|
case ISD::UREM:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
|
|
case ISD::SHL:
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
if (Op.getSimpleValueType().isFixedLengthVector())
|
|
return lowerFixedLengthVectorShiftToRVV(Op, DAG);
|
|
// This can be called for an i32 shift amount that needs to be promoted.
|
|
assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
return SDValue();
|
|
case ISD::SADDSAT:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
|
|
case ISD::UADDSAT:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
|
|
case ISD::SSUBSAT:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
|
|
case ISD::USUBSAT:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
|
|
case ISD::FADD:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
|
|
case ISD::FSUB:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
|
|
case ISD::FMUL:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
|
|
case ISD::FDIV:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
|
|
case ISD::FNEG:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
|
|
case ISD::FABS:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
|
|
case ISD::FSQRT:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
|
|
case ISD::FMA:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
|
|
case ISD::SMIN:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
|
|
case ISD::SMAX:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
|
|
case ISD::UMIN:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
|
|
case ISD::UMAX:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
|
|
case ISD::FMINNUM:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
|
|
case ISD::FMAXNUM:
|
|
return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
|
|
case ISD::ABS:
|
|
return lowerABS(Op, DAG);
|
|
case ISD::CTLZ_ZERO_UNDEF:
|
|
case ISD::CTTZ_ZERO_UNDEF:
|
|
return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
|
|
case ISD::VSELECT:
|
|
return lowerFixedLengthVectorSelectToRVV(Op, DAG);
|
|
case ISD::FCOPYSIGN:
|
|
return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
|
|
case ISD::MGATHER:
|
|
case ISD::VP_GATHER:
|
|
return lowerMaskedGather(Op, DAG);
|
|
case ISD::MSCATTER:
|
|
case ISD::VP_SCATTER:
|
|
return lowerMaskedScatter(Op, DAG);
|
|
case ISD::FLT_ROUNDS_:
|
|
return lowerGET_ROUNDING(Op, DAG);
|
|
case ISD::SET_ROUNDING:
|
|
return lowerSET_ROUNDING(Op, DAG);
|
|
case ISD::VP_SELECT:
|
|
return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
|
|
case ISD::VP_MERGE:
|
|
return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
|
|
case ISD::VP_ADD:
|
|
return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
|
|
case ISD::VP_SUB:
|
|
return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
|
|
case ISD::VP_MUL:
|
|
return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
|
|
case ISD::VP_SDIV:
|
|
return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
|
|
case ISD::VP_UDIV:
|
|
return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
|
|
case ISD::VP_SREM:
|
|
return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
|
|
case ISD::VP_UREM:
|
|
return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
|
|
case ISD::VP_AND:
|
|
return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
|
|
case ISD::VP_OR:
|
|
return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
|
|
case ISD::VP_XOR:
|
|
return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
|
|
case ISD::VP_ASHR:
|
|
return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
|
|
case ISD::VP_LSHR:
|
|
return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
|
|
case ISD::VP_SHL:
|
|
return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
|
|
case ISD::VP_FADD:
|
|
return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
|
|
case ISD::VP_FSUB:
|
|
return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
|
|
case ISD::VP_FMUL:
|
|
return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
|
|
case ISD::VP_FDIV:
|
|
return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
|
|
case ISD::VP_FNEG:
|
|
return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
|
|
case ISD::VP_FMA:
|
|
return lowerVPOp(Op, DAG, RISCVISD::FMA_VL);
|
|
}
|
|
}
|
|
|
|
static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
|
|
SelectionDAG &DAG, unsigned Flags) {
|
|
return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
|
|
}
|
|
|
|
static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
|
|
SelectionDAG &DAG, unsigned Flags) {
|
|
return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
|
|
Flags);
|
|
}
|
|
|
|
static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
|
|
SelectionDAG &DAG, unsigned Flags) {
|
|
return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
|
|
N->getOffset(), Flags);
|
|
}
|
|
|
|
static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
|
|
SelectionDAG &DAG, unsigned Flags) {
|
|
return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
|
|
}
|
|
|
|
template <class NodeTy>
|
|
SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
|
|
bool IsLocal) const {
|
|
SDLoc DL(N);
|
|
EVT Ty = getPointerTy(DAG.getDataLayout());
|
|
|
|
if (isPositionIndependent()) {
|
|
SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
|
|
if (IsLocal)
|
|
// Use PC-relative addressing to access the symbol. This generates the
|
|
// pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
|
|
// %pcrel_lo(auipc)).
|
|
return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
|
|
|
|
// Use PC-relative addressing to access the GOT for this symbol, then load
|
|
// the address from the GOT. This generates the pattern (PseudoLA sym),
|
|
// which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
|
|
return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
|
|
}
|
|
|
|
switch (getTargetMachine().getCodeModel()) {
|
|
default:
|
|
report_fatal_error("Unsupported code model for lowering");
|
|
case CodeModel::Small: {
|
|
// Generate a sequence for accessing addresses within the first 2 GiB of
|
|
// address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
|
|
SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
|
|
SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
|
|
SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
|
|
return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
|
|
}
|
|
case CodeModel::Medium: {
|
|
// Generate a sequence for accessing addresses within any 2GiB range within
|
|
// the address space. This generates the pattern (PseudoLLA sym), which
|
|
// expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
|
|
SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
|
|
return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
EVT Ty = Op.getValueType();
|
|
GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
|
|
int64_t Offset = N->getOffset();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
const GlobalValue *GV = N->getGlobal();
|
|
bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
|
|
SDValue Addr = getAddr(N, DAG, IsLocal);
|
|
|
|
// In order to maximise the opportunity for common subexpression elimination,
|
|
// emit a separate ADD node for the global address offset instead of folding
|
|
// it in the global address node. Later peephole optimisations may choose to
|
|
// fold it back in when profitable.
|
|
if (Offset != 0)
|
|
return DAG.getNode(ISD::ADD, DL, Ty, Addr,
|
|
DAG.getConstant(Offset, DL, XLenVT));
|
|
return Addr;
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
|
|
|
|
return getAddr(N, DAG);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
|
|
|
|
return getAddr(N, DAG);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
|
|
|
|
return getAddr(N, DAG);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
|
|
SelectionDAG &DAG,
|
|
bool UseGOT) const {
|
|
SDLoc DL(N);
|
|
EVT Ty = getPointerTy(DAG.getDataLayout());
|
|
const GlobalValue *GV = N->getGlobal();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
if (UseGOT) {
|
|
// Use PC-relative addressing to access the GOT for this TLS symbol, then
|
|
// load the address from the GOT and add the thread pointer. This generates
|
|
// the pattern (PseudoLA_TLS_IE sym), which expands to
|
|
// (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
|
|
SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
|
|
SDValue Load =
|
|
SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
|
|
|
|
// Add the thread pointer.
|
|
SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
|
|
return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
|
|
}
|
|
|
|
// Generate a sequence for accessing the address relative to the thread
|
|
// pointer, with the appropriate adjustment for the thread pointer offset.
|
|
// This generates the pattern
|
|
// (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
|
|
SDValue AddrHi =
|
|
DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
|
|
SDValue AddrAdd =
|
|
DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
|
|
SDValue AddrLo =
|
|
DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
|
|
|
|
SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
|
|
SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
|
|
SDValue MNAdd = SDValue(
|
|
DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
|
|
0);
|
|
return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(N);
|
|
EVT Ty = getPointerTy(DAG.getDataLayout());
|
|
IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
|
|
const GlobalValue *GV = N->getGlobal();
|
|
|
|
// Use a PC-relative addressing mode to access the global dynamic GOT address.
|
|
// This generates the pattern (PseudoLA_TLS_GD sym), which expands to
|
|
// (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
|
|
SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
|
|
SDValue Load =
|
|
SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
|
|
|
|
// Prepare argument list to generate call.
|
|
ArgListTy Args;
|
|
ArgListEntry Entry;
|
|
Entry.Node = Load;
|
|
Entry.Ty = CallTy;
|
|
Args.push_back(Entry);
|
|
|
|
// Setup call to __tls_get_addr.
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(DL)
|
|
.setChain(DAG.getEntryNode())
|
|
.setLibCallee(CallingConv::C, CallTy,
|
|
DAG.getExternalSymbol("__tls_get_addr", Ty),
|
|
std::move(Args));
|
|
|
|
return LowerCallTo(CLI).first;
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
EVT Ty = Op.getValueType();
|
|
GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
|
|
int64_t Offset = N->getOffset();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
|
|
|
|
if (DAG.getMachineFunction().getFunction().getCallingConv() ==
|
|
CallingConv::GHC)
|
|
report_fatal_error("In GHC calling convention TLS is not supported");
|
|
|
|
SDValue Addr;
|
|
switch (Model) {
|
|
case TLSModel::LocalExec:
|
|
Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
|
|
break;
|
|
case TLSModel::InitialExec:
|
|
Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
|
|
break;
|
|
case TLSModel::LocalDynamic:
|
|
case TLSModel::GeneralDynamic:
|
|
Addr = getDynamicTLSAddr(N, DAG);
|
|
break;
|
|
}
|
|
|
|
// In order to maximise the opportunity for common subexpression elimination,
|
|
// emit a separate ADD node for the global address offset instead of folding
|
|
// it in the global address node. Later peephole optimisations may choose to
|
|
// fold it back in when profitable.
|
|
if (Offset != 0)
|
|
return DAG.getNode(ISD::ADD, DL, Ty, Addr,
|
|
DAG.getConstant(Offset, DL, XLenVT));
|
|
return Addr;
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue CondV = Op.getOperand(0);
|
|
SDValue TrueV = Op.getOperand(1);
|
|
SDValue FalseV = Op.getOperand(2);
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
// Lower vector SELECTs to VSELECTs by splatting the condition.
|
|
if (VT.isVector()) {
|
|
MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
|
|
SDValue CondSplat = VT.isScalableVector()
|
|
? DAG.getSplatVector(SplatCondVT, DL, CondV)
|
|
: DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
|
|
return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
|
|
}
|
|
|
|
// If the result type is XLenVT and CondV is the output of a SETCC node
|
|
// which also operated on XLenVT inputs, then merge the SETCC node into the
|
|
// lowered RISCVISD::SELECT_CC to take advantage of the integer
|
|
// compare+branch instructions. i.e.:
|
|
// (select (setcc lhs, rhs, cc), truev, falsev)
|
|
// -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
|
|
if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
|
|
CondV.getOperand(0).getSimpleValueType() == XLenVT) {
|
|
SDValue LHS = CondV.getOperand(0);
|
|
SDValue RHS = CondV.getOperand(1);
|
|
const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
|
|
ISD::CondCode CCVal = CC->get();
|
|
|
|
// Special case for a select of 2 constants that have a diffence of 1.
|
|
// Normally this is done by DAGCombine, but if the select is introduced by
|
|
// type legalization or op legalization, we miss it. Restricting to SETLT
|
|
// case for now because that is what signed saturating add/sub need.
|
|
// FIXME: We don't need the condition to be SETLT or even a SETCC,
|
|
// but we would probably want to swap the true/false values if the condition
|
|
// is SETGE/SETLE to avoid an XORI.
|
|
if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
|
|
CCVal == ISD::SETLT) {
|
|
const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
|
|
const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
|
|
if (TrueVal - 1 == FalseVal)
|
|
return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
|
|
if (TrueVal + 1 == FalseVal)
|
|
return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
|
|
}
|
|
|
|
translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
|
|
|
|
SDValue TargetCC = DAG.getCondCode(CCVal);
|
|
SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
|
|
return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
|
|
}
|
|
|
|
// Otherwise:
|
|
// (select condv, truev, falsev)
|
|
// -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
|
|
SDValue Zero = DAG.getConstant(0, DL, XLenVT);
|
|
SDValue SetNE = DAG.getCondCode(ISD::SETNE);
|
|
|
|
SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
|
|
|
|
return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue CondV = Op.getOperand(1);
|
|
SDLoc DL(Op);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
if (CondV.getOpcode() == ISD::SETCC &&
|
|
CondV.getOperand(0).getValueType() == XLenVT) {
|
|
SDValue LHS = CondV.getOperand(0);
|
|
SDValue RHS = CondV.getOperand(1);
|
|
ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
|
|
|
|
translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
|
|
|
|
SDValue TargetCC = DAG.getCondCode(CCVal);
|
|
return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
|
|
LHS, RHS, TargetCC, Op.getOperand(2));
|
|
}
|
|
|
|
return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
|
|
CondV, DAG.getConstant(0, DL, XLenVT),
|
|
DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
|
|
|
|
SDLoc DL(Op);
|
|
SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
|
|
getPointerTy(MF.getDataLayout()));
|
|
|
|
// vastart just stores the address of the VarArgsFrameIndex slot into the
|
|
// memory location argument.
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
|
|
MachinePointerInfo(SV));
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MFI.setFrameAddressIsTaken(true);
|
|
Register FrameReg = RI.getFrameRegister(MF);
|
|
int XLenInBytes = Subtarget.getXLen() / 8;
|
|
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
|
|
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
while (Depth--) {
|
|
int Offset = -(XLenInBytes * 2);
|
|
SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
|
|
DAG.getIntPtrConstant(Offset, DL));
|
|
FrameAddr =
|
|
DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
|
|
}
|
|
return FrameAddr;
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MFI.setReturnAddressIsTaken(true);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
int XLenInBytes = Subtarget.getXLen() / 8;
|
|
|
|
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
|
|
return SDValue();
|
|
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
if (Depth) {
|
|
int Off = -XLenInBytes;
|
|
SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
|
|
SDValue Offset = DAG.getConstant(Off, DL, VT);
|
|
return DAG.getLoad(VT, DL, DAG.getEntryNode(),
|
|
DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
|
|
MachinePointerInfo());
|
|
}
|
|
|
|
// Return the value of the return address register, marking it an implicit
|
|
// live-in.
|
|
Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
|
|
return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
SDValue Lo = Op.getOperand(0);
|
|
SDValue Hi = Op.getOperand(1);
|
|
SDValue Shamt = Op.getOperand(2);
|
|
EVT VT = Lo.getValueType();
|
|
|
|
// if Shamt-XLEN < 0: // Shamt < XLEN
|
|
// Lo = Lo << Shamt
|
|
// Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
|
|
// else:
|
|
// Lo = 0
|
|
// Hi = Lo << (Shamt-XLEN)
|
|
|
|
SDValue Zero = DAG.getConstant(0, DL, VT);
|
|
SDValue One = DAG.getConstant(1, DL, VT);
|
|
SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
|
|
SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
|
|
SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
|
|
SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
|
|
|
|
SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
|
|
SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
|
|
SDValue ShiftRightLo =
|
|
DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
|
|
SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
|
|
SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
|
|
SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
|
|
|
|
SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
|
|
|
|
Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
|
|
Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
|
|
|
|
SDValue Parts[2] = {Lo, Hi};
|
|
return DAG.getMergeValues(Parts, DL);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
|
|
bool IsSRA) const {
|
|
SDLoc DL(Op);
|
|
SDValue Lo = Op.getOperand(0);
|
|
SDValue Hi = Op.getOperand(1);
|
|
SDValue Shamt = Op.getOperand(2);
|
|
EVT VT = Lo.getValueType();
|
|
|
|
// SRA expansion:
|
|
// if Shamt-XLEN < 0: // Shamt < XLEN
|
|
// Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
|
|
// Hi = Hi >>s Shamt
|
|
// else:
|
|
// Lo = Hi >>s (Shamt-XLEN);
|
|
// Hi = Hi >>s (XLEN-1)
|
|
//
|
|
// SRL expansion:
|
|
// if Shamt-XLEN < 0: // Shamt < XLEN
|
|
// Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
|
|
// Hi = Hi >>u Shamt
|
|
// else:
|
|
// Lo = Hi >>u (Shamt-XLEN);
|
|
// Hi = 0;
|
|
|
|
unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
|
|
|
|
SDValue Zero = DAG.getConstant(0, DL, VT);
|
|
SDValue One = DAG.getConstant(1, DL, VT);
|
|
SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
|
|
SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
|
|
SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
|
|
SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
|
|
|
|
SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
|
|
SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
|
|
SDValue ShiftLeftHi =
|
|
DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
|
|
SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
|
|
SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
|
|
SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
|
|
SDValue HiFalse =
|
|
IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
|
|
|
|
SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
|
|
|
|
Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
|
|
Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
|
|
|
|
SDValue Parts[2] = {Lo, Hi};
|
|
return DAG.getMergeValues(Parts, DL);
|
|
}
|
|
|
|
// Lower splats of i1 types to SETCC. For each mask vector type, we have a
|
|
// legal equivalently-sized i8 type, so we can use that as a go-between.
|
|
SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDValue SplatVal = Op.getOperand(0);
|
|
// All-zeros or all-ones splats are handled specially.
|
|
if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
|
|
SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
|
|
return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
|
|
}
|
|
if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
|
|
SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
|
|
return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
|
|
}
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
assert(SplatVal.getValueType() == XLenVT &&
|
|
"Unexpected type for i1 splat value");
|
|
MVT InterVT = VT.changeVectorElementType(MVT::i8);
|
|
SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
|
|
DAG.getConstant(1, DL, XLenVT));
|
|
SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
|
|
SDValue Zero = DAG.getConstant(0, DL, InterVT);
|
|
return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
|
|
}
|
|
|
|
// Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
|
|
// illegal (currently only vXi64 RV32).
|
|
// FIXME: We could also catch non-constant sign-extended i32 values and lower
|
|
// them to VMV_V_X_VL.
|
|
SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VecVT = Op.getSimpleValueType();
|
|
assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
|
|
"Unexpected SPLAT_VECTOR_PARTS lowering");
|
|
|
|
assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
|
|
SDValue Lo = Op.getOperand(0);
|
|
SDValue Hi = Op.getOperand(1);
|
|
|
|
if (VecVT.isFixedLengthVector()) {
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
SDLoc DL(Op);
|
|
SDValue Mask, VL;
|
|
std::tie(Mask, VL) =
|
|
getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
SDValue Res =
|
|
splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
|
|
return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
|
|
}
|
|
|
|
if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
|
|
int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
|
|
int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
|
|
// If Hi constant is all the same sign bit as Lo, lower this as a custom
|
|
// node in order to try and match RVV vector/scalar instructions.
|
|
if ((LoC >> 31) == HiC)
|
|
return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
|
|
Lo, DAG.getRegister(RISCV::X0, MVT::i32));
|
|
}
|
|
|
|
// Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
|
|
if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
|
|
isa<ConstantSDNode>(Hi.getOperand(1)) &&
|
|
Hi.getConstantOperandVal(1) == 31)
|
|
return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
|
|
DAG.getRegister(RISCV::X0, MVT::i32));
|
|
|
|
// Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
|
|
return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
|
|
DAG.getUNDEF(VecVT), Lo, Hi,
|
|
DAG.getRegister(RISCV::X0, MVT::i32));
|
|
}
|
|
|
|
// Custom-lower extensions from mask vectors by using a vselect either with 1
|
|
// for zero/any-extension or -1 for sign-extension:
|
|
// (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
|
|
// Note that any-extension is lowered identically to zero-extension.
|
|
SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
|
|
int64_t ExtTrueVal) const {
|
|
SDLoc DL(Op);
|
|
MVT VecVT = Op.getSimpleValueType();
|
|
SDValue Src = Op.getOperand(0);
|
|
// Only custom-lower extensions from mask types
|
|
assert(Src.getValueType().isVector() &&
|
|
Src.getValueType().getVectorElementType() == MVT::i1);
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
|
|
SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
|
|
|
|
if (VecVT.isScalableVector()) {
|
|
// Be careful not to introduce illegal scalar types at this stage, and be
|
|
// careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
|
|
// illegal and must be expanded. Since we know that the constants are
|
|
// sign-extended 32-bit values, we use VMV_V_X_VL directly.
|
|
bool IsRV32E64 =
|
|
!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
|
|
|
|
if (!IsRV32E64) {
|
|
SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
|
|
SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
|
|
} else {
|
|
SplatZero =
|
|
DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
|
|
SplatZero, DAG.getRegister(RISCV::X0, XLenVT));
|
|
SplatTrueVal =
|
|
DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
|
|
SplatTrueVal, DAG.getRegister(RISCV::X0, XLenVT));
|
|
}
|
|
|
|
return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
|
|
}
|
|
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
MVT I1ContainerVT =
|
|
MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
|
|
|
|
SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
|
|
|
|
SDValue Mask, VL;
|
|
std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT), SplatZero, VL);
|
|
SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
|
|
SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
|
|
SplatTrueVal, SplatZero, VL);
|
|
|
|
return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
|
|
SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
|
|
MVT ExtVT = Op.getSimpleValueType();
|
|
// Only custom-lower extensions from fixed-length vector types.
|
|
if (!ExtVT.isFixedLengthVector())
|
|
return Op;
|
|
MVT VT = Op.getOperand(0).getSimpleValueType();
|
|
// Grab the canonical container type for the extended type. Infer the smaller
|
|
// type from that to ensure the same number of vector elements, as we know
|
|
// the LMUL will be sufficient to hold the smaller type.
|
|
MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
|
|
// Get the extended container type manually to ensure the same number of
|
|
// vector elements between source and dest.
|
|
MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
|
|
ContainerExtVT.getVectorElementCount());
|
|
|
|
SDValue Op1 =
|
|
convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
|
|
|
|
SDLoc DL(Op);
|
|
SDValue Mask, VL;
|
|
std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
|
|
|
|
return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
|
|
}
|
|
|
|
// Custom-lower truncations from vectors to mask vectors by using a mask and a
|
|
// setcc operation:
|
|
// (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
|
|
SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
EVT MaskVT = Op.getValueType();
|
|
// Only expect to custom-lower truncations to mask types
|
|
assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
|
|
"Unexpected type for vector mask lowering");
|
|
SDValue Src = Op.getOperand(0);
|
|
MVT VecVT = Src.getSimpleValueType();
|
|
|
|
// If this is a fixed vector, we need to convert it to a scalable vector.
|
|
MVT ContainerVT = VecVT;
|
|
if (VecVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
|
|
SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
|
|
|
|
SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT), SplatOne);
|
|
SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT), SplatZero);
|
|
|
|
if (VecVT.isScalableVector()) {
|
|
SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
|
|
return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
|
|
}
|
|
|
|
SDValue Mask, VL;
|
|
std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
|
|
SDValue Trunc =
|
|
DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
|
|
Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
|
|
DAG.getCondCode(ISD::SETNE), Mask, VL);
|
|
return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
|
|
}
|
|
|
|
// Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
|
|
// first position of a vector, and that vector is slid up to the insert index.
|
|
// By limiting the active vector length to index+1 and merging with the
|
|
// original vector (with an undisturbed tail policy for elements >= VL), we
|
|
// achieve the desired result of leaving all elements untouched except the one
|
|
// at VL-1, which is replaced with the desired value.
|
|
SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VecVT = Op.getSimpleValueType();
|
|
SDValue Vec = Op.getOperand(0);
|
|
SDValue Val = Op.getOperand(1);
|
|
SDValue Idx = Op.getOperand(2);
|
|
|
|
if (VecVT.getVectorElementType() == MVT::i1) {
|
|
// FIXME: For now we just promote to an i8 vector and insert into that,
|
|
// but this is probably not optimal.
|
|
MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
|
|
Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
|
|
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
|
|
return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
|
|
}
|
|
|
|
MVT ContainerVT = VecVT;
|
|
// If the operand is a fixed-length vector, convert to a scalable one.
|
|
if (VecVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
SDValue Zero = DAG.getConstant(0, DL, XLenVT);
|
|
bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
|
|
// Even i64-element vectors on RV32 can be lowered without scalar
|
|
// legalization if the most-significant 32 bits of the value are not affected
|
|
// by the sign-extension of the lower 32 bits.
|
|
// TODO: We could also catch sign extensions of a 32-bit value.
|
|
if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
|
|
const auto *CVal = cast<ConstantSDNode>(Val);
|
|
if (isInt<32>(CVal->getSExtValue())) {
|
|
IsLegalInsert = true;
|
|
Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
|
|
}
|
|
}
|
|
|
|
SDValue Mask, VL;
|
|
std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
SDValue ValInVec;
|
|
|
|
if (IsLegalInsert) {
|
|
unsigned Opc =
|
|
VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
|
|
if (isNullConstant(Idx)) {
|
|
Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
|
|
if (!VecVT.isFixedLengthVector())
|
|
return Vec;
|
|
return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
|
|
}
|
|
ValInVec =
|
|
DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
|
|
} else {
|
|
// On RV32, i64-element vectors must be specially handled to place the
|
|
// value at element 0, by using two vslide1up instructions in sequence on
|
|
// the i32 split lo/hi value. Use an equivalently-sized i32 vector for
|
|
// this.
|
|
SDValue One = DAG.getConstant(1, DL, XLenVT);
|
|
SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
|
|
SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
|
|
MVT I32ContainerVT =
|
|
MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
|
|
SDValue I32Mask =
|
|
getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
|
|
// Limit the active VL to two.
|
|
SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
|
|
// Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
|
|
// undef doesn't obey the earlyclobber constraint. Just splat a zero value.
|
|
ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
|
|
DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
|
|
// First slide in the hi value, then the lo in underneath it.
|
|
ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
|
|
DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
|
|
I32Mask, InsertI64VL);
|
|
ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
|
|
DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
|
|
I32Mask, InsertI64VL);
|
|
// Bitcast back to the right container type.
|
|
ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
|
|
}
|
|
|
|
// Now that the value is in a vector, slide it into position.
|
|
SDValue InsertVL =
|
|
DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
|
|
SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
|
|
ValInVec, Idx, Mask, InsertVL);
|
|
if (!VecVT.isFixedLengthVector())
|
|
return Slideup;
|
|
return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
|
|
}
|
|
|
|
// Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
|
|
// extract the first element: (extractelt (slidedown vec, idx), 0). For integer
|
|
// types this is done using VMV_X_S to allow us to glean information about the
|
|
// sign bits of the result.
|
|
SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
SDValue Idx = Op.getOperand(1);
|
|
SDValue Vec = Op.getOperand(0);
|
|
EVT EltVT = Op.getValueType();
|
|
MVT VecVT = Vec.getSimpleValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
if (VecVT.getVectorElementType() == MVT::i1) {
|
|
if (VecVT.isFixedLengthVector()) {
|
|
unsigned NumElts = VecVT.getVectorNumElements();
|
|
if (NumElts >= 8) {
|
|
MVT WideEltVT;
|
|
unsigned WidenVecLen;
|
|
SDValue ExtractElementIdx;
|
|
SDValue ExtractBitIdx;
|
|
unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors();
|
|
MVT LargestEltVT = MVT::getIntegerVT(
|
|
std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
|
|
if (NumElts <= LargestEltVT.getSizeInBits()) {
|
|
assert(isPowerOf2_32(NumElts) &&
|
|
"the number of elements should be power of 2");
|
|
WideEltVT = MVT::getIntegerVT(NumElts);
|
|
WidenVecLen = 1;
|
|
ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
|
|
ExtractBitIdx = Idx;
|
|
} else {
|
|
WideEltVT = LargestEltVT;
|
|
WidenVecLen = NumElts / WideEltVT.getSizeInBits();
|
|
// extract element index = index / element width
|
|
ExtractElementIdx = DAG.getNode(
|
|
ISD::SRL, DL, XLenVT, Idx,
|
|
DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
|
|
// mask bit index = index % element width
|
|
ExtractBitIdx = DAG.getNode(
|
|
ISD::AND, DL, XLenVT, Idx,
|
|
DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
|
|
}
|
|
MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
|
|
Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
|
|
SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
|
|
Vec, ExtractElementIdx);
|
|
// Extract the bit from GPR.
|
|
SDValue ShiftRight =
|
|
DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
|
|
return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
|
|
DAG.getConstant(1, DL, XLenVT));
|
|
}
|
|
}
|
|
// Otherwise, promote to an i8 vector and extract from that.
|
|
MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
|
|
Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
|
|
}
|
|
|
|
// If this is a fixed vector, we need to convert it to a scalable vector.
|
|
MVT ContainerVT = VecVT;
|
|
if (VecVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
// If the index is 0, the vector is already in the right position.
|
|
if (!isNullConstant(Idx)) {
|
|
// Use a VL of 1 to avoid processing more elements than we need.
|
|
SDValue VL = DAG.getConstant(1, DL, XLenVT);
|
|
MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
|
|
SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
|
|
Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
|
|
}
|
|
|
|
if (!EltVT.isInteger()) {
|
|
// Floating-point extracts are handled in TableGen.
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
|
|
DAG.getConstant(0, DL, XLenVT));
|
|
}
|
|
|
|
SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
|
|
return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
|
|
}
|
|
|
|
// Some RVV intrinsics may claim that they want an integer operand to be
|
|
// promoted or expanded.
|
|
static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
|
|
"Unexpected opcode");
|
|
|
|
if (!Subtarget.hasVInstructions())
|
|
return SDValue();
|
|
|
|
bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
|
|
unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
|
|
SDLoc DL(Op);
|
|
|
|
const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
|
|
RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
|
|
if (!II || !II->hasScalarOperand())
|
|
return SDValue();
|
|
|
|
unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
|
|
assert(SplatOp < Op.getNumOperands());
|
|
|
|
SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
|
|
SDValue &ScalarOp = Operands[SplatOp];
|
|
MVT OpVT = ScalarOp.getSimpleValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
// If this isn't a scalar, or its type is XLenVT we're done.
|
|
if (!OpVT.isScalarInteger() || OpVT == XLenVT)
|
|
return SDValue();
|
|
|
|
// Simplest case is that the operand needs to be promoted to XLenVT.
|
|
if (OpVT.bitsLT(XLenVT)) {
|
|
// If the operand is a constant, sign extend to increase our chances
|
|
// of being able to use a .vi instruction. ANY_EXTEND would become a
|
|
// a zero extend and the simm5 check in isel would fail.
|
|
// FIXME: Should we ignore the upper bits in isel instead?
|
|
unsigned ExtOpc =
|
|
isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
|
|
ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
|
|
return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
|
|
}
|
|
|
|
// Use the previous operand to get the vXi64 VT. The result might be a mask
|
|
// VT for compares. Using the previous operand assumes that the previous
|
|
// operand will never have a smaller element size than a scalar operand and
|
|
// that a widening operation never uses SEW=64.
|
|
// NOTE: If this fails the below assert, we can probably just find the
|
|
// element count from any operand or result and use it to construct the VT.
|
|
assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
|
|
MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
|
|
|
|
// The more complex case is when the scalar is larger than XLenVT.
|
|
assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
|
|
VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
|
|
|
|
// If this is a sign-extended 32-bit constant, we can truncate it and rely
|
|
// on the instruction to sign-extend since SEW>XLEN.
|
|
if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
|
|
if (isInt<32>(CVal->getSExtValue())) {
|
|
ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
|
|
return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
|
|
}
|
|
}
|
|
|
|
switch (IntNo) {
|
|
case Intrinsic::riscv_vslide1up:
|
|
case Intrinsic::riscv_vslide1down:
|
|
case Intrinsic::riscv_vslide1up_mask:
|
|
case Intrinsic::riscv_vslide1down_mask: {
|
|
// We need to special case these when the scalar is larger than XLen.
|
|
unsigned NumOps = Op.getNumOperands();
|
|
bool IsMasked = NumOps == 7;
|
|
|
|
// Convert the vector source to the equivalent nxvXi32 vector.
|
|
MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
|
|
SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
|
|
|
|
SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
|
|
DAG.getConstant(0, DL, XLenVT));
|
|
SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
|
|
DAG.getConstant(1, DL, XLenVT));
|
|
|
|
// Double the VL since we halved SEW.
|
|
SDValue AVL = getVLOperand(Op);
|
|
SDValue I32VL;
|
|
|
|
// Optimize for constant AVL
|
|
if (isa<ConstantSDNode>(AVL)) {
|
|
unsigned EltSize = VT.getScalarSizeInBits();
|
|
unsigned MinSize = VT.getSizeInBits().getKnownMinValue();
|
|
|
|
unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
|
|
unsigned MaxVLMAX =
|
|
RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
|
|
|
|
unsigned VectorBitsMin = Subtarget.getRealMinVLen();
|
|
unsigned MinVLMAX =
|
|
RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
|
|
|
|
uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue();
|
|
if (AVLInt <= MinVLMAX) {
|
|
I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
|
|
} else if (AVLInt >= 2 * MaxVLMAX) {
|
|
// Just set vl to VLMAX in this situation
|
|
RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT);
|
|
SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
|
|
unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits());
|
|
SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
|
|
SDValue SETVLMAX = DAG.getTargetConstant(
|
|
Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32);
|
|
I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW,
|
|
LMUL);
|
|
} else {
|
|
// For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
|
|
// is related to the hardware implementation.
|
|
// So let the following code handle
|
|
}
|
|
}
|
|
if (!I32VL) {
|
|
RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
|
|
SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
|
|
unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
|
|
SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
|
|
SDValue SETVL =
|
|
DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32);
|
|
// Using vsetvli instruction to get actually used length which related to
|
|
// the hardware implementation
|
|
SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
|
|
SEW, LMUL);
|
|
I32VL =
|
|
DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
|
|
}
|
|
|
|
MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
|
|
SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, I32VL);
|
|
|
|
// Shift the two scalar parts in using SEW=32 slide1up/slide1down
|
|
// instructions.
|
|
SDValue Passthru;
|
|
if (IsMasked)
|
|
Passthru = DAG.getUNDEF(I32VT);
|
|
else
|
|
Passthru = DAG.getBitcast(I32VT, Operands[1]);
|
|
|
|
if (IntNo == Intrinsic::riscv_vslide1up ||
|
|
IntNo == Intrinsic::riscv_vslide1up_mask) {
|
|
Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
|
|
ScalarHi, I32Mask, I32VL);
|
|
Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
|
|
ScalarLo, I32Mask, I32VL);
|
|
} else {
|
|
Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
|
|
ScalarLo, I32Mask, I32VL);
|
|
Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
|
|
ScalarHi, I32Mask, I32VL);
|
|
}
|
|
|
|
// Convert back to nxvXi64.
|
|
Vec = DAG.getBitcast(VT, Vec);
|
|
|
|
if (!IsMasked)
|
|
return Vec;
|
|
// Apply mask after the operation.
|
|
SDValue Mask = Operands[NumOps - 3];
|
|
SDValue MaskedOff = Operands[1];
|
|
// Assume Policy operand is the last operand.
|
|
uint64_t Policy =
|
|
cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue();
|
|
// We don't need to select maskedoff if it's undef.
|
|
if (MaskedOff.isUndef())
|
|
return Vec;
|
|
// TAMU
|
|
if (Policy == RISCVII::TAIL_AGNOSTIC)
|
|
return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
|
|
AVL);
|
|
// TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
|
|
// It's fine because vmerge does not care mask policy.
|
|
return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff,
|
|
AVL);
|
|
}
|
|
}
|
|
|
|
// We need to convert the scalar to a splat vector.
|
|
// FIXME: Can we implicitly truncate the scalar if it is known to
|
|
// be sign extended?
|
|
SDValue VL = getVLOperand(Op);
|
|
assert(VL.getValueType() == XLenVT);
|
|
ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
|
|
return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
unsigned IntNo = Op.getConstantOperandVal(0);
|
|
SDLoc DL(Op);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
switch (IntNo) {
|
|
default:
|
|
break; // Don't custom lower most intrinsics.
|
|
case Intrinsic::thread_pointer: {
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
return DAG.getRegister(RISCV::X4, PtrVT);
|
|
}
|
|
case Intrinsic::riscv_orc_b:
|
|
case Intrinsic::riscv_brev8: {
|
|
// Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
|
|
unsigned Opc =
|
|
IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
|
|
return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
|
|
DAG.getConstant(7, DL, XLenVT));
|
|
}
|
|
case Intrinsic::riscv_grev:
|
|
case Intrinsic::riscv_gorc: {
|
|
unsigned Opc =
|
|
IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
|
|
return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
|
|
}
|
|
case Intrinsic::riscv_zip:
|
|
case Intrinsic::riscv_unzip: {
|
|
// Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
|
|
// For i32 the immediate is 15. For i64 the immediate is 31.
|
|
unsigned Opc =
|
|
IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
|
|
unsigned BitWidth = Op.getValueSizeInBits();
|
|
assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
|
|
return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
|
|
DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
|
|
}
|
|
case Intrinsic::riscv_shfl:
|
|
case Intrinsic::riscv_unshfl: {
|
|
unsigned Opc =
|
|
IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
|
|
return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
|
|
}
|
|
case Intrinsic::riscv_bcompress:
|
|
case Intrinsic::riscv_bdecompress: {
|
|
unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
|
|
: RISCVISD::BDECOMPRESS;
|
|
return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
|
|
}
|
|
case Intrinsic::riscv_bfp:
|
|
return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
|
|
Op.getOperand(2));
|
|
case Intrinsic::riscv_fsl:
|
|
return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
|
|
Op.getOperand(2), Op.getOperand(3));
|
|
case Intrinsic::riscv_fsr:
|
|
return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
|
|
Op.getOperand(2), Op.getOperand(3));
|
|
case Intrinsic::riscv_vmv_x_s:
|
|
assert(Op.getValueType() == XLenVT && "Unexpected VT!");
|
|
return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
|
|
Op.getOperand(1));
|
|
case Intrinsic::riscv_vmv_v_x:
|
|
return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
|
|
Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
|
|
Subtarget);
|
|
case Intrinsic::riscv_vfmv_v_f:
|
|
return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
|
|
case Intrinsic::riscv_vmv_s_x: {
|
|
SDValue Scalar = Op.getOperand(2);
|
|
|
|
if (Scalar.getValueType().bitsLE(XLenVT)) {
|
|
Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
|
|
return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
|
|
Op.getOperand(1), Scalar, Op.getOperand(3));
|
|
}
|
|
|
|
assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
|
|
|
|
// This is an i64 value that lives in two scalar registers. We have to
|
|
// insert this in a convoluted way. First we build vXi64 splat containing
|
|
// the/ two values that we assemble using some bit math. Next we'll use
|
|
// vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
|
|
// to merge element 0 from our splat into the source vector.
|
|
// FIXME: This is probably not the best way to do this, but it is
|
|
// consistent with INSERT_VECTOR_ELT lowering so it is a good starting
|
|
// point.
|
|
// sw lo, (a0)
|
|
// sw hi, 4(a0)
|
|
// vlse vX, (a0)
|
|
//
|
|
// vid.v vVid
|
|
// vmseq.vx mMask, vVid, 0
|
|
// vmerge.vvm vDest, vSrc, vVal, mMask
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDValue Vec = Op.getOperand(1);
|
|
SDValue VL = getVLOperand(Op);
|
|
|
|
SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
|
|
if (Op.getOperand(1).isUndef())
|
|
return SplattedVal;
|
|
SDValue SplattedIdx =
|
|
DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
|
|
DAG.getConstant(0, DL, MVT::i32), VL);
|
|
|
|
MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
|
|
SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
|
|
SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
|
|
SDValue SelectCond =
|
|
DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
|
|
DAG.getCondCode(ISD::SETEQ), Mask, VL);
|
|
return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
|
|
Vec, VL);
|
|
}
|
|
}
|
|
|
|
return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
unsigned IntNo = Op.getConstantOperandVal(1);
|
|
switch (IntNo) {
|
|
default:
|
|
break;
|
|
case Intrinsic::riscv_masked_strided_load: {
|
|
SDLoc DL(Op);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
// If the mask is known to be all ones, optimize to an unmasked intrinsic;
|
|
// the selection of the masked intrinsics doesn't do this for us.
|
|
SDValue Mask = Op.getOperand(5);
|
|
bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
|
|
|
|
MVT VT = Op->getSimpleValueType(0);
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VT);
|
|
|
|
SDValue PassThru = Op.getOperand(2);
|
|
if (!IsUnmasked) {
|
|
MVT MaskVT =
|
|
MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
|
|
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
|
|
PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
|
|
|
|
SDValue IntID = DAG.getTargetConstant(
|
|
IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
|
|
XLenVT);
|
|
|
|
auto *Load = cast<MemIntrinsicSDNode>(Op);
|
|
SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
|
|
if (IsUnmasked)
|
|
Ops.push_back(DAG.getUNDEF(ContainerVT));
|
|
else
|
|
Ops.push_back(PassThru);
|
|
Ops.push_back(Op.getOperand(3)); // Ptr
|
|
Ops.push_back(Op.getOperand(4)); // Stride
|
|
if (!IsUnmasked)
|
|
Ops.push_back(Mask);
|
|
Ops.push_back(VL);
|
|
if (!IsUnmasked) {
|
|
SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
|
|
Ops.push_back(Policy);
|
|
}
|
|
|
|
SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
|
|
SDValue Result =
|
|
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
|
|
Load->getMemoryVT(), Load->getMemOperand());
|
|
SDValue Chain = Result.getValue(1);
|
|
Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
|
|
return DAG.getMergeValues({Result, Chain}, DL);
|
|
}
|
|
case Intrinsic::riscv_seg2_load:
|
|
case Intrinsic::riscv_seg3_load:
|
|
case Intrinsic::riscv_seg4_load:
|
|
case Intrinsic::riscv_seg5_load:
|
|
case Intrinsic::riscv_seg6_load:
|
|
case Intrinsic::riscv_seg7_load:
|
|
case Intrinsic::riscv_seg8_load: {
|
|
SDLoc DL(Op);
|
|
static const Intrinsic::ID VlsegInts[7] = {
|
|
Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
|
|
Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
|
|
Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
|
|
Intrinsic::riscv_vlseg8};
|
|
unsigned NF = Op->getNumValues() - 1;
|
|
assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
MVT VT = Op->getSimpleValueType(0);
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VT);
|
|
|
|
SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
|
|
SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
|
|
auto *Load = cast<MemIntrinsicSDNode>(Op);
|
|
SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT);
|
|
ContainerVTs.push_back(MVT::Other);
|
|
SDVTList VTs = DAG.getVTList(ContainerVTs);
|
|
SDValue Result =
|
|
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs,
|
|
{Load->getChain(), IntID, Op.getOperand(2), VL},
|
|
Load->getMemoryVT(), Load->getMemOperand());
|
|
SmallVector<SDValue, 9> Results;
|
|
for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++)
|
|
Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx),
|
|
DAG, Subtarget));
|
|
Results.push_back(Result.getValue(NF));
|
|
return DAG.getMergeValues(Results, DL);
|
|
}
|
|
}
|
|
|
|
return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
unsigned IntNo = Op.getConstantOperandVal(1);
|
|
switch (IntNo) {
|
|
default:
|
|
break;
|
|
case Intrinsic::riscv_masked_strided_store: {
|
|
SDLoc DL(Op);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
// If the mask is known to be all ones, optimize to an unmasked intrinsic;
|
|
// the selection of the masked intrinsics doesn't do this for us.
|
|
SDValue Mask = Op.getOperand(5);
|
|
bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
|
|
|
|
SDValue Val = Op.getOperand(2);
|
|
MVT VT = Val.getSimpleValueType();
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VT);
|
|
|
|
Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
|
|
if (!IsUnmasked) {
|
|
MVT MaskVT =
|
|
MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
|
|
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
|
|
|
|
SDValue IntID = DAG.getTargetConstant(
|
|
IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
|
|
XLenVT);
|
|
|
|
auto *Store = cast<MemIntrinsicSDNode>(Op);
|
|
SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
|
|
Ops.push_back(Val);
|
|
Ops.push_back(Op.getOperand(3)); // Ptr
|
|
Ops.push_back(Op.getOperand(4)); // Stride
|
|
if (!IsUnmasked)
|
|
Ops.push_back(Mask);
|
|
Ops.push_back(VL);
|
|
|
|
return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
|
|
Ops, Store->getMemoryVT(),
|
|
Store->getMemOperand());
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static MVT getLMUL1VT(MVT VT) {
|
|
assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
|
|
"Unexpected vector MVT");
|
|
return MVT::getScalableVectorVT(
|
|
VT.getVectorElementType(),
|
|
RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
|
|
}
|
|
|
|
static unsigned getRVVReductionOp(unsigned ISDOpcode) {
|
|
switch (ISDOpcode) {
|
|
default:
|
|
llvm_unreachable("Unhandled reduction");
|
|
case ISD::VECREDUCE_ADD:
|
|
return RISCVISD::VECREDUCE_ADD_VL;
|
|
case ISD::VECREDUCE_UMAX:
|
|
return RISCVISD::VECREDUCE_UMAX_VL;
|
|
case ISD::VECREDUCE_SMAX:
|
|
return RISCVISD::VECREDUCE_SMAX_VL;
|
|
case ISD::VECREDUCE_UMIN:
|
|
return RISCVISD::VECREDUCE_UMIN_VL;
|
|
case ISD::VECREDUCE_SMIN:
|
|
return RISCVISD::VECREDUCE_SMIN_VL;
|
|
case ISD::VECREDUCE_AND:
|
|
return RISCVISD::VECREDUCE_AND_VL;
|
|
case ISD::VECREDUCE_OR:
|
|
return RISCVISD::VECREDUCE_OR_VL;
|
|
case ISD::VECREDUCE_XOR:
|
|
return RISCVISD::VECREDUCE_XOR_VL;
|
|
}
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
|
|
SelectionDAG &DAG,
|
|
bool IsVP) const {
|
|
SDLoc DL(Op);
|
|
SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
|
|
MVT VecVT = Vec.getSimpleValueType();
|
|
assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
|
|
Op.getOpcode() == ISD::VECREDUCE_OR ||
|
|
Op.getOpcode() == ISD::VECREDUCE_XOR ||
|
|
Op.getOpcode() == ISD::VP_REDUCE_AND ||
|
|
Op.getOpcode() == ISD::VP_REDUCE_OR ||
|
|
Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
|
|
"Unexpected reduction lowering");
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
assert(Op.getValueType() == XLenVT &&
|
|
"Expected reduction output to be legalized to XLenVT");
|
|
|
|
MVT ContainerVT = VecVT;
|
|
if (VecVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue Mask, VL;
|
|
if (IsVP) {
|
|
Mask = Op.getOperand(2);
|
|
VL = Op.getOperand(3);
|
|
} else {
|
|
std::tie(Mask, VL) =
|
|
getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
|
|
}
|
|
|
|
unsigned BaseOpc;
|
|
ISD::CondCode CC;
|
|
SDValue Zero = DAG.getConstant(0, DL, XLenVT);
|
|
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unhandled reduction");
|
|
case ISD::VECREDUCE_AND:
|
|
case ISD::VP_REDUCE_AND: {
|
|
// vcpop ~x == 0
|
|
SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
|
|
Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
|
|
Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
|
|
CC = ISD::SETEQ;
|
|
BaseOpc = ISD::AND;
|
|
break;
|
|
}
|
|
case ISD::VECREDUCE_OR:
|
|
case ISD::VP_REDUCE_OR:
|
|
// vcpop x != 0
|
|
Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
|
|
CC = ISD::SETNE;
|
|
BaseOpc = ISD::OR;
|
|
break;
|
|
case ISD::VECREDUCE_XOR:
|
|
case ISD::VP_REDUCE_XOR: {
|
|
// ((vcpop x) & 1) != 0
|
|
SDValue One = DAG.getConstant(1, DL, XLenVT);
|
|
Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
|
|
Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
|
|
CC = ISD::SETNE;
|
|
BaseOpc = ISD::XOR;
|
|
break;
|
|
}
|
|
}
|
|
|
|
SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
|
|
|
|
if (!IsVP)
|
|
return SetCC;
|
|
|
|
// Now include the start value in the operation.
|
|
// Note that we must return the start value when no elements are operated
|
|
// upon. The vcpop instructions we've emitted in each case above will return
|
|
// 0 for an inactive vector, and so we've already received the neutral value:
|
|
// AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
|
|
// can simply include the start value.
|
|
return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
SDValue Vec = Op.getOperand(0);
|
|
EVT VecEVT = Vec.getValueType();
|
|
|
|
unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
|
|
|
|
// Due to ordering in legalize types we may have a vector type that needs to
|
|
// be split. Do that manually so we can get down to a legal type.
|
|
while (getTypeAction(*DAG.getContext(), VecEVT) ==
|
|
TargetLowering::TypeSplitVector) {
|
|
SDValue Lo, Hi;
|
|
std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
|
|
VecEVT = Lo.getValueType();
|
|
Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
|
|
}
|
|
|
|
// TODO: The type may need to be widened rather than split. Or widened before
|
|
// it can be split.
|
|
if (!isTypeLegal(VecEVT))
|
|
return SDValue();
|
|
|
|
MVT VecVT = VecEVT.getSimpleVT();
|
|
MVT VecEltVT = VecVT.getVectorElementType();
|
|
unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
|
|
|
|
MVT ContainerVT = VecVT;
|
|
if (VecVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
MVT M1VT = getLMUL1VT(ContainerVT);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
SDValue Mask, VL;
|
|
std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
SDValue NeutralElem =
|
|
DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
|
|
SDValue IdentitySplat =
|
|
lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
|
|
M1VT, DL, DAG, Subtarget);
|
|
SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
|
|
IdentitySplat, Mask, VL);
|
|
SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
|
|
DAG.getConstant(0, DL, XLenVT));
|
|
return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
|
|
}
|
|
|
|
// Given a reduction op, this function returns the matching reduction opcode,
|
|
// the vector SDValue and the scalar SDValue required to lower this to a
|
|
// RISCVISD node.
|
|
static std::tuple<unsigned, SDValue, SDValue>
|
|
getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
|
|
SDLoc DL(Op);
|
|
auto Flags = Op->getFlags();
|
|
unsigned Opcode = Op.getOpcode();
|
|
unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
|
|
switch (Opcode) {
|
|
default:
|
|
llvm_unreachable("Unhandled reduction");
|
|
case ISD::VECREDUCE_FADD: {
|
|
// Use positive zero if we can. It is cheaper to materialize.
|
|
SDValue Zero =
|
|
DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
|
|
return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
|
|
}
|
|
case ISD::VECREDUCE_SEQ_FADD:
|
|
return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
|
|
Op.getOperand(0));
|
|
case ISD::VECREDUCE_FMIN:
|
|
return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
|
|
DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
|
|
case ISD::VECREDUCE_FMAX:
|
|
return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
|
|
DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
|
|
}
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VecEltVT = Op.getSimpleValueType();
|
|
|
|
unsigned RVVOpcode;
|
|
SDValue VectorVal, ScalarVal;
|
|
std::tie(RVVOpcode, VectorVal, ScalarVal) =
|
|
getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
|
|
MVT VecVT = VectorVal.getSimpleValueType();
|
|
|
|
MVT ContainerVT = VecVT;
|
|
if (VecVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
|
|
}
|
|
|
|
MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
SDValue Mask, VL;
|
|
std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
SDValue ScalarSplat =
|
|
lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
|
|
M1VT, DL, DAG, Subtarget);
|
|
SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
|
|
VectorVal, ScalarSplat, Mask, VL);
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
|
|
DAG.getConstant(0, DL, XLenVT));
|
|
}
|
|
|
|
static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
|
|
switch (ISDOpcode) {
|
|
default:
|
|
llvm_unreachable("Unhandled reduction");
|
|
case ISD::VP_REDUCE_ADD:
|
|
return RISCVISD::VECREDUCE_ADD_VL;
|
|
case ISD::VP_REDUCE_UMAX:
|
|
return RISCVISD::VECREDUCE_UMAX_VL;
|
|
case ISD::VP_REDUCE_SMAX:
|
|
return RISCVISD::VECREDUCE_SMAX_VL;
|
|
case ISD::VP_REDUCE_UMIN:
|
|
return RISCVISD::VECREDUCE_UMIN_VL;
|
|
case ISD::VP_REDUCE_SMIN:
|
|
return RISCVISD::VECREDUCE_SMIN_VL;
|
|
case ISD::VP_REDUCE_AND:
|
|
return RISCVISD::VECREDUCE_AND_VL;
|
|
case ISD::VP_REDUCE_OR:
|
|
return RISCVISD::VECREDUCE_OR_VL;
|
|
case ISD::VP_REDUCE_XOR:
|
|
return RISCVISD::VECREDUCE_XOR_VL;
|
|
case ISD::VP_REDUCE_FADD:
|
|
return RISCVISD::VECREDUCE_FADD_VL;
|
|
case ISD::VP_REDUCE_SEQ_FADD:
|
|
return RISCVISD::VECREDUCE_SEQ_FADD_VL;
|
|
case ISD::VP_REDUCE_FMAX:
|
|
return RISCVISD::VECREDUCE_FMAX_VL;
|
|
case ISD::VP_REDUCE_FMIN:
|
|
return RISCVISD::VECREDUCE_FMIN_VL;
|
|
}
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
SDValue Vec = Op.getOperand(1);
|
|
EVT VecEVT = Vec.getValueType();
|
|
|
|
// TODO: The type may need to be widened rather than split. Or widened before
|
|
// it can be split.
|
|
if (!isTypeLegal(VecEVT))
|
|
return SDValue();
|
|
|
|
MVT VecVT = VecEVT.getSimpleVT();
|
|
MVT VecEltVT = VecVT.getVectorElementType();
|
|
unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
|
|
|
|
MVT ContainerVT = VecVT;
|
|
if (VecVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue VL = Op.getOperand(3);
|
|
SDValue Mask = Op.getOperand(2);
|
|
|
|
MVT M1VT = getLMUL1VT(ContainerVT);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
|
|
|
|
SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
|
|
DAG.getConstant(1, DL, XLenVT), M1VT,
|
|
DL, DAG, Subtarget);
|
|
SDValue Reduction =
|
|
DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
|
|
SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
|
|
DAG.getConstant(0, DL, XLenVT));
|
|
if (!VecVT.isInteger())
|
|
return Elt0;
|
|
return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Vec = Op.getOperand(0);
|
|
SDValue SubVec = Op.getOperand(1);
|
|
MVT VecVT = Vec.getSimpleValueType();
|
|
MVT SubVecVT = SubVec.getSimpleValueType();
|
|
|
|
SDLoc DL(Op);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
unsigned OrigIdx = Op.getConstantOperandVal(2);
|
|
const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
|
|
|
|
// We don't have the ability to slide mask vectors up indexed by their i1
|
|
// elements; the smallest we can do is i8. Often we are able to bitcast to
|
|
// equivalent i8 vectors. Note that when inserting a fixed-length vector
|
|
// into a scalable one, we might not necessarily have enough scalable
|
|
// elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
|
|
if (SubVecVT.getVectorElementType() == MVT::i1 &&
|
|
(OrigIdx != 0 || !Vec.isUndef())) {
|
|
if (VecVT.getVectorMinNumElements() >= 8 &&
|
|
SubVecVT.getVectorMinNumElements() >= 8) {
|
|
assert(OrigIdx % 8 == 0 && "Invalid index");
|
|
assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
|
|
SubVecVT.getVectorMinNumElements() % 8 == 0 &&
|
|
"Unexpected mask vector lowering");
|
|
OrigIdx /= 8;
|
|
SubVecVT =
|
|
MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
|
|
SubVecVT.isScalableVector());
|
|
VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
|
|
VecVT.isScalableVector());
|
|
Vec = DAG.getBitcast(VecVT, Vec);
|
|
SubVec = DAG.getBitcast(SubVecVT, SubVec);
|
|
} else {
|
|
// We can't slide this mask vector up indexed by its i1 elements.
|
|
// This poses a problem when we wish to insert a scalable vector which
|
|
// can't be re-expressed as a larger type. Just choose the slow path and
|
|
// extend to a larger type, then truncate back down.
|
|
MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
|
|
MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
|
|
Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
|
|
SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
|
|
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
|
|
Op.getOperand(2));
|
|
SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
|
|
return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
|
|
}
|
|
}
|
|
|
|
// If the subvector vector is a fixed-length type, we cannot use subregister
|
|
// manipulation to simplify the codegen; we don't know which register of a
|
|
// LMUL group contains the specific subvector as we only know the minimum
|
|
// register size. Therefore we must slide the vector group up the full
|
|
// amount.
|
|
if (SubVecVT.isFixedLengthVector()) {
|
|
if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
|
|
return Op;
|
|
MVT ContainerVT = VecVT;
|
|
if (VecVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
|
|
}
|
|
SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT), SubVec,
|
|
DAG.getConstant(0, DL, XLenVT));
|
|
if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
|
|
SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
|
|
return DAG.getBitcast(Op.getValueType(), SubVec);
|
|
}
|
|
SDValue Mask =
|
|
getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
|
|
// Set the vector length to only the number of elements we care about. Note
|
|
// that for slideup this includes the offset.
|
|
SDValue VL =
|
|
DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
|
|
SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
|
|
SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
|
|
SubVec, SlideupAmt, Mask, VL);
|
|
if (VecVT.isFixedLengthVector())
|
|
Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
|
|
return DAG.getBitcast(Op.getValueType(), Slideup);
|
|
}
|
|
|
|
unsigned SubRegIdx, RemIdx;
|
|
std::tie(SubRegIdx, RemIdx) =
|
|
RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
|
|
VecVT, SubVecVT, OrigIdx, TRI);
|
|
|
|
RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
|
|
bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
|
|
SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
|
|
SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
|
|
|
|
// 1. If the Idx has been completely eliminated and this subvector's size is
|
|
// a vector register or a multiple thereof, or the surrounding elements are
|
|
// undef, then this is a subvector insert which naturally aligns to a vector
|
|
// register. These can easily be handled using subregister manipulation.
|
|
// 2. If the subvector is smaller than a vector register, then the insertion
|
|
// must preserve the undisturbed elements of the register. We do this by
|
|
// lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
|
|
// (which resolves to a subregister copy), performing a VSLIDEUP to place the
|
|
// subvector within the vector register, and an INSERT_SUBVECTOR of that
|
|
// LMUL=1 type back into the larger vector (resolving to another subregister
|
|
// operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
|
|
// to avoid allocating a large register group to hold our subvector.
|
|
if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
|
|
return Op;
|
|
|
|
// VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
|
|
// OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
|
|
// (in our case undisturbed). This means we can set up a subvector insertion
|
|
// where OFFSET is the insertion offset, and the VL is the OFFSET plus the
|
|
// size of the subvector.
|
|
MVT InterSubVT = VecVT;
|
|
SDValue AlignedExtract = Vec;
|
|
unsigned AlignedIdx = OrigIdx - RemIdx;
|
|
if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
|
|
InterSubVT = getLMUL1VT(VecVT);
|
|
// Extract a subvector equal to the nearest full vector register type. This
|
|
// should resolve to a EXTRACT_SUBREG instruction.
|
|
AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
|
|
DAG.getConstant(AlignedIdx, DL, XLenVT));
|
|
}
|
|
|
|
SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
|
|
// For scalable vectors this must be further multiplied by vscale.
|
|
SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
|
|
|
|
SDValue Mask, VL;
|
|
std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
|
|
|
|
// Construct the vector length corresponding to RemIdx + length(SubVecVT).
|
|
VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
|
|
VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
|
|
VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
|
|
|
|
SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
|
|
DAG.getUNDEF(InterSubVT), SubVec,
|
|
DAG.getConstant(0, DL, XLenVT));
|
|
|
|
SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
|
|
AlignedExtract, SubVec, SlideupAmt, Mask, VL);
|
|
|
|
// If required, insert this subvector back into the correct vector register.
|
|
// This should resolve to an INSERT_SUBREG instruction.
|
|
if (VecVT.bitsGT(InterSubVT))
|
|
Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
|
|
DAG.getConstant(AlignedIdx, DL, XLenVT));
|
|
|
|
// We might have bitcast from a mask type: cast back to the original type if
|
|
// required.
|
|
return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Vec = Op.getOperand(0);
|
|
MVT SubVecVT = Op.getSimpleValueType();
|
|
MVT VecVT = Vec.getSimpleValueType();
|
|
|
|
SDLoc DL(Op);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
unsigned OrigIdx = Op.getConstantOperandVal(1);
|
|
const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
|
|
|
|
// We don't have the ability to slide mask vectors down indexed by their i1
|
|
// elements; the smallest we can do is i8. Often we are able to bitcast to
|
|
// equivalent i8 vectors. Note that when extracting a fixed-length vector
|
|
// from a scalable one, we might not necessarily have enough scalable
|
|
// elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
|
|
if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
|
|
if (VecVT.getVectorMinNumElements() >= 8 &&
|
|
SubVecVT.getVectorMinNumElements() >= 8) {
|
|
assert(OrigIdx % 8 == 0 && "Invalid index");
|
|
assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
|
|
SubVecVT.getVectorMinNumElements() % 8 == 0 &&
|
|
"Unexpected mask vector lowering");
|
|
OrigIdx /= 8;
|
|
SubVecVT =
|
|
MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
|
|
SubVecVT.isScalableVector());
|
|
VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
|
|
VecVT.isScalableVector());
|
|
Vec = DAG.getBitcast(VecVT, Vec);
|
|
} else {
|
|
// We can't slide this mask vector down, indexed by its i1 elements.
|
|
// This poses a problem when we wish to extract a scalable vector which
|
|
// can't be re-expressed as a larger type. Just choose the slow path and
|
|
// extend to a larger type, then truncate back down.
|
|
// TODO: We could probably improve this when extracting certain fixed
|
|
// from fixed, where we can extract as i8 and shift the correct element
|
|
// right to reach the desired subvector?
|
|
MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
|
|
MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
|
|
Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
|
|
Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
|
|
Op.getOperand(1));
|
|
SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
|
|
return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
|
|
}
|
|
}
|
|
|
|
// If the subvector vector is a fixed-length type, we cannot use subregister
|
|
// manipulation to simplify the codegen; we don't know which register of a
|
|
// LMUL group contains the specific subvector as we only know the minimum
|
|
// register size. Therefore we must slide the vector group down the full
|
|
// amount.
|
|
if (SubVecVT.isFixedLengthVector()) {
|
|
// With an index of 0 this is a cast-like subvector, which can be performed
|
|
// with subregister operations.
|
|
if (OrigIdx == 0)
|
|
return Op;
|
|
MVT ContainerVT = VecVT;
|
|
if (VecVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
|
|
}
|
|
SDValue Mask =
|
|
getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
|
|
// Set the vector length to only the number of elements we care about. This
|
|
// avoids sliding down elements we're going to discard straight away.
|
|
SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
|
|
SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
|
|
SDValue Slidedown =
|
|
DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
|
|
// Now we can use a cast-like subvector extract to get the result.
|
|
Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
|
|
DAG.getConstant(0, DL, XLenVT));
|
|
return DAG.getBitcast(Op.getValueType(), Slidedown);
|
|
}
|
|
|
|
unsigned SubRegIdx, RemIdx;
|
|
std::tie(SubRegIdx, RemIdx) =
|
|
RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
|
|
VecVT, SubVecVT, OrigIdx, TRI);
|
|
|
|
// If the Idx has been completely eliminated then this is a subvector extract
|
|
// which naturally aligns to a vector register. These can easily be handled
|
|
// using subregister manipulation.
|
|
if (RemIdx == 0)
|
|
return Op;
|
|
|
|
// Else we must shift our vector register directly to extract the subvector.
|
|
// Do this using VSLIDEDOWN.
|
|
|
|
// If the vector type is an LMUL-group type, extract a subvector equal to the
|
|
// nearest full vector register type. This should resolve to a EXTRACT_SUBREG
|
|
// instruction.
|
|
MVT InterSubVT = VecVT;
|
|
if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
|
|
InterSubVT = getLMUL1VT(VecVT);
|
|
Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
|
|
DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
|
|
}
|
|
|
|
// Slide this vector register down by the desired number of elements in order
|
|
// to place the desired subvector starting at element 0.
|
|
SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
|
|
// For scalable vectors this must be further multiplied by vscale.
|
|
SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
|
|
|
|
SDValue Mask, VL;
|
|
std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
|
|
SDValue Slidedown =
|
|
DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
|
|
DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
|
|
|
|
// Now the vector is in the right position, extract our final subvector. This
|
|
// should resolve to a COPY.
|
|
Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
|
|
DAG.getConstant(0, DL, XLenVT));
|
|
|
|
// We might have bitcast from a mask type: cast back to the original type if
|
|
// required.
|
|
return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
|
|
}
|
|
|
|
// Lower step_vector to the vid instruction. Any non-identity step value must
|
|
// be accounted for my manual expansion.
|
|
SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
SDValue Mask, VL;
|
|
std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
|
|
SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
|
|
uint64_t StepValImm = Op.getConstantOperandVal(0);
|
|
if (StepValImm != 1) {
|
|
if (isPowerOf2_64(StepValImm)) {
|
|
SDValue StepVal =
|
|
DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
|
|
DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
|
|
StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
|
|
} else {
|
|
SDValue StepVal = lowerScalarSplat(
|
|
SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
|
|
VL, VT, DL, DAG, Subtarget);
|
|
StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
|
|
}
|
|
}
|
|
return StepVec;
|
|
}
|
|
|
|
// Implement vector_reverse using vrgather.vv with indices determined by
|
|
// subtracting the id of each element from (VLMAX-1). This will convert
|
|
// the indices like so:
|
|
// (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
|
|
// TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
|
|
SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VecVT = Op.getSimpleValueType();
|
|
unsigned EltSize = VecVT.getScalarSizeInBits();
|
|
unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
|
|
|
|
unsigned MaxVLMAX = 0;
|
|
unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
|
|
if (VectorBitsMax != 0)
|
|
MaxVLMAX =
|
|
RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
|
|
|
|
unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
|
|
MVT IntVT = VecVT.changeVectorElementTypeToInteger();
|
|
|
|
// If this is SEW=8 and VLMAX is unknown or more than 256, we need
|
|
// to use vrgatherei16.vv.
|
|
// TODO: It's also possible to use vrgatherei16.vv for other types to
|
|
// decrease register width for the index calculation.
|
|
if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
|
|
// If this is LMUL=8, we have to split before can use vrgatherei16.vv.
|
|
// Reverse each half, then reassemble them in reverse order.
|
|
// NOTE: It's also possible that after splitting that VLMAX no longer
|
|
// requires vrgatherei16.vv.
|
|
if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
|
|
SDValue Lo, Hi;
|
|
std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
|
|
EVT LoVT, HiVT;
|
|
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
|
|
Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
|
|
Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
|
|
// Reassemble the low and high pieces reversed.
|
|
// FIXME: This is a CONCAT_VECTORS.
|
|
SDValue Res =
|
|
DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
|
|
DAG.getIntPtrConstant(0, DL));
|
|
return DAG.getNode(
|
|
ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
|
|
DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
|
|
}
|
|
|
|
// Just promote the int type to i16 which will double the LMUL.
|
|
IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
|
|
GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
|
|
}
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
SDValue Mask, VL;
|
|
std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
|
|
|
|
// Calculate VLMAX-1 for the desired SEW.
|
|
unsigned MinElts = VecVT.getVectorMinNumElements();
|
|
SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
|
|
DAG.getConstant(MinElts, DL, XLenVT));
|
|
SDValue VLMinus1 =
|
|
DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
|
|
|
|
// Splat VLMAX-1 taking care to handle SEW==64 on RV32.
|
|
bool IsRV32E64 =
|
|
!Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
|
|
SDValue SplatVL;
|
|
if (!IsRV32E64)
|
|
SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
|
|
else
|
|
SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
|
|
VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
|
|
|
|
SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
|
|
SDValue Indices =
|
|
DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
|
|
|
|
return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
MVT VecVT = Op.getSimpleValueType();
|
|
|
|
unsigned MinElts = VecVT.getVectorMinNumElements();
|
|
SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
|
|
DAG.getConstant(MinElts, DL, XLenVT));
|
|
|
|
int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
|
|
SDValue DownOffset, UpOffset;
|
|
if (ImmValue >= 0) {
|
|
// The operand is a TargetConstant, we need to rebuild it as a regular
|
|
// constant.
|
|
DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
|
|
UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
|
|
} else {
|
|
// The operand is a TargetConstant, we need to rebuild it as a regular
|
|
// constant rather than negating the original operand.
|
|
UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
|
|
DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
|
|
}
|
|
|
|
MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
|
|
SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VLMax);
|
|
|
|
SDValue SlideDown =
|
|
DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1,
|
|
DownOffset, TrueMask, UpOffset);
|
|
return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset,
|
|
TrueMask,
|
|
DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT));
|
|
}
|
|
|
|
SDValue
|
|
RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
auto *Load = cast<LoadSDNode>(Op);
|
|
|
|
assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
|
|
Load->getMemoryVT(),
|
|
*Load->getMemOperand()) &&
|
|
"Expecting a correctly-aligned load");
|
|
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VT);
|
|
|
|
SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
|
|
|
|
bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
|
|
SDValue IntID = DAG.getTargetConstant(
|
|
IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
|
|
SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
|
|
if (!IsMaskOp)
|
|
Ops.push_back(DAG.getUNDEF(ContainerVT));
|
|
Ops.push_back(Load->getBasePtr());
|
|
Ops.push_back(VL);
|
|
SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
|
|
SDValue NewLoad =
|
|
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
|
|
Load->getMemoryVT(), Load->getMemOperand());
|
|
|
|
SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
|
|
return DAG.getMergeValues({Result, Load->getChain()}, DL);
|
|
}
|
|
|
|
SDValue
|
|
RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
auto *Store = cast<StoreSDNode>(Op);
|
|
|
|
assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
|
|
Store->getMemoryVT(),
|
|
*Store->getMemOperand()) &&
|
|
"Expecting a correctly-aligned store");
|
|
|
|
SDValue StoreVal = Store->getValue();
|
|
MVT VT = StoreVal.getSimpleValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
// If the size less than a byte, we need to pad with zeros to make a byte.
|
|
if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
|
|
VT = MVT::v8i1;
|
|
StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
|
|
DAG.getConstant(0, DL, VT), StoreVal,
|
|
DAG.getIntPtrConstant(0, DL));
|
|
}
|
|
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VT);
|
|
|
|
SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
|
|
|
|
SDValue NewValue =
|
|
convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
|
|
|
|
bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
|
|
SDValue IntID = DAG.getTargetConstant(
|
|
IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
|
|
return DAG.getMemIntrinsicNode(
|
|
ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
|
|
{Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
|
|
Store->getMemoryVT(), Store->getMemOperand());
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
const auto *MemSD = cast<MemSDNode>(Op);
|
|
EVT MemVT = MemSD->getMemoryVT();
|
|
MachineMemOperand *MMO = MemSD->getMemOperand();
|
|
SDValue Chain = MemSD->getChain();
|
|
SDValue BasePtr = MemSD->getBasePtr();
|
|
|
|
SDValue Mask, PassThru, VL;
|
|
if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
|
|
Mask = VPLoad->getMask();
|
|
PassThru = DAG.getUNDEF(VT);
|
|
VL = VPLoad->getVectorLength();
|
|
} else {
|
|
const auto *MLoad = cast<MaskedLoadSDNode>(Op);
|
|
Mask = MLoad->getMask();
|
|
PassThru = MLoad->getPassThru();
|
|
}
|
|
|
|
bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
|
|
if (!IsUnmasked) {
|
|
MVT MaskVT =
|
|
MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
|
|
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
|
|
}
|
|
}
|
|
|
|
if (!VL)
|
|
VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
|
|
|
|
unsigned IntID =
|
|
IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
|
|
SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
|
|
if (IsUnmasked)
|
|
Ops.push_back(DAG.getUNDEF(ContainerVT));
|
|
else
|
|
Ops.push_back(PassThru);
|
|
Ops.push_back(BasePtr);
|
|
if (!IsUnmasked)
|
|
Ops.push_back(Mask);
|
|
Ops.push_back(VL);
|
|
if (!IsUnmasked)
|
|
Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
|
|
|
|
SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
|
|
|
|
SDValue Result =
|
|
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
|
|
Chain = Result.getValue(1);
|
|
|
|
if (VT.isFixedLengthVector())
|
|
Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
|
|
|
|
return DAG.getMergeValues({Result, Chain}, DL);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
|
|
const auto *MemSD = cast<MemSDNode>(Op);
|
|
EVT MemVT = MemSD->getMemoryVT();
|
|
MachineMemOperand *MMO = MemSD->getMemOperand();
|
|
SDValue Chain = MemSD->getChain();
|
|
SDValue BasePtr = MemSD->getBasePtr();
|
|
SDValue Val, Mask, VL;
|
|
|
|
if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
|
|
Val = VPStore->getValue();
|
|
Mask = VPStore->getMask();
|
|
VL = VPStore->getVectorLength();
|
|
} else {
|
|
const auto *MStore = cast<MaskedStoreSDNode>(Op);
|
|
Val = MStore->getValue();
|
|
Mask = MStore->getMask();
|
|
}
|
|
|
|
bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
|
|
|
|
MVT VT = Val.getSimpleValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
|
|
Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
|
|
if (!IsUnmasked) {
|
|
MVT MaskVT =
|
|
MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
|
|
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
|
|
}
|
|
}
|
|
|
|
if (!VL)
|
|
VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
|
|
|
|
unsigned IntID =
|
|
IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
|
|
SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
|
|
Ops.push_back(Val);
|
|
Ops.push_back(BasePtr);
|
|
if (!IsUnmasked)
|
|
Ops.push_back(Mask);
|
|
Ops.push_back(VL);
|
|
|
|
return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
|
|
DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
|
|
}
|
|
|
|
SDValue
|
|
RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MVT InVT = Op.getOperand(0).getSimpleValueType();
|
|
MVT ContainerVT = getContainerForFixedLengthVector(InVT);
|
|
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
SDValue Op1 =
|
|
convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
|
|
SDValue Op2 =
|
|
convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
|
|
|
|
SDLoc DL(Op);
|
|
SDValue VL =
|
|
DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
|
|
|
|
MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
|
|
SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
|
|
|
|
SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
|
|
Op.getOperand(2), Mask, VL);
|
|
|
|
return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
|
|
SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
if (VT.getVectorElementType() == MVT::i1)
|
|
return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
|
|
|
|
return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
|
|
}
|
|
|
|
SDValue
|
|
RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
unsigned Opc;
|
|
switch (Op.getOpcode()) {
|
|
default: llvm_unreachable("Unexpected opcode!");
|
|
case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
|
|
case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
|
|
case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
|
|
}
|
|
|
|
return lowerToScalableOp(Op, DAG, Opc);
|
|
}
|
|
|
|
// Lower vector ABS to smax(X, sub(0, X)).
|
|
SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDValue X = Op.getOperand(0);
|
|
|
|
assert(VT.isFixedLengthVector() && "Unexpected type");
|
|
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VT);
|
|
X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
|
|
|
|
SDValue Mask, VL;
|
|
std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
SDValue SplatZero = DAG.getNode(
|
|
RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
|
|
DAG.getConstant(0, DL, Subtarget.getXLenVT()));
|
|
SDValue NegX =
|
|
DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
|
|
SDValue Max =
|
|
DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
|
|
|
|
return convertFromScalableVector(VT, Max, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
|
|
SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDValue Mag = Op.getOperand(0);
|
|
SDValue Sign = Op.getOperand(1);
|
|
assert(Mag.getValueType() == Sign.getValueType() &&
|
|
"Can only handle COPYSIGN with matching types.");
|
|
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VT);
|
|
Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
|
|
Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
|
|
|
|
SDValue Mask, VL;
|
|
std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
SDValue CopySign =
|
|
DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
|
|
|
|
return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
|
|
SDValue Op, SelectionDAG &DAG) const {
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VT);
|
|
|
|
MVT I1ContainerVT =
|
|
MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
|
|
|
|
SDValue CC =
|
|
convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
|
|
SDValue Op1 =
|
|
convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
|
|
SDValue Op2 =
|
|
convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
|
|
|
|
SDLoc DL(Op);
|
|
SDValue Mask, VL;
|
|
std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
SDValue Select =
|
|
DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
|
|
|
|
return convertFromScalableVector(VT, Select, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
|
|
unsigned NewOpc,
|
|
bool HasMask) const {
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VT);
|
|
|
|
// Create list of operands by converting existing ones to scalable types.
|
|
SmallVector<SDValue, 6> Ops;
|
|
for (const SDValue &V : Op->op_values()) {
|
|
assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
|
|
|
|
// Pass through non-vector operands.
|
|
if (!V.getValueType().isVector()) {
|
|
Ops.push_back(V);
|
|
continue;
|
|
}
|
|
|
|
// "cast" fixed length vector to a scalable vector.
|
|
assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
|
|
"Only fixed length vectors are supported!");
|
|
Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
|
|
}
|
|
|
|
SDLoc DL(Op);
|
|
SDValue Mask, VL;
|
|
std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
if (HasMask)
|
|
Ops.push_back(Mask);
|
|
Ops.push_back(VL);
|
|
|
|
SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
|
|
return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
|
|
}
|
|
|
|
// Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
|
|
// * Operands of each node are assumed to be in the same order.
|
|
// * The EVL operand is promoted from i32 to i64 on RV64.
|
|
// * Fixed-length vectors are converted to their scalable-vector container
|
|
// types.
|
|
SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
|
|
unsigned RISCVISDOpc) const {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
SmallVector<SDValue, 4> Ops;
|
|
|
|
for (const auto &OpIdx : enumerate(Op->ops())) {
|
|
SDValue V = OpIdx.value();
|
|
assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
|
|
// Pass through operands which aren't fixed-length vectors.
|
|
if (!V.getValueType().isFixedLengthVector()) {
|
|
Ops.push_back(V);
|
|
continue;
|
|
}
|
|
// "cast" fixed length vector to a scalable vector.
|
|
MVT OpVT = V.getSimpleValueType();
|
|
MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
|
|
assert(useRVVForFixedLengthVectorVT(OpVT) &&
|
|
"Only fixed length vectors are supported!");
|
|
Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
|
|
}
|
|
|
|
if (!VT.isFixedLengthVector())
|
|
return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
|
|
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VT);
|
|
|
|
SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
|
|
|
|
return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
|
|
unsigned MaskOpc,
|
|
unsigned VecOpc) const {
|
|
MVT VT = Op.getSimpleValueType();
|
|
if (VT.getVectorElementType() != MVT::i1)
|
|
return lowerVPOp(Op, DAG, VecOpc);
|
|
|
|
// It is safe to drop mask parameter as masked-off elements are undef.
|
|
SDValue Op1 = Op->getOperand(0);
|
|
SDValue Op2 = Op->getOperand(1);
|
|
SDValue VL = Op->getOperand(3);
|
|
|
|
MVT ContainerVT = VT;
|
|
const bool IsFixed = VT.isFixedLengthVector();
|
|
if (IsFixed) {
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
|
|
Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
|
|
}
|
|
|
|
SDLoc DL(Op);
|
|
SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
|
|
if (!IsFixed)
|
|
return Val;
|
|
return convertFromScalableVector(VT, Val, DAG, Subtarget);
|
|
}
|
|
|
|
// Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
|
|
// matched to a RVV indexed load. The RVV indexed load instructions only
|
|
// support the "unsigned unscaled" addressing mode; indices are implicitly
|
|
// zero-extended or truncated to XLEN and are treated as byte offsets. Any
|
|
// signed or scaled indexing is extended to the XLEN value type and scaled
|
|
// accordingly.
|
|
SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
const auto *MemSD = cast<MemSDNode>(Op.getNode());
|
|
EVT MemVT = MemSD->getMemoryVT();
|
|
MachineMemOperand *MMO = MemSD->getMemOperand();
|
|
SDValue Chain = MemSD->getChain();
|
|
SDValue BasePtr = MemSD->getBasePtr();
|
|
|
|
ISD::LoadExtType LoadExtType;
|
|
SDValue Index, Mask, PassThru, VL;
|
|
|
|
if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
|
|
Index = VPGN->getIndex();
|
|
Mask = VPGN->getMask();
|
|
PassThru = DAG.getUNDEF(VT);
|
|
VL = VPGN->getVectorLength();
|
|
// VP doesn't support extending loads.
|
|
LoadExtType = ISD::NON_EXTLOAD;
|
|
} else {
|
|
// Else it must be a MGATHER.
|
|
auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
|
|
Index = MGN->getIndex();
|
|
Mask = MGN->getMask();
|
|
PassThru = MGN->getPassThru();
|
|
LoadExtType = MGN->getExtensionType();
|
|
}
|
|
|
|
MVT IndexVT = Index.getSimpleValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
|
|
"Unexpected VTs!");
|
|
assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
|
|
// Targets have to explicitly opt-in for extending vector loads.
|
|
assert(LoadExtType == ISD::NON_EXTLOAD &&
|
|
"Unexpected extending MGATHER/VP_GATHER");
|
|
(void)LoadExtType;
|
|
|
|
// If the mask is known to be all ones, optimize to an unmasked intrinsic;
|
|
// the selection of the masked intrinsics doesn't do this for us.
|
|
bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
|
|
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector()) {
|
|
// We need to use the larger of the result and index type to determine the
|
|
// scalable type to use so we don't increase LMUL for any operand/result.
|
|
if (VT.bitsGE(IndexVT)) {
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
|
|
ContainerVT.getVectorElementCount());
|
|
} else {
|
|
IndexVT = getContainerForFixedLengthVector(IndexVT);
|
|
ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
|
|
IndexVT.getVectorElementCount());
|
|
}
|
|
|
|
Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
|
|
|
|
if (!IsUnmasked) {
|
|
MVT MaskVT =
|
|
MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
|
|
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
|
|
PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
|
|
}
|
|
}
|
|
|
|
if (!VL)
|
|
VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
|
|
|
|
if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
|
|
IndexVT = IndexVT.changeVectorElementType(XLenVT);
|
|
SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
|
|
VL);
|
|
Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
|
|
TrueMask, VL);
|
|
}
|
|
|
|
unsigned IntID =
|
|
IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
|
|
SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
|
|
if (IsUnmasked)
|
|
Ops.push_back(DAG.getUNDEF(ContainerVT));
|
|
else
|
|
Ops.push_back(PassThru);
|
|
Ops.push_back(BasePtr);
|
|
Ops.push_back(Index);
|
|
if (!IsUnmasked)
|
|
Ops.push_back(Mask);
|
|
Ops.push_back(VL);
|
|
if (!IsUnmasked)
|
|
Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
|
|
|
|
SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
|
|
SDValue Result =
|
|
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
|
|
Chain = Result.getValue(1);
|
|
|
|
if (VT.isFixedLengthVector())
|
|
Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
|
|
|
|
return DAG.getMergeValues({Result, Chain}, DL);
|
|
}
|
|
|
|
// Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
|
|
// matched to a RVV indexed store. The RVV indexed store instructions only
|
|
// support the "unsigned unscaled" addressing mode; indices are implicitly
|
|
// zero-extended or truncated to XLEN and are treated as byte offsets. Any
|
|
// signed or scaled indexing is extended to the XLEN value type and scaled
|
|
// accordingly.
|
|
SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
const auto *MemSD = cast<MemSDNode>(Op.getNode());
|
|
EVT MemVT = MemSD->getMemoryVT();
|
|
MachineMemOperand *MMO = MemSD->getMemOperand();
|
|
SDValue Chain = MemSD->getChain();
|
|
SDValue BasePtr = MemSD->getBasePtr();
|
|
|
|
bool IsTruncatingStore = false;
|
|
SDValue Index, Mask, Val, VL;
|
|
|
|
if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
|
|
Index = VPSN->getIndex();
|
|
Mask = VPSN->getMask();
|
|
Val = VPSN->getValue();
|
|
VL = VPSN->getVectorLength();
|
|
// VP doesn't support truncating stores.
|
|
IsTruncatingStore = false;
|
|
} else {
|
|
// Else it must be a MSCATTER.
|
|
auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
|
|
Index = MSN->getIndex();
|
|
Mask = MSN->getMask();
|
|
Val = MSN->getValue();
|
|
IsTruncatingStore = MSN->isTruncatingStore();
|
|
}
|
|
|
|
MVT VT = Val.getSimpleValueType();
|
|
MVT IndexVT = Index.getSimpleValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
|
|
"Unexpected VTs!");
|
|
assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
|
|
// Targets have to explicitly opt-in for extending vector loads and
|
|
// truncating vector stores.
|
|
assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
|
|
(void)IsTruncatingStore;
|
|
|
|
// If the mask is known to be all ones, optimize to an unmasked intrinsic;
|
|
// the selection of the masked intrinsics doesn't do this for us.
|
|
bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
|
|
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector()) {
|
|
// We need to use the larger of the value and index type to determine the
|
|
// scalable type to use so we don't increase LMUL for any operand/result.
|
|
if (VT.bitsGE(IndexVT)) {
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
|
|
ContainerVT.getVectorElementCount());
|
|
} else {
|
|
IndexVT = getContainerForFixedLengthVector(IndexVT);
|
|
ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
|
|
IndexVT.getVectorElementCount());
|
|
}
|
|
|
|
Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
|
|
Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
|
|
|
|
if (!IsUnmasked) {
|
|
MVT MaskVT =
|
|
MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
|
|
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
|
|
}
|
|
}
|
|
|
|
if (!VL)
|
|
VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
|
|
|
|
if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
|
|
IndexVT = IndexVT.changeVectorElementType(XLenVT);
|
|
SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
|
|
VL);
|
|
Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
|
|
TrueMask, VL);
|
|
}
|
|
|
|
unsigned IntID =
|
|
IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
|
|
SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
|
|
Ops.push_back(Val);
|
|
Ops.push_back(BasePtr);
|
|
Ops.push_back(Index);
|
|
if (!IsUnmasked)
|
|
Ops.push_back(Mask);
|
|
Ops.push_back(VL);
|
|
|
|
return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
|
|
DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
const MVT XLenVT = Subtarget.getXLenVT();
|
|
SDLoc DL(Op);
|
|
SDValue Chain = Op->getOperand(0);
|
|
SDValue SysRegNo = DAG.getTargetConstant(
|
|
RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
|
|
SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
|
|
SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
|
|
|
|
// Encoding used for rounding mode in RISCV differs from that used in
|
|
// FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
|
|
// table, which consists of a sequence of 4-bit fields, each representing
|
|
// corresponding FLT_ROUNDS mode.
|
|
static const int Table =
|
|
(int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
|
|
(int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
|
|
(int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
|
|
(int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
|
|
(int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
|
|
|
|
SDValue Shift =
|
|
DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
|
|
SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
|
|
DAG.getConstant(Table, DL, XLenVT), Shift);
|
|
SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
|
|
DAG.getConstant(7, DL, XLenVT));
|
|
|
|
return DAG.getMergeValues({Masked, Chain}, DL);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
const MVT XLenVT = Subtarget.getXLenVT();
|
|
SDLoc DL(Op);
|
|
SDValue Chain = Op->getOperand(0);
|
|
SDValue RMValue = Op->getOperand(1);
|
|
SDValue SysRegNo = DAG.getTargetConstant(
|
|
RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
|
|
|
|
// Encoding used for rounding mode in RISCV differs from that used in
|
|
// FLT_ROUNDS. To convert it the C rounding mode is used as an index in
|
|
// a table, which consists of a sequence of 4-bit fields, each representing
|
|
// corresponding RISCV mode.
|
|
static const unsigned Table =
|
|
(RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
|
|
(RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
|
|
(RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
|
|
(RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
|
|
(RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
|
|
|
|
SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
|
|
DAG.getConstant(2, DL, XLenVT));
|
|
SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
|
|
DAG.getConstant(Table, DL, XLenVT), Shift);
|
|
RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
|
|
DAG.getConstant(0x7, DL, XLenVT));
|
|
return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
|
|
RMValue);
|
|
}
|
|
|
|
static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
|
|
switch (IntNo) {
|
|
default:
|
|
llvm_unreachable("Unexpected Intrinsic");
|
|
case Intrinsic::riscv_bcompress:
|
|
return RISCVISD::BCOMPRESSW;
|
|
case Intrinsic::riscv_bdecompress:
|
|
return RISCVISD::BDECOMPRESSW;
|
|
case Intrinsic::riscv_bfp:
|
|
return RISCVISD::BFPW;
|
|
case Intrinsic::riscv_fsl:
|
|
return RISCVISD::FSLW;
|
|
case Intrinsic::riscv_fsr:
|
|
return RISCVISD::FSRW;
|
|
}
|
|
}
|
|
|
|
// Converts the given intrinsic to a i64 operation with any extension.
|
|
static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
|
|
unsigned IntNo) {
|
|
SDLoc DL(N);
|
|
RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
|
|
SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
|
|
SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
|
|
SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2);
|
|
// ReplaceNodeResults requires we maintain the same type for the return value.
|
|
return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
|
|
}
|
|
|
|
// Returns the opcode of the target-specific SDNode that implements the 32-bit
|
|
// form of the given Opcode.
|
|
static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
default:
|
|
llvm_unreachable("Unexpected opcode");
|
|
case ISD::SHL:
|
|
return RISCVISD::SLLW;
|
|
case ISD::SRA:
|
|
return RISCVISD::SRAW;
|
|
case ISD::SRL:
|
|
return RISCVISD::SRLW;
|
|
case ISD::SDIV:
|
|
return RISCVISD::DIVW;
|
|
case ISD::UDIV:
|
|
return RISCVISD::DIVUW;
|
|
case ISD::UREM:
|
|
return RISCVISD::REMUW;
|
|
case ISD::ROTL:
|
|
return RISCVISD::ROLW;
|
|
case ISD::ROTR:
|
|
return RISCVISD::RORW;
|
|
}
|
|
}
|
|
|
|
// Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
|
|
// node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
|
|
// otherwise be promoted to i64, making it difficult to select the
|
|
// SLLW/DIVUW/.../*W later one because the fact the operation was originally of
|
|
// type i8/i16/i32 is lost.
|
|
static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
|
|
unsigned ExtOpc = ISD::ANY_EXTEND) {
|
|
SDLoc DL(N);
|
|
RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
|
|
SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
|
|
SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
|
|
SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
|
|
// ReplaceNodeResults requires we maintain the same type for the return value.
|
|
return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
|
|
}
|
|
|
|
// Converts the given 32-bit operation to a i64 operation with signed extension
|
|
// semantic to reduce the signed extension instructions.
|
|
static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
|
|
SDLoc DL(N);
|
|
SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
|
|
SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
|
|
SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
|
|
SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
|
|
DAG.getValueType(MVT::i32));
|
|
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
|
|
}
|
|
|
|
void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
|
|
SmallVectorImpl<SDValue> &Results,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(N);
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Don't know how to custom type legalize this operation!");
|
|
case ISD::STRICT_FP_TO_SINT:
|
|
case ISD::STRICT_FP_TO_UINT:
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT: {
|
|
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
bool IsStrict = N->isStrictFPOpcode();
|
|
bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
|
|
N->getOpcode() == ISD::STRICT_FP_TO_SINT;
|
|
SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
|
|
if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
|
|
TargetLowering::TypeSoftenFloat) {
|
|
if (!isTypeLegal(Op0.getValueType()))
|
|
return;
|
|
if (IsStrict) {
|
|
unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
|
|
: RISCVISD::STRICT_FCVT_WU_RV64;
|
|
SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
|
|
SDValue Res = DAG.getNode(
|
|
Opc, DL, VTs, N->getOperand(0), Op0,
|
|
DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
|
|
Results.push_back(Res.getValue(1));
|
|
return;
|
|
}
|
|
unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
|
|
SDValue Res =
|
|
DAG.getNode(Opc, DL, MVT::i64, Op0,
|
|
DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
|
|
return;
|
|
}
|
|
// If the FP type needs to be softened, emit a library call using the 'si'
|
|
// version. If we left it to default legalization we'd end up with 'di'. If
|
|
// the FP type doesn't need to be softened just let generic type
|
|
// legalization promote the result type.
|
|
RTLIB::Libcall LC;
|
|
if (IsSigned)
|
|
LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
|
|
else
|
|
LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
|
|
MakeLibCallOptions CallOptions;
|
|
EVT OpVT = Op0.getValueType();
|
|
CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
|
|
SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
|
|
SDValue Result;
|
|
std::tie(Result, Chain) =
|
|
makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
|
|
Results.push_back(Result);
|
|
if (IsStrict)
|
|
Results.push_back(Chain);
|
|
break;
|
|
}
|
|
case ISD::READCYCLECOUNTER: {
|
|
assert(!Subtarget.is64Bit() &&
|
|
"READCYCLECOUNTER only has custom type legalization on riscv32");
|
|
|
|
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
|
|
SDValue RCW =
|
|
DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
|
|
|
|
Results.push_back(
|
|
DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
|
|
Results.push_back(RCW.getValue(2));
|
|
break;
|
|
}
|
|
case ISD::MUL: {
|
|
unsigned Size = N->getSimpleValueType(0).getSizeInBits();
|
|
unsigned XLen = Subtarget.getXLen();
|
|
// This multiply needs to be expanded, try to use MULHSU+MUL if possible.
|
|
if (Size > XLen) {
|
|
assert(Size == (XLen * 2) && "Unexpected custom legalisation");
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
APInt HighMask = APInt::getHighBitsSet(Size, XLen);
|
|
|
|
bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
|
|
bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
|
|
// We need exactly one side to be unsigned.
|
|
if (LHSIsU == RHSIsU)
|
|
return;
|
|
|
|
auto MakeMULPair = [&](SDValue S, SDValue U) {
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
|
|
U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
|
|
SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
|
|
SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
|
|
return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
|
|
};
|
|
|
|
bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
|
|
bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
|
|
|
|
// The other operand should be signed, but still prefer MULH when
|
|
// possible.
|
|
if (RHSIsU && LHSIsS && !RHSIsS)
|
|
Results.push_back(MakeMULPair(LHS, RHS));
|
|
else if (LHSIsU && RHSIsS && !LHSIsS)
|
|
Results.push_back(MakeMULPair(RHS, LHS));
|
|
|
|
return;
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
}
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
|
|
break;
|
|
case ISD::SHL:
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
if (N->getOperand(1).getOpcode() != ISD::Constant) {
|
|
Results.push_back(customLegalizeToWOp(N, DAG));
|
|
break;
|
|
}
|
|
|
|
// Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
|
|
// similar to customLegalizeToWOpWithSExt, but we must zero_extend the
|
|
// shift amount.
|
|
if (N->getOpcode() == ISD::SHL) {
|
|
SDLoc DL(N);
|
|
SDValue NewOp0 =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
|
|
SDValue NewOp1 =
|
|
DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
|
|
SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
|
|
SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
|
|
DAG.getValueType(MVT::i32));
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
|
|
}
|
|
|
|
break;
|
|
case ISD::ROTL:
|
|
case ISD::ROTR:
|
|
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
Results.push_back(customLegalizeToWOp(N, DAG));
|
|
break;
|
|
case ISD::CTTZ:
|
|
case ISD::CTTZ_ZERO_UNDEF:
|
|
case ISD::CTLZ:
|
|
case ISD::CTLZ_ZERO_UNDEF: {
|
|
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
|
|
SDValue NewOp0 =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
|
|
bool IsCTZ =
|
|
N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
|
|
unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
|
|
SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
|
|
return;
|
|
}
|
|
case ISD::SDIV:
|
|
case ISD::UDIV:
|
|
case ISD::UREM: {
|
|
MVT VT = N->getSimpleValueType(0);
|
|
assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
|
|
Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
|
|
"Unexpected custom legalisation");
|
|
// Don't promote division/remainder by constant since we should expand those
|
|
// to multiply by magic constant.
|
|
// FIXME: What if the expansion is disabled for minsize.
|
|
if (N->getOperand(1).getOpcode() == ISD::Constant)
|
|
return;
|
|
|
|
// If the input is i32, use ANY_EXTEND since the W instructions don't read
|
|
// the upper 32 bits. For other types we need to sign or zero extend
|
|
// based on the opcode.
|
|
unsigned ExtOpc = ISD::ANY_EXTEND;
|
|
if (VT != MVT::i32)
|
|
ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
|
|
: ISD::ZERO_EXTEND;
|
|
|
|
Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
|
|
break;
|
|
}
|
|
case ISD::UADDO:
|
|
case ISD::USUBO: {
|
|
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
bool IsAdd = N->getOpcode() == ISD::UADDO;
|
|
// Create an ADDW or SUBW.
|
|
SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
|
|
SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
|
|
SDValue Res =
|
|
DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
|
|
Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
|
|
DAG.getValueType(MVT::i32));
|
|
|
|
// Sign extend the LHS and perform an unsigned compare with the ADDW result.
|
|
// Since the inputs are sign extended from i32, this is equivalent to
|
|
// comparing the lower 32 bits.
|
|
LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
|
|
SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
|
|
IsAdd ? ISD::SETULT : ISD::SETUGT);
|
|
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
|
|
Results.push_back(Overflow);
|
|
return;
|
|
}
|
|
case ISD::UADDSAT:
|
|
case ISD::USUBSAT: {
|
|
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
if (Subtarget.hasStdExtZbb()) {
|
|
// With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
|
|
// sign extend allows overflow of the lower 32 bits to be detected on
|
|
// the promoted size.
|
|
SDValue LHS =
|
|
DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
|
|
SDValue RHS =
|
|
DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
|
|
SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
|
|
return;
|
|
}
|
|
|
|
// Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
|
|
// promotion for UADDO/USUBO.
|
|
Results.push_back(expandAddSubSat(N, DAG));
|
|
return;
|
|
}
|
|
case ISD::ABS: {
|
|
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
|
|
|
|
// Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
|
|
|
|
SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
|
|
|
|
// Freeze the source so we can increase it's use count.
|
|
Src = DAG.getFreeze(Src);
|
|
|
|
// Copy sign bit to all bits using the sraiw pattern.
|
|
SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
|
|
DAG.getValueType(MVT::i32));
|
|
SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
|
|
DAG.getConstant(31, DL, MVT::i64));
|
|
|
|
SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
|
|
NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
|
|
|
|
// NOTE: The result is only required to be anyextended, but sext is
|
|
// consistent with type legalization of sub.
|
|
NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
|
|
DAG.getValueType(MVT::i32));
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
|
|
return;
|
|
}
|
|
case ISD::BITCAST: {
|
|
EVT VT = N->getValueType(0);
|
|
assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
|
|
SDValue Op0 = N->getOperand(0);
|
|
EVT Op0VT = Op0.getValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
|
|
SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
|
|
} else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
|
|
Subtarget.hasStdExtF()) {
|
|
SDValue FPConv =
|
|
DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
|
|
} else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
|
|
isTypeLegal(Op0VT)) {
|
|
// Custom-legalize bitcasts from fixed-length vector types to illegal
|
|
// scalar types in order to improve codegen. Bitcast the vector to a
|
|
// one-element vector type whose element type is the same as the result
|
|
// type, and extract the first element.
|
|
EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
|
|
if (isTypeLegal(BVT)) {
|
|
SDValue BVec = DAG.getBitcast(BVT, Op0);
|
|
Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
|
|
DAG.getConstant(0, DL, XLenVT)));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case RISCVISD::GREV:
|
|
case RISCVISD::GORC:
|
|
case RISCVISD::SHFL: {
|
|
MVT VT = N->getSimpleValueType(0);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
|
|
"Unexpected custom legalisation");
|
|
assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
|
|
assert((Subtarget.hasStdExtZbp() ||
|
|
(Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV &&
|
|
N->getConstantOperandVal(1) == 7)) &&
|
|
"Unexpected extension");
|
|
SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
|
|
SDValue NewOp1 =
|
|
DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1));
|
|
SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1);
|
|
// ReplaceNodeResults requires we maintain the same type for the return
|
|
// value.
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
|
|
break;
|
|
}
|
|
case ISD::BSWAP:
|
|
case ISD::BITREVERSE: {
|
|
MVT VT = N->getSimpleValueType(0);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
assert((VT == MVT::i8 || VT == MVT::i16 ||
|
|
(VT == MVT::i32 && Subtarget.is64Bit())) &&
|
|
Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
|
|
SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
|
|
unsigned Imm = VT.getSizeInBits() - 1;
|
|
// If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
|
|
if (N->getOpcode() == ISD::BSWAP)
|
|
Imm &= ~0x7U;
|
|
SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0,
|
|
DAG.getConstant(Imm, DL, XLenVT));
|
|
// ReplaceNodeResults requires we maintain the same type for the return
|
|
// value.
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
|
|
break;
|
|
}
|
|
case ISD::FSHL:
|
|
case ISD::FSHR: {
|
|
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
|
|
Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
|
|
SDValue NewOp0 =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
|
|
SDValue NewOp1 =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
|
|
SDValue NewShAmt =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
|
|
// FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
|
|
// Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
|
|
NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
|
|
DAG.getConstant(0x1f, DL, MVT::i64));
|
|
// fshl and fshr concatenate their operands in the same order. fsrw and fslw
|
|
// instruction use different orders. fshl will return its first operand for
|
|
// shift of zero, fshr will return its second operand. fsl and fsr both
|
|
// return rs1 so the ISD nodes need to have different operand orders.
|
|
// Shift amount is in rs2.
|
|
unsigned Opc = RISCVISD::FSLW;
|
|
if (N->getOpcode() == ISD::FSHR) {
|
|
std::swap(NewOp0, NewOp1);
|
|
Opc = RISCVISD::FSRW;
|
|
}
|
|
SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
|
|
break;
|
|
}
|
|
case ISD::EXTRACT_VECTOR_ELT: {
|
|
// Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
|
|
// type is illegal (currently only vXi64 RV32).
|
|
// With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
|
|
// transferred to the destination register. We issue two of these from the
|
|
// upper- and lower- halves of the SEW-bit vector element, slid down to the
|
|
// first element.
|
|
SDValue Vec = N->getOperand(0);
|
|
SDValue Idx = N->getOperand(1);
|
|
|
|
// The vector type hasn't been legalized yet so we can't issue target
|
|
// specific nodes if it needs legalization.
|
|
// FIXME: We would manually legalize if it's important.
|
|
if (!isTypeLegal(Vec.getValueType()))
|
|
return;
|
|
|
|
MVT VecVT = Vec.getSimpleValueType();
|
|
|
|
assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
|
|
VecVT.getVectorElementType() == MVT::i64 &&
|
|
"Unexpected EXTRACT_VECTOR_ELT legalization");
|
|
|
|
// If this is a fixed vector, we need to convert it to a scalable vector.
|
|
MVT ContainerVT = VecVT;
|
|
if (VecVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
// Use a VL of 1 to avoid processing more elements than we need.
|
|
MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
|
|
SDValue VL = DAG.getConstant(1, DL, XLenVT);
|
|
SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
|
|
|
|
// Unless the index is known to be 0, we must slide the vector down to get
|
|
// the desired element into index 0.
|
|
if (!isNullConstant(Idx)) {
|
|
Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
|
|
}
|
|
|
|
// Extract the lower XLEN bits of the correct vector element.
|
|
SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
|
|
|
|
// To extract the upper XLEN bits of the vector element, shift the first
|
|
// element right by 32 bits and re-extract the lower XLEN bits.
|
|
SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT),
|
|
DAG.getConstant(32, DL, XLenVT), VL);
|
|
SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
|
|
ThirtyTwoV, Mask, VL);
|
|
|
|
SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
|
|
|
|
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
|
|
break;
|
|
}
|
|
case ISD::INTRINSIC_WO_CHAIN: {
|
|
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
|
|
switch (IntNo) {
|
|
default:
|
|
llvm_unreachable(
|
|
"Don't know how to custom type legalize this intrinsic!");
|
|
case Intrinsic::riscv_grev:
|
|
case Intrinsic::riscv_gorc: {
|
|
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
SDValue NewOp1 =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
|
|
SDValue NewOp2 =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
|
|
unsigned Opc =
|
|
IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
|
|
// If the control is a constant, promote the node by clearing any extra
|
|
// bits bits in the control. isel will form greviw/gorciw if the result is
|
|
// sign extended.
|
|
if (isa<ConstantSDNode>(NewOp2)) {
|
|
NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
|
|
DAG.getConstant(0x1f, DL, MVT::i64));
|
|
Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
|
|
}
|
|
SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
|
|
break;
|
|
}
|
|
case Intrinsic::riscv_bcompress:
|
|
case Intrinsic::riscv_bdecompress:
|
|
case Intrinsic::riscv_bfp: {
|
|
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
|
|
break;
|
|
}
|
|
case Intrinsic::riscv_fsl:
|
|
case Intrinsic::riscv_fsr: {
|
|
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
SDValue NewOp1 =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
|
|
SDValue NewOp2 =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
|
|
SDValue NewOp3 =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3));
|
|
unsigned Opc = getRISCVWOpcodeByIntr(IntNo);
|
|
SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3);
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
|
|
break;
|
|
}
|
|
case Intrinsic::riscv_orc_b: {
|
|
// Lower to the GORCI encoding for orc.b with the operand extended.
|
|
SDValue NewOp =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
|
|
SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp,
|
|
DAG.getConstant(7, DL, MVT::i64));
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
|
|
return;
|
|
}
|
|
case Intrinsic::riscv_shfl:
|
|
case Intrinsic::riscv_unshfl: {
|
|
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
SDValue NewOp1 =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
|
|
SDValue NewOp2 =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
|
|
unsigned Opc =
|
|
IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
|
|
// There is no (UN)SHFLIW. If the control word is a constant, we can use
|
|
// (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
|
|
// will be shuffled the same way as the lower 32 bit half, but the two
|
|
// halves won't cross.
|
|
if (isa<ConstantSDNode>(NewOp2)) {
|
|
NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
|
|
DAG.getConstant(0xf, DL, MVT::i64));
|
|
Opc =
|
|
IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
|
|
}
|
|
SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
|
|
break;
|
|
}
|
|
case Intrinsic::riscv_vmv_x_s: {
|
|
EVT VT = N->getValueType(0);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
if (VT.bitsLT(XLenVT)) {
|
|
// Simple case just extract using vmv.x.s and truncate.
|
|
SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
|
|
Subtarget.getXLenVT(), N->getOperand(1));
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
|
|
return;
|
|
}
|
|
|
|
assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
|
|
"Unexpected custom legalization");
|
|
|
|
// We need to do the move in two steps.
|
|
SDValue Vec = N->getOperand(1);
|
|
MVT VecVT = Vec.getSimpleValueType();
|
|
|
|
// First extract the lower XLEN bits of the element.
|
|
SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
|
|
|
|
// To extract the upper XLEN bits of the vector element, shift the first
|
|
// element right by 32 bits and re-extract the lower XLEN bits.
|
|
SDValue VL = DAG.getConstant(1, DL, XLenVT);
|
|
MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
|
|
SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
|
|
SDValue ThirtyTwoV =
|
|
DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
|
|
DAG.getConstant(32, DL, XLenVT), VL);
|
|
SDValue LShr32 =
|
|
DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
|
|
SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
|
|
|
|
Results.push_back(
|
|
DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ISD::VECREDUCE_ADD:
|
|
case ISD::VECREDUCE_AND:
|
|
case ISD::VECREDUCE_OR:
|
|
case ISD::VECREDUCE_XOR:
|
|
case ISD::VECREDUCE_SMAX:
|
|
case ISD::VECREDUCE_UMAX:
|
|
case ISD::VECREDUCE_SMIN:
|
|
case ISD::VECREDUCE_UMIN:
|
|
if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
|
|
Results.push_back(V);
|
|
break;
|
|
case ISD::VP_REDUCE_ADD:
|
|
case ISD::VP_REDUCE_AND:
|
|
case ISD::VP_REDUCE_OR:
|
|
case ISD::VP_REDUCE_XOR:
|
|
case ISD::VP_REDUCE_SMAX:
|
|
case ISD::VP_REDUCE_UMAX:
|
|
case ISD::VP_REDUCE_SMIN:
|
|
case ISD::VP_REDUCE_UMIN:
|
|
if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
|
|
Results.push_back(V);
|
|
break;
|
|
case ISD::FLT_ROUNDS_: {
|
|
SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
|
|
SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
|
|
Results.push_back(Res.getValue(0));
|
|
Results.push_back(Res.getValue(1));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// A structure to hold one of the bit-manipulation patterns below. Together, a
|
|
// SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
|
|
// (or (and (shl x, 1), 0xAAAAAAAA),
|
|
// (and (srl x, 1), 0x55555555))
|
|
struct RISCVBitmanipPat {
|
|
SDValue Op;
|
|
unsigned ShAmt;
|
|
bool IsSHL;
|
|
|
|
bool formsPairWith(const RISCVBitmanipPat &Other) const {
|
|
return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
|
|
}
|
|
};
|
|
|
|
// Matches patterns of the form
|
|
// (and (shl x, C2), (C1 << C2))
|
|
// (and (srl x, C2), C1)
|
|
// (shl (and x, C1), C2)
|
|
// (srl (and x, (C1 << C2)), C2)
|
|
// Where C2 is a power of 2 and C1 has at least that many leading zeroes.
|
|
// The expected masks for each shift amount are specified in BitmanipMasks where
|
|
// BitmanipMasks[log2(C2)] specifies the expected C1 value.
|
|
// The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
|
|
// BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
|
|
// XLen is 64.
|
|
static Optional<RISCVBitmanipPat>
|
|
matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
|
|
assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
|
|
"Unexpected number of masks");
|
|
Optional<uint64_t> Mask;
|
|
// Optionally consume a mask around the shift operation.
|
|
if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
|
|
Mask = Op.getConstantOperandVal(1);
|
|
Op = Op.getOperand(0);
|
|
}
|
|
if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
|
|
return None;
|
|
bool IsSHL = Op.getOpcode() == ISD::SHL;
|
|
|
|
if (!isa<ConstantSDNode>(Op.getOperand(1)))
|
|
return None;
|
|
uint64_t ShAmt = Op.getConstantOperandVal(1);
|
|
|
|
unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
|
|
if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
|
|
return None;
|
|
// If we don't have enough masks for 64 bit, then we must be trying to
|
|
// match SHFL so we're only allowed to shift 1/4 of the width.
|
|
if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
|
|
return None;
|
|
|
|
SDValue Src = Op.getOperand(0);
|
|
|
|
// The expected mask is shifted left when the AND is found around SHL
|
|
// patterns.
|
|
// ((x >> 1) & 0x55555555)
|
|
// ((x << 1) & 0xAAAAAAAA)
|
|
bool SHLExpMask = IsSHL;
|
|
|
|
if (!Mask) {
|
|
// Sometimes LLVM keeps the mask as an operand of the shift, typically when
|
|
// the mask is all ones: consume that now.
|
|
if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
|
|
Mask = Src.getConstantOperandVal(1);
|
|
Src = Src.getOperand(0);
|
|
// The expected mask is now in fact shifted left for SRL, so reverse the
|
|
// decision.
|
|
// ((x & 0xAAAAAAAA) >> 1)
|
|
// ((x & 0x55555555) << 1)
|
|
SHLExpMask = !SHLExpMask;
|
|
} else {
|
|
// Use a default shifted mask of all-ones if there's no AND, truncated
|
|
// down to the expected width. This simplifies the logic later on.
|
|
Mask = maskTrailingOnes<uint64_t>(Width);
|
|
*Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
|
|
}
|
|
}
|
|
|
|
unsigned MaskIdx = Log2_32(ShAmt);
|
|
uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
|
|
|
|
if (SHLExpMask)
|
|
ExpMask <<= ShAmt;
|
|
|
|
if (Mask != ExpMask)
|
|
return None;
|
|
|
|
return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
|
|
}
|
|
|
|
// Matches any of the following bit-manipulation patterns:
|
|
// (and (shl x, 1), (0x55555555 << 1))
|
|
// (and (srl x, 1), 0x55555555)
|
|
// (shl (and x, 0x55555555), 1)
|
|
// (srl (and x, (0x55555555 << 1)), 1)
|
|
// where the shift amount and mask may vary thus:
|
|
// [1] = 0x55555555 / 0xAAAAAAAA
|
|
// [2] = 0x33333333 / 0xCCCCCCCC
|
|
// [4] = 0x0F0F0F0F / 0xF0F0F0F0
|
|
// [8] = 0x00FF00FF / 0xFF00FF00
|
|
// [16] = 0x0000FFFF / 0xFFFFFFFF
|
|
// [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
|
|
static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
|
|
// These are the unshifted masks which we use to match bit-manipulation
|
|
// patterns. They may be shifted left in certain circumstances.
|
|
static const uint64_t BitmanipMasks[] = {
|
|
0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
|
|
0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
|
|
|
|
return matchRISCVBitmanipPat(Op, BitmanipMasks);
|
|
}
|
|
|
|
// Match the following pattern as a GREVI(W) operation
|
|
// (or (BITMANIP_SHL x), (BITMANIP_SRL x))
|
|
static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
|
|
EVT VT = Op.getValueType();
|
|
|
|
if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
|
|
auto LHS = matchGREVIPat(Op.getOperand(0));
|
|
auto RHS = matchGREVIPat(Op.getOperand(1));
|
|
if (LHS && RHS && LHS->formsPairWith(*RHS)) {
|
|
SDLoc DL(Op);
|
|
return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
|
|
DAG.getConstant(LHS->ShAmt, DL, VT));
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// Matches any the following pattern as a GORCI(W) operation
|
|
// 1. (or (GREVI x, shamt), x) if shamt is a power of 2
|
|
// 2. (or x, (GREVI x, shamt)) if shamt is a power of 2
|
|
// 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
|
|
// Note that with the variant of 3.,
|
|
// (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
|
|
// the inner pattern will first be matched as GREVI and then the outer
|
|
// pattern will be matched to GORC via the first rule above.
|
|
// 4. (or (rotl/rotr x, bitwidth/2), x)
|
|
static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
|
|
EVT VT = Op.getValueType();
|
|
|
|
if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
|
|
SDLoc DL(Op);
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
|
|
auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
|
|
if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
|
|
isa<ConstantSDNode>(Reverse.getOperand(1)) &&
|
|
isPowerOf2_32(Reverse.getConstantOperandVal(1)))
|
|
return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
|
|
// We can also form GORCI from ROTL/ROTR by half the bitwidth.
|
|
if ((Reverse.getOpcode() == ISD::ROTL ||
|
|
Reverse.getOpcode() == ISD::ROTR) &&
|
|
Reverse.getOperand(0) == X &&
|
|
isa<ConstantSDNode>(Reverse.getOperand(1))) {
|
|
uint64_t RotAmt = Reverse.getConstantOperandVal(1);
|
|
if (RotAmt == (VT.getSizeInBits() / 2))
|
|
return DAG.getNode(RISCVISD::GORC, DL, VT, X,
|
|
DAG.getConstant(RotAmt, DL, VT));
|
|
}
|
|
return SDValue();
|
|
};
|
|
|
|
// Check for either commutable permutation of (or (GREVI x, shamt), x)
|
|
if (SDValue V = MatchOROfReverse(Op0, Op1))
|
|
return V;
|
|
if (SDValue V = MatchOROfReverse(Op1, Op0))
|
|
return V;
|
|
|
|
// OR is commutable so canonicalize its OR operand to the left
|
|
if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
|
|
std::swap(Op0, Op1);
|
|
if (Op0.getOpcode() != ISD::OR)
|
|
return SDValue();
|
|
SDValue OrOp0 = Op0.getOperand(0);
|
|
SDValue OrOp1 = Op0.getOperand(1);
|
|
auto LHS = matchGREVIPat(OrOp0);
|
|
// OR is commutable so swap the operands and try again: x might have been
|
|
// on the left
|
|
if (!LHS) {
|
|
std::swap(OrOp0, OrOp1);
|
|
LHS = matchGREVIPat(OrOp0);
|
|
}
|
|
auto RHS = matchGREVIPat(Op1);
|
|
if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
|
|
return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
|
|
DAG.getConstant(LHS->ShAmt, DL, VT));
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// Matches any of the following bit-manipulation patterns:
|
|
// (and (shl x, 1), (0x22222222 << 1))
|
|
// (and (srl x, 1), 0x22222222)
|
|
// (shl (and x, 0x22222222), 1)
|
|
// (srl (and x, (0x22222222 << 1)), 1)
|
|
// where the shift amount and mask may vary thus:
|
|
// [1] = 0x22222222 / 0x44444444
|
|
// [2] = 0x0C0C0C0C / 0x3C3C3C3C
|
|
// [4] = 0x00F000F0 / 0x0F000F00
|
|
// [8] = 0x0000FF00 / 0x00FF0000
|
|
// [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
|
|
static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
|
|
// These are the unshifted masks which we use to match bit-manipulation
|
|
// patterns. They may be shifted left in certain circumstances.
|
|
static const uint64_t BitmanipMasks[] = {
|
|
0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
|
|
0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
|
|
|
|
return matchRISCVBitmanipPat(Op, BitmanipMasks);
|
|
}
|
|
|
|
// Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
|
|
static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
|
|
EVT VT = Op.getValueType();
|
|
|
|
if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
|
|
return SDValue();
|
|
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
|
|
// Or is commutable so canonicalize the second OR to the LHS.
|
|
if (Op0.getOpcode() != ISD::OR)
|
|
std::swap(Op0, Op1);
|
|
if (Op0.getOpcode() != ISD::OR)
|
|
return SDValue();
|
|
|
|
// We found an inner OR, so our operands are the operands of the inner OR
|
|
// and the other operand of the outer OR.
|
|
SDValue A = Op0.getOperand(0);
|
|
SDValue B = Op0.getOperand(1);
|
|
SDValue C = Op1;
|
|
|
|
auto Match1 = matchSHFLPat(A);
|
|
auto Match2 = matchSHFLPat(B);
|
|
|
|
// If neither matched, we failed.
|
|
if (!Match1 && !Match2)
|
|
return SDValue();
|
|
|
|
// We had at least one match. if one failed, try the remaining C operand.
|
|
if (!Match1) {
|
|
std::swap(A, C);
|
|
Match1 = matchSHFLPat(A);
|
|
if (!Match1)
|
|
return SDValue();
|
|
} else if (!Match2) {
|
|
std::swap(B, C);
|
|
Match2 = matchSHFLPat(B);
|
|
if (!Match2)
|
|
return SDValue();
|
|
}
|
|
assert(Match1 && Match2);
|
|
|
|
// Make sure our matches pair up.
|
|
if (!Match1->formsPairWith(*Match2))
|
|
return SDValue();
|
|
|
|
// All the remains is to make sure C is an AND with the same input, that masks
|
|
// out the bits that are being shuffled.
|
|
if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
|
|
C.getOperand(0) != Match1->Op)
|
|
return SDValue();
|
|
|
|
uint64_t Mask = C.getConstantOperandVal(1);
|
|
|
|
static const uint64_t BitmanipMasks[] = {
|
|
0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
|
|
0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
|
|
};
|
|
|
|
unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
|
|
unsigned MaskIdx = Log2_32(Match1->ShAmt);
|
|
uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
|
|
|
|
if (Mask != ExpMask)
|
|
return SDValue();
|
|
|
|
SDLoc DL(Op);
|
|
return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
|
|
DAG.getConstant(Match1->ShAmt, DL, VT));
|
|
}
|
|
|
|
// Optimize (add (shl x, c0), (shl y, c1)) ->
|
|
// (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
|
|
static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
// Perform this optimization only in the zba extension.
|
|
if (!Subtarget.hasStdExtZba())
|
|
return SDValue();
|
|
|
|
// Skip for vector types and larger types.
|
|
EVT VT = N->getValueType(0);
|
|
if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
|
|
return SDValue();
|
|
|
|
// The two operand nodes must be SHL and have no other use.
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
|
|
!N0->hasOneUse() || !N1->hasOneUse())
|
|
return SDValue();
|
|
|
|
// Check c0 and c1.
|
|
auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
|
|
auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
|
|
if (!N0C || !N1C)
|
|
return SDValue();
|
|
int64_t C0 = N0C->getSExtValue();
|
|
int64_t C1 = N1C->getSExtValue();
|
|
if (C0 <= 0 || C1 <= 0)
|
|
return SDValue();
|
|
|
|
// Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
|
|
int64_t Bits = std::min(C0, C1);
|
|
int64_t Diff = std::abs(C0 - C1);
|
|
if (Diff != 1 && Diff != 2 && Diff != 3)
|
|
return SDValue();
|
|
|
|
// Build nodes.
|
|
SDLoc DL(N);
|
|
SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
|
|
SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
|
|
SDValue NA0 =
|
|
DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
|
|
SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
|
|
return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
|
|
}
|
|
|
|
// Combine
|
|
// ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
|
|
// ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
|
|
// ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
|
|
// ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
|
|
// RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
|
|
// ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
|
|
// The grev patterns represents BSWAP.
|
|
// FIXME: This can be generalized to any GREV. We just need to toggle the MSB
|
|
// off the grev.
|
|
static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
bool IsWInstruction =
|
|
N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW;
|
|
assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL ||
|
|
IsWInstruction) &&
|
|
"Unexpected opcode!");
|
|
SDValue Src = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV)
|
|
return SDValue();
|
|
|
|
if (!isa<ConstantSDNode>(N->getOperand(1)) ||
|
|
!isa<ConstantSDNode>(Src.getOperand(1)))
|
|
return SDValue();
|
|
|
|
unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits();
|
|
assert(isPowerOf2_32(BitWidth) && "Expected a power of 2");
|
|
|
|
// Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for
|
|
// RORW/ROLW. And the grev should be the encoding for bswap for this width.
|
|
unsigned ShAmt1 = N->getConstantOperandVal(1);
|
|
unsigned ShAmt2 = Src.getConstantOperandVal(1);
|
|
if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8))
|
|
return SDValue();
|
|
|
|
Src = Src.getOperand(0);
|
|
|
|
// Toggle bit the MSB of the shift.
|
|
unsigned CombinedShAmt = ShAmt1 ^ ShAmt2;
|
|
if (CombinedShAmt == 0)
|
|
return Src;
|
|
|
|
SDValue Res = DAG.getNode(
|
|
RISCVISD::GREV, DL, VT, Src,
|
|
DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
|
|
if (!IsWInstruction)
|
|
return Res;
|
|
|
|
// Sign extend the result to match the behavior of the rotate. This will be
|
|
// selected to GREVIW in isel.
|
|
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res,
|
|
DAG.getValueType(MVT::i32));
|
|
}
|
|
|
|
// Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
|
|
// non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
|
|
// Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
|
|
// not undo itself, but they are redundant.
|
|
static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
|
|
bool IsGORC = N->getOpcode() == RISCVISD::GORC;
|
|
assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode");
|
|
SDValue Src = N->getOperand(0);
|
|
|
|
if (Src.getOpcode() != N->getOpcode())
|
|
return SDValue();
|
|
|
|
if (!isa<ConstantSDNode>(N->getOperand(1)) ||
|
|
!isa<ConstantSDNode>(Src.getOperand(1)))
|
|
return SDValue();
|
|
|
|
unsigned ShAmt1 = N->getConstantOperandVal(1);
|
|
unsigned ShAmt2 = Src.getConstantOperandVal(1);
|
|
Src = Src.getOperand(0);
|
|
|
|
unsigned CombinedShAmt;
|
|
if (IsGORC)
|
|
CombinedShAmt = ShAmt1 | ShAmt2;
|
|
else
|
|
CombinedShAmt = ShAmt1 ^ ShAmt2;
|
|
|
|
if (CombinedShAmt == 0)
|
|
return Src;
|
|
|
|
SDLoc DL(N);
|
|
return DAG.getNode(
|
|
N->getOpcode(), DL, N->getValueType(0), Src,
|
|
DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
|
|
}
|
|
|
|
// Combine a constant select operand into its use:
|
|
//
|
|
// (and (select cond, -1, c), x)
|
|
// -> (select cond, x, (and x, c)) [AllOnes=1]
|
|
// (or (select cond, 0, c), x)
|
|
// -> (select cond, x, (or x, c)) [AllOnes=0]
|
|
// (xor (select cond, 0, c), x)
|
|
// -> (select cond, x, (xor x, c)) [AllOnes=0]
|
|
// (add (select cond, 0, c), x)
|
|
// -> (select cond, x, (add x, c)) [AllOnes=0]
|
|
// (sub x, (select cond, 0, c))
|
|
// -> (select cond, x, (sub x, c)) [AllOnes=0]
|
|
static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
|
|
SelectionDAG &DAG, bool AllOnes) {
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// Skip vectors.
|
|
if (VT.isVector())
|
|
return SDValue();
|
|
|
|
if ((Slct.getOpcode() != ISD::SELECT &&
|
|
Slct.getOpcode() != RISCVISD::SELECT_CC) ||
|
|
!Slct.hasOneUse())
|
|
return SDValue();
|
|
|
|
auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
|
|
return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
|
|
};
|
|
|
|
bool SwapSelectOps;
|
|
unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
|
|
SDValue TrueVal = Slct.getOperand(1 + OpOffset);
|
|
SDValue FalseVal = Slct.getOperand(2 + OpOffset);
|
|
SDValue NonConstantVal;
|
|
if (isZeroOrAllOnes(TrueVal, AllOnes)) {
|
|
SwapSelectOps = false;
|
|
NonConstantVal = FalseVal;
|
|
} else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
|
|
SwapSelectOps = true;
|
|
NonConstantVal = TrueVal;
|
|
} else
|
|
return SDValue();
|
|
|
|
// Slct is now know to be the desired identity constant when CC is true.
|
|
TrueVal = OtherOp;
|
|
FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
|
|
// Unless SwapSelectOps says the condition should be false.
|
|
if (SwapSelectOps)
|
|
std::swap(TrueVal, FalseVal);
|
|
|
|
if (Slct.getOpcode() == RISCVISD::SELECT_CC)
|
|
return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
|
|
{Slct.getOperand(0), Slct.getOperand(1),
|
|
Slct.getOperand(2), TrueVal, FalseVal});
|
|
|
|
return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
|
|
{Slct.getOperand(0), TrueVal, FalseVal});
|
|
}
|
|
|
|
// Attempt combineSelectAndUse on each operand of a commutative operator N.
|
|
static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
|
|
bool AllOnes) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
|
|
return Result;
|
|
if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
|
|
return Result;
|
|
return SDValue();
|
|
}
|
|
|
|
// Transform (add (mul x, c0), c1) ->
|
|
// (add (mul (add x, c1/c0), c0), c1%c0).
|
|
// if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
|
|
// that should be excluded is when c0*(c1/c0) is simm12, which will lead
|
|
// to an infinite loop in DAGCombine if transformed.
|
|
// Or transform (add (mul x, c0), c1) ->
|
|
// (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
|
|
// if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
|
|
// case that should be excluded is when c0*(c1/c0+1) is simm12, which will
|
|
// lead to an infinite loop in DAGCombine if transformed.
|
|
// Or transform (add (mul x, c0), c1) ->
|
|
// (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
|
|
// if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
|
|
// case that should be excluded is when c0*(c1/c0-1) is simm12, which will
|
|
// lead to an infinite loop in DAGCombine if transformed.
|
|
// Or transform (add (mul x, c0), c1) ->
|
|
// (mul (add x, c1/c0), c0).
|
|
// if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
|
|
static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
// Skip for vector types and larger types.
|
|
EVT VT = N->getValueType(0);
|
|
if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
|
|
return SDValue();
|
|
// The first operand node must be a MUL and has no other use.
|
|
SDValue N0 = N->getOperand(0);
|
|
if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
|
|
return SDValue();
|
|
// Check if c0 and c1 match above conditions.
|
|
auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
|
|
auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
if (!N0C || !N1C)
|
|
return SDValue();
|
|
// If N0C has multiple uses it's possible one of the cases in
|
|
// DAGCombiner::isMulAddWithConstProfitable will be true, which would result
|
|
// in an infinite loop.
|
|
if (!N0C->hasOneUse())
|
|
return SDValue();
|
|
int64_t C0 = N0C->getSExtValue();
|
|
int64_t C1 = N1C->getSExtValue();
|
|
int64_t CA, CB;
|
|
if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
|
|
return SDValue();
|
|
// Search for proper CA (non-zero) and CB that both are simm12.
|
|
if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
|
|
!isInt<12>(C0 * (C1 / C0))) {
|
|
CA = C1 / C0;
|
|
CB = C1 % C0;
|
|
} else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
|
|
isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
|
|
CA = C1 / C0 + 1;
|
|
CB = C1 % C0 - C0;
|
|
} else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
|
|
isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
|
|
CA = C1 / C0 - 1;
|
|
CB = C1 % C0 + C0;
|
|
} else
|
|
return SDValue();
|
|
// Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
|
|
SDLoc DL(N);
|
|
SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
|
|
DAG.getConstant(CA, DL, VT));
|
|
SDValue New1 =
|
|
DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
|
|
return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
|
|
}
|
|
|
|
static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
|
|
return V;
|
|
if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
|
|
return V;
|
|
// fold (add (select lhs, rhs, cc, 0, y), x) ->
|
|
// (select lhs, rhs, cc, x, (add x, y))
|
|
return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
|
|
}
|
|
|
|
static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
|
|
// fold (sub x, (select lhs, rhs, cc, 0, y)) ->
|
|
// (select lhs, rhs, cc, x, (sub x, y))
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
|
|
}
|
|
|
|
static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
|
|
// fold (and (select lhs, rhs, cc, -1, y), x) ->
|
|
// (select lhs, rhs, cc, x, (and x, y))
|
|
return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
|
|
}
|
|
|
|
static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
if (Subtarget.hasStdExtZbp()) {
|
|
if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
|
|
return GREV;
|
|
if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
|
|
return GORC;
|
|
if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
|
|
return SHFL;
|
|
}
|
|
|
|
// fold (or (select cond, 0, y), x) ->
|
|
// (select cond, x, (or x, y))
|
|
return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
|
|
}
|
|
|
|
static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
|
|
// fold (xor (select cond, 0, y), x) ->
|
|
// (select cond, x, (xor x, y))
|
|
return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
|
|
}
|
|
|
|
static SDValue
|
|
performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SDValue Src = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
|
|
if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
|
|
cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
|
|
return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
|
|
Src.getOperand(0));
|
|
|
|
// Fold (i64 (sext_inreg (abs X), i32)) ->
|
|
// (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits.
|
|
// The (sext_inreg (neg X), i32) will be selected to negw by isel. This
|
|
// pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user
|
|
// of the (i32 (abs X)) is a sext or setcc or something else that causes type
|
|
// legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have
|
|
// been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg
|
|
// may get combined into an earlier operation so we need to use
|
|
// ComputeNumSignBits.
|
|
// NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for
|
|
// (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so
|
|
// we can't assume that X has 33 sign bits. We must check.
|
|
if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() &&
|
|
Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 &&
|
|
cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 &&
|
|
DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) {
|
|
SDLoc DL(N);
|
|
SDValue Freeze = DAG.getFreeze(Src.getOperand(0));
|
|
SDValue Neg =
|
|
DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze);
|
|
Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg,
|
|
DAG.getValueType(MVT::i32));
|
|
return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
|
|
// vwadd(u).vv/vx or vwsub(u).vv/vx.
|
|
static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
|
|
bool Commute = false) {
|
|
assert((N->getOpcode() == RISCVISD::ADD_VL ||
|
|
N->getOpcode() == RISCVISD::SUB_VL) &&
|
|
"Unexpected opcode");
|
|
bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
|
|
SDValue Op0 = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
if (Commute)
|
|
std::swap(Op0, Op1);
|
|
|
|
MVT VT = N->getSimpleValueType(0);
|
|
|
|
// Determine the narrow size for a widening add/sub.
|
|
unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
|
|
MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
|
|
VT.getVectorElementCount());
|
|
|
|
SDValue Mask = N->getOperand(2);
|
|
SDValue VL = N->getOperand(3);
|
|
|
|
SDLoc DL(N);
|
|
|
|
// If the RHS is a sext or zext, we can form a widening op.
|
|
if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
|
|
Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
|
|
Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
|
|
unsigned ExtOpc = Op1.getOpcode();
|
|
Op1 = Op1.getOperand(0);
|
|
// Re-introduce narrower extends if needed.
|
|
if (Op1.getValueType() != NarrowVT)
|
|
Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
|
|
|
|
unsigned WOpc;
|
|
if (ExtOpc == RISCVISD::VSEXT_VL)
|
|
WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
|
|
else
|
|
WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
|
|
|
|
return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
|
|
}
|
|
|
|
// FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
|
|
// sext/zext?
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
|
|
// vwsub(u).vv/vx.
|
|
static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
|
|
SDValue Op0 = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
SDValue Mask = N->getOperand(2);
|
|
SDValue VL = N->getOperand(3);
|
|
|
|
MVT VT = N->getSimpleValueType(0);
|
|
MVT NarrowVT = Op1.getSimpleValueType();
|
|
unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
|
|
|
|
unsigned VOpc;
|
|
switch (N->getOpcode()) {
|
|
default: llvm_unreachable("Unexpected opcode");
|
|
case RISCVISD::VWADD_W_VL: VOpc = RISCVISD::VWADD_VL; break;
|
|
case RISCVISD::VWSUB_W_VL: VOpc = RISCVISD::VWSUB_VL; break;
|
|
case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
|
|
case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
|
|
}
|
|
|
|
bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
|
|
N->getOpcode() == RISCVISD::VWSUB_W_VL;
|
|
|
|
SDLoc DL(N);
|
|
|
|
// If the LHS is a sext or zext, we can narrow this op to the same size as
|
|
// the RHS.
|
|
if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
|
|
(Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
|
|
Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
|
|
unsigned ExtOpc = Op0.getOpcode();
|
|
Op0 = Op0.getOperand(0);
|
|
// Re-introduce narrower extends if needed.
|
|
if (Op0.getValueType() != NarrowVT)
|
|
Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
|
|
return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
|
|
}
|
|
|
|
bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
|
|
N->getOpcode() == RISCVISD::VWADDU_W_VL;
|
|
|
|
// Look for splats on the left hand side of a vwadd(u).wv. We might be able
|
|
// to commute and use a vwadd(u).vx instead.
|
|
if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
|
|
Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
|
|
Op0 = Op0.getOperand(1);
|
|
|
|
// See if have enough sign bits or zero bits in the scalar to use a
|
|
// widening add/sub by splatting to smaller element size.
|
|
unsigned EltBits = VT.getScalarSizeInBits();
|
|
unsigned ScalarBits = Op0.getValueSizeInBits();
|
|
// Make sure we're getting all element bits from the scalar register.
|
|
// FIXME: Support implicit sign extension of vmv.v.x?
|
|
if (ScalarBits < EltBits)
|
|
return SDValue();
|
|
|
|
if (IsSigned) {
|
|
if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
|
|
return SDValue();
|
|
} else {
|
|
APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
|
|
if (!DAG.MaskedValueIsZero(Op0, Mask))
|
|
return SDValue();
|
|
}
|
|
|
|
Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
|
|
DAG.getUNDEF(NarrowVT), Op0, VL);
|
|
return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Try to form VWMUL, VWMULU or VWMULSU.
|
|
// TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
|
|
static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
|
|
bool Commute) {
|
|
assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
|
|
SDValue Op0 = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
if (Commute)
|
|
std::swap(Op0, Op1);
|
|
|
|
bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
|
|
bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
|
|
bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
|
|
if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
|
|
return SDValue();
|
|
|
|
SDValue Mask = N->getOperand(2);
|
|
SDValue VL = N->getOperand(3);
|
|
|
|
// Make sure the mask and VL match.
|
|
if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
|
|
return SDValue();
|
|
|
|
MVT VT = N->getSimpleValueType(0);
|
|
|
|
// Determine the narrow size for a widening multiply.
|
|
unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
|
|
MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
|
|
VT.getVectorElementCount());
|
|
|
|
SDLoc DL(N);
|
|
|
|
// See if the other operand is the same opcode.
|
|
if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
|
|
if (!Op1.hasOneUse())
|
|
return SDValue();
|
|
|
|
// Make sure the mask and VL match.
|
|
if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
|
|
return SDValue();
|
|
|
|
Op1 = Op1.getOperand(0);
|
|
} else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
|
|
// The operand is a splat of a scalar.
|
|
|
|
// The pasthru must be undef for tail agnostic
|
|
if (!Op1.getOperand(0).isUndef())
|
|
return SDValue();
|
|
// The VL must be the same.
|
|
if (Op1.getOperand(2) != VL)
|
|
return SDValue();
|
|
|
|
// Get the scalar value.
|
|
Op1 = Op1.getOperand(1);
|
|
|
|
// See if have enough sign bits or zero bits in the scalar to use a
|
|
// widening multiply by splatting to smaller element size.
|
|
unsigned EltBits = VT.getScalarSizeInBits();
|
|
unsigned ScalarBits = Op1.getValueSizeInBits();
|
|
// Make sure we're getting all element bits from the scalar register.
|
|
// FIXME: Support implicit sign extension of vmv.v.x?
|
|
if (ScalarBits < EltBits)
|
|
return SDValue();
|
|
|
|
// If the LHS is a sign extend, try to use vwmul.
|
|
if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
|
|
// Can use vwmul.
|
|
} else {
|
|
// Otherwise try to use vwmulu or vwmulsu.
|
|
APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
|
|
if (DAG.MaskedValueIsZero(Op1, Mask))
|
|
IsVWMULSU = IsSignExt;
|
|
else
|
|
return SDValue();
|
|
}
|
|
|
|
Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
|
|
DAG.getUNDEF(NarrowVT), Op1, VL);
|
|
} else
|
|
return SDValue();
|
|
|
|
Op0 = Op0.getOperand(0);
|
|
|
|
// Re-introduce narrower extends if needed.
|
|
unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
|
|
if (Op0.getValueType() != NarrowVT)
|
|
Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
|
|
// vwmulsu requires second operand to be zero extended.
|
|
ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
|
|
if (Op1.getValueType() != NarrowVT)
|
|
Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
|
|
|
|
unsigned WMulOpc = RISCVISD::VWMULSU_VL;
|
|
if (!IsVWMULSU)
|
|
WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
|
|
return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
|
|
}
|
|
|
|
static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
|
|
switch (Op.getOpcode()) {
|
|
case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
|
|
case ISD::FTRUNC: return RISCVFPRndMode::RTZ;
|
|
case ISD::FFLOOR: return RISCVFPRndMode::RDN;
|
|
case ISD::FCEIL: return RISCVFPRndMode::RUP;
|
|
case ISD::FROUND: return RISCVFPRndMode::RMM;
|
|
}
|
|
|
|
return RISCVFPRndMode::Invalid;
|
|
}
|
|
|
|
// Fold
|
|
// (fp_to_int (froundeven X)) -> fcvt X, rne
|
|
// (fp_to_int (ftrunc X)) -> fcvt X, rtz
|
|
// (fp_to_int (ffloor X)) -> fcvt X, rdn
|
|
// (fp_to_int (fceil X)) -> fcvt X, rup
|
|
// (fp_to_int (fround X)) -> fcvt X, rmm
|
|
static SDValue performFP_TO_INTCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
// Only handle XLen or i32 types. Other types narrower than XLen will
|
|
// eventually be legalized to XLenVT.
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != MVT::i32 && VT != XLenVT)
|
|
return SDValue();
|
|
|
|
SDValue Src = N->getOperand(0);
|
|
|
|
// Ensure the FP type is also legal.
|
|
if (!TLI.isTypeLegal(Src.getValueType()))
|
|
return SDValue();
|
|
|
|
// Don't do this for f16 with Zfhmin and not Zfh.
|
|
if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
|
|
return SDValue();
|
|
|
|
RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
|
|
if (FRM == RISCVFPRndMode::Invalid)
|
|
return SDValue();
|
|
|
|
bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
|
|
|
|
unsigned Opc;
|
|
if (VT == XLenVT)
|
|
Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
|
|
else
|
|
Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
|
|
|
|
SDLoc DL(N);
|
|
SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
|
|
DAG.getTargetConstant(FRM, DL, XLenVT));
|
|
return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
|
|
}
|
|
|
|
// Fold
|
|
// (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
|
|
// (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz))
|
|
// (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn))
|
|
// (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup))
|
|
// (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm))
|
|
static SDValue performFP_TO_INT_SATCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
// Only handle XLen types. Other types narrower than XLen will eventually be
|
|
// legalized to XLenVT.
|
|
EVT DstVT = N->getValueType(0);
|
|
if (DstVT != XLenVT)
|
|
return SDValue();
|
|
|
|
SDValue Src = N->getOperand(0);
|
|
|
|
// Ensure the FP type is also legal.
|
|
if (!TLI.isTypeLegal(Src.getValueType()))
|
|
return SDValue();
|
|
|
|
// Don't do this for f16 with Zfhmin and not Zfh.
|
|
if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
|
|
return SDValue();
|
|
|
|
EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
|
|
|
|
RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
|
|
if (FRM == RISCVFPRndMode::Invalid)
|
|
return SDValue();
|
|
|
|
bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
|
|
|
|
unsigned Opc;
|
|
if (SatVT == DstVT)
|
|
Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
|
|
else if (DstVT == MVT::i64 && SatVT == MVT::i32)
|
|
Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
|
|
else
|
|
return SDValue();
|
|
// FIXME: Support other SatVTs by clamping before or after the conversion.
|
|
|
|
Src = Src.getOperand(0);
|
|
|
|
SDLoc DL(N);
|
|
SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
|
|
DAG.getTargetConstant(FRM, DL, XLenVT));
|
|
|
|
// RISCV FP-to-int conversions saturate to the destination register size, but
|
|
// don't produce 0 for nan.
|
|
SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
|
|
return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
|
|
}
|
|
|
|
// Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
|
|
// smaller than XLenVT.
|
|
static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
|
|
|
|
SDValue Src = N->getOperand(0);
|
|
if (Src.getOpcode() != ISD::BSWAP)
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
|
|
!isPowerOf2_32(VT.getSizeInBits()))
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0),
|
|
DAG.getConstant(7, DL, VT));
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
|
|
// Helper to call SimplifyDemandedBits on an operand of N where only some low
|
|
// bits are demanded. N will be added to the Worklist if it was not deleted.
|
|
// Caller should return SDValue(N, 0) if this returns true.
|
|
auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
|
|
SDValue Op = N->getOperand(OpNo);
|
|
APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
|
|
if (!SimplifyDemandedBits(Op, Mask, DCI))
|
|
return false;
|
|
|
|
if (N->getOpcode() != ISD::DELETED_NODE)
|
|
DCI.AddToWorklist(N);
|
|
return true;
|
|
};
|
|
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
break;
|
|
case RISCVISD::SplitF64: {
|
|
SDValue Op0 = N->getOperand(0);
|
|
// If the input to SplitF64 is just BuildPairF64 then the operation is
|
|
// redundant. Instead, use BuildPairF64's operands directly.
|
|
if (Op0->getOpcode() == RISCVISD::BuildPairF64)
|
|
return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
|
|
|
|
if (Op0->isUndef()) {
|
|
SDValue Lo = DAG.getUNDEF(MVT::i32);
|
|
SDValue Hi = DAG.getUNDEF(MVT::i32);
|
|
return DCI.CombineTo(N, Lo, Hi);
|
|
}
|
|
|
|
SDLoc DL(N);
|
|
|
|
// It's cheaper to materialise two 32-bit integers than to load a double
|
|
// from the constant pool and transfer it to integer registers through the
|
|
// stack.
|
|
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
|
|
APInt V = C->getValueAPF().bitcastToAPInt();
|
|
SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
|
|
SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
|
|
return DCI.CombineTo(N, Lo, Hi);
|
|
}
|
|
|
|
// This is a target-specific version of a DAGCombine performed in
|
|
// DAGCombiner::visitBITCAST. It performs the equivalent of:
|
|
// fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
|
|
// fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
|
|
if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
|
|
!Op0.getNode()->hasOneUse())
|
|
break;
|
|
SDValue NewSplitF64 =
|
|
DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
|
|
Op0.getOperand(0));
|
|
SDValue Lo = NewSplitF64.getValue(0);
|
|
SDValue Hi = NewSplitF64.getValue(1);
|
|
APInt SignBit = APInt::getSignMask(32);
|
|
if (Op0.getOpcode() == ISD::FNEG) {
|
|
SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
|
|
DAG.getConstant(SignBit, DL, MVT::i32));
|
|
return DCI.CombineTo(N, Lo, NewHi);
|
|
}
|
|
assert(Op0.getOpcode() == ISD::FABS);
|
|
SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
|
|
DAG.getConstant(~SignBit, DL, MVT::i32));
|
|
return DCI.CombineTo(N, Lo, NewHi);
|
|
}
|
|
case RISCVISD::SLLW:
|
|
case RISCVISD::SRAW:
|
|
case RISCVISD::SRLW: {
|
|
// Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
|
|
if (SimplifyDemandedLowBitsHelper(0, 32) ||
|
|
SimplifyDemandedLowBitsHelper(1, 5))
|
|
return SDValue(N, 0);
|
|
|
|
break;
|
|
}
|
|
case ISD::ROTR:
|
|
case ISD::ROTL:
|
|
case RISCVISD::RORW:
|
|
case RISCVISD::ROLW: {
|
|
if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) {
|
|
// Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
|
|
if (SimplifyDemandedLowBitsHelper(0, 32) ||
|
|
SimplifyDemandedLowBitsHelper(1, 5))
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget);
|
|
}
|
|
case RISCVISD::CLZW:
|
|
case RISCVISD::CTZW: {
|
|
// Only the lower 32 bits of the first operand are read
|
|
if (SimplifyDemandedLowBitsHelper(0, 32))
|
|
return SDValue(N, 0);
|
|
break;
|
|
}
|
|
case RISCVISD::GREV:
|
|
case RISCVISD::GORC: {
|
|
// Only the lower log2(Bitwidth) bits of the the shift amount are read.
|
|
unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
|
|
assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
|
|
if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
|
|
return SDValue(N, 0);
|
|
|
|
return combineGREVI_GORCI(N, DAG);
|
|
}
|
|
case RISCVISD::GREVW:
|
|
case RISCVISD::GORCW: {
|
|
// Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
|
|
if (SimplifyDemandedLowBitsHelper(0, 32) ||
|
|
SimplifyDemandedLowBitsHelper(1, 5))
|
|
return SDValue(N, 0);
|
|
|
|
break;
|
|
}
|
|
case RISCVISD::SHFL:
|
|
case RISCVISD::UNSHFL: {
|
|
// Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
|
|
unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
|
|
assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
|
|
if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
|
|
return SDValue(N, 0);
|
|
|
|
break;
|
|
}
|
|
case RISCVISD::SHFLW:
|
|
case RISCVISD::UNSHFLW: {
|
|
// Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
|
|
if (SimplifyDemandedLowBitsHelper(0, 32) ||
|
|
SimplifyDemandedLowBitsHelper(1, 4))
|
|
return SDValue(N, 0);
|
|
|
|
break;
|
|
}
|
|
case RISCVISD::BCOMPRESSW:
|
|
case RISCVISD::BDECOMPRESSW: {
|
|
// Only the lower 32 bits of LHS and RHS are read.
|
|
if (SimplifyDemandedLowBitsHelper(0, 32) ||
|
|
SimplifyDemandedLowBitsHelper(1, 32))
|
|
return SDValue(N, 0);
|
|
|
|
break;
|
|
}
|
|
case RISCVISD::FSR:
|
|
case RISCVISD::FSL:
|
|
case RISCVISD::FSRW:
|
|
case RISCVISD::FSLW: {
|
|
bool IsWInstruction =
|
|
N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW;
|
|
unsigned BitWidth =
|
|
IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits();
|
|
assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
|
|
// Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
|
|
if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1))
|
|
return SDValue(N, 0);
|
|
|
|
break;
|
|
}
|
|
case RISCVISD::FMV_X_ANYEXTH:
|
|
case RISCVISD::FMV_X_ANYEXTW_RV64: {
|
|
SDLoc DL(N);
|
|
SDValue Op0 = N->getOperand(0);
|
|
MVT VT = N->getSimpleValueType(0);
|
|
// If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
|
|
// conversion is unnecessary and can be replaced with the FMV_W_X_RV64
|
|
// operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
|
|
if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
|
|
Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
|
|
(N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
|
|
Op0->getOpcode() == RISCVISD::FMV_H_X)) {
|
|
assert(Op0.getOperand(0).getValueType() == VT &&
|
|
"Unexpected value type!");
|
|
return Op0.getOperand(0);
|
|
}
|
|
|
|
// This is a target-specific version of a DAGCombine performed in
|
|
// DAGCombiner::visitBITCAST. It performs the equivalent of:
|
|
// fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
|
|
// fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
|
|
if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
|
|
!Op0.getNode()->hasOneUse())
|
|
break;
|
|
SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
|
|
unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
|
|
APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
|
|
if (Op0.getOpcode() == ISD::FNEG)
|
|
return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
|
|
DAG.getConstant(SignBit, DL, VT));
|
|
|
|
assert(Op0.getOpcode() == ISD::FABS);
|
|
return DAG.getNode(ISD::AND, DL, VT, NewFMV,
|
|
DAG.getConstant(~SignBit, DL, VT));
|
|
}
|
|
case ISD::ADD:
|
|
return performADDCombine(N, DAG, Subtarget);
|
|
case ISD::SUB:
|
|
return performSUBCombine(N, DAG);
|
|
case ISD::AND:
|
|
return performANDCombine(N, DAG);
|
|
case ISD::OR:
|
|
return performORCombine(N, DAG, Subtarget);
|
|
case ISD::XOR:
|
|
return performXORCombine(N, DAG);
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
|
|
case ISD::ZERO_EXTEND:
|
|
// Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
|
|
// type legalization. This is safe because fp_to_uint produces poison if
|
|
// it overflows.
|
|
if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
|
|
SDValue Src = N->getOperand(0);
|
|
if (Src.getOpcode() == ISD::FP_TO_UINT &&
|
|
isTypeLegal(Src.getOperand(0).getValueType()))
|
|
return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
|
|
Src.getOperand(0));
|
|
if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
|
|
isTypeLegal(Src.getOperand(1).getValueType())) {
|
|
SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
|
|
SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
|
|
Src.getOperand(0), Src.getOperand(1));
|
|
DCI.CombineTo(N, Res);
|
|
DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
|
|
DCI.recursivelyDeleteUnusedNodes(Src.getNode());
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked.
|
|
}
|
|
}
|
|
return SDValue();
|
|
case RISCVISD::SELECT_CC: {
|
|
// Transform
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
SDValue TrueV = N->getOperand(3);
|
|
SDValue FalseV = N->getOperand(4);
|
|
|
|
// If the True and False values are the same, we don't need a select_cc.
|
|
if (TrueV == FalseV)
|
|
return TrueV;
|
|
|
|
ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
|
|
if (!ISD::isIntEqualitySetCC(CCVal))
|
|
break;
|
|
|
|
// Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
|
|
// (select_cc X, Y, lt, trueV, falseV)
|
|
// Sometimes the setcc is introduced after select_cc has been formed.
|
|
if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
|
|
LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
|
|
// If we're looking for eq 0 instead of ne 0, we need to invert the
|
|
// condition.
|
|
bool Invert = CCVal == ISD::SETEQ;
|
|
CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
|
|
if (Invert)
|
|
CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
|
|
|
|
SDLoc DL(N);
|
|
RHS = LHS.getOperand(1);
|
|
LHS = LHS.getOperand(0);
|
|
translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
|
|
|
|
SDValue TargetCC = DAG.getCondCode(CCVal);
|
|
return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
|
|
{LHS, RHS, TargetCC, TrueV, FalseV});
|
|
}
|
|
|
|
// Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
|
|
// (select_cc X, Y, eq/ne, trueV, falseV)
|
|
if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
|
|
return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
|
|
{LHS.getOperand(0), LHS.getOperand(1),
|
|
N->getOperand(2), TrueV, FalseV});
|
|
// (select_cc X, 1, setne, trueV, falseV) ->
|
|
// (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
|
|
// This can occur when legalizing some floating point comparisons.
|
|
APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
|
|
if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
|
|
SDLoc DL(N);
|
|
CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
|
|
SDValue TargetCC = DAG.getCondCode(CCVal);
|
|
RHS = DAG.getConstant(0, DL, LHS.getValueType());
|
|
return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
|
|
{LHS, RHS, TargetCC, TrueV, FalseV});
|
|
}
|
|
|
|
break;
|
|
}
|
|
case RISCVISD::BR_CC: {
|
|
SDValue LHS = N->getOperand(1);
|
|
SDValue RHS = N->getOperand(2);
|
|
ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
|
|
if (!ISD::isIntEqualitySetCC(CCVal))
|
|
break;
|
|
|
|
// Fold (br_cc (setlt X, Y), 0, ne, dest) ->
|
|
// (br_cc X, Y, lt, dest)
|
|
// Sometimes the setcc is introduced after br_cc has been formed.
|
|
if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
|
|
LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
|
|
// If we're looking for eq 0 instead of ne 0, we need to invert the
|
|
// condition.
|
|
bool Invert = CCVal == ISD::SETEQ;
|
|
CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
|
|
if (Invert)
|
|
CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
|
|
|
|
SDLoc DL(N);
|
|
RHS = LHS.getOperand(1);
|
|
LHS = LHS.getOperand(0);
|
|
translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
|
|
|
|
return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
|
|
N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
|
|
N->getOperand(4));
|
|
}
|
|
|
|
// Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
|
|
// (br_cc X, Y, eq/ne, trueV, falseV)
|
|
if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
|
|
return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
|
|
N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
|
|
N->getOperand(3), N->getOperand(4));
|
|
|
|
// (br_cc X, 1, setne, br_cc) ->
|
|
// (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
|
|
// This can occur when legalizing some floating point comparisons.
|
|
APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
|
|
if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
|
|
SDLoc DL(N);
|
|
CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
|
|
SDValue TargetCC = DAG.getCondCode(CCVal);
|
|
RHS = DAG.getConstant(0, DL, LHS.getValueType());
|
|
return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
|
|
N->getOperand(0), LHS, RHS, TargetCC,
|
|
N->getOperand(4));
|
|
}
|
|
break;
|
|
}
|
|
case ISD::BITREVERSE:
|
|
return performBITREVERSECombine(N, DAG, Subtarget);
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT:
|
|
return performFP_TO_INTCombine(N, DCI, Subtarget);
|
|
case ISD::FP_TO_SINT_SAT:
|
|
case ISD::FP_TO_UINT_SAT:
|
|
return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
|
|
case ISD::FCOPYSIGN: {
|
|
EVT VT = N->getValueType(0);
|
|
if (!VT.isVector())
|
|
break;
|
|
// There is a form of VFSGNJ which injects the negated sign of its second
|
|
// operand. Try and bubble any FNEG up after the extend/round to produce
|
|
// this optimized pattern. Avoid modifying cases where FP_ROUND and
|
|
// TRUNC=1.
|
|
SDValue In2 = N->getOperand(1);
|
|
// Avoid cases where the extend/round has multiple uses, as duplicating
|
|
// those is typically more expensive than removing a fneg.
|
|
if (!In2.hasOneUse())
|
|
break;
|
|
if (In2.getOpcode() != ISD::FP_EXTEND &&
|
|
(In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
|
|
break;
|
|
In2 = In2.getOperand(0);
|
|
if (In2.getOpcode() != ISD::FNEG)
|
|
break;
|
|
SDLoc DL(N);
|
|
SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
|
|
return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
|
|
DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
|
|
}
|
|
case ISD::MGATHER:
|
|
case ISD::MSCATTER:
|
|
case ISD::VP_GATHER:
|
|
case ISD::VP_SCATTER: {
|
|
if (!DCI.isBeforeLegalize())
|
|
break;
|
|
SDValue Index, ScaleOp;
|
|
bool IsIndexScaled = false;
|
|
bool IsIndexSigned = false;
|
|
if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
|
|
Index = VPGSN->getIndex();
|
|
ScaleOp = VPGSN->getScale();
|
|
IsIndexScaled = VPGSN->isIndexScaled();
|
|
IsIndexSigned = VPGSN->isIndexSigned();
|
|
} else {
|
|
const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
|
|
Index = MGSN->getIndex();
|
|
ScaleOp = MGSN->getScale();
|
|
IsIndexScaled = MGSN->isIndexScaled();
|
|
IsIndexSigned = MGSN->isIndexSigned();
|
|
}
|
|
EVT IndexVT = Index.getValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
// RISCV indexed loads only support the "unsigned unscaled" addressing
|
|
// mode, so anything else must be manually legalized.
|
|
bool NeedsIdxLegalization =
|
|
IsIndexScaled ||
|
|
(IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
|
|
if (!NeedsIdxLegalization)
|
|
break;
|
|
|
|
SDLoc DL(N);
|
|
|
|
// Any index legalization should first promote to XLenVT, so we don't lose
|
|
// bits when scaling. This may create an illegal index type so we let
|
|
// LLVM's legalization take care of the splitting.
|
|
// FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
|
|
if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
|
|
IndexVT = IndexVT.changeVectorElementType(XLenVT);
|
|
Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
|
|
DL, IndexVT, Index);
|
|
}
|
|
|
|
unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
|
|
if (IsIndexScaled && Scale != 1) {
|
|
// Manually scale the indices by the element size.
|
|
// TODO: Sanitize the scale operand here?
|
|
// TODO: For VP nodes, should we use VP_SHL here?
|
|
assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
|
|
SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
|
|
Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
|
|
}
|
|
|
|
ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
|
|
if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
|
|
return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
|
|
{VPGN->getChain(), VPGN->getBasePtr(), Index,
|
|
VPGN->getScale(), VPGN->getMask(),
|
|
VPGN->getVectorLength()},
|
|
VPGN->getMemOperand(), NewIndexTy);
|
|
if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
|
|
return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
|
|
{VPSN->getChain(), VPSN->getValue(),
|
|
VPSN->getBasePtr(), Index, VPSN->getScale(),
|
|
VPSN->getMask(), VPSN->getVectorLength()},
|
|
VPSN->getMemOperand(), NewIndexTy);
|
|
if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
|
|
return DAG.getMaskedGather(
|
|
N->getVTList(), MGN->getMemoryVT(), DL,
|
|
{MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
|
|
MGN->getBasePtr(), Index, MGN->getScale()},
|
|
MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
|
|
const auto *MSN = cast<MaskedScatterSDNode>(N);
|
|
return DAG.getMaskedScatter(
|
|
N->getVTList(), MSN->getMemoryVT(), DL,
|
|
{MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
|
|
Index, MSN->getScale()},
|
|
MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
|
|
}
|
|
case RISCVISD::SRA_VL:
|
|
case RISCVISD::SRL_VL:
|
|
case RISCVISD::SHL_VL: {
|
|
SDValue ShAmt = N->getOperand(1);
|
|
if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
|
|
// We don't need the upper 32 bits of a 64-bit element for a shift amount.
|
|
SDLoc DL(N);
|
|
SDValue VL = N->getOperand(3);
|
|
EVT VT = N->getValueType(0);
|
|
ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
|
|
ShAmt.getOperand(1), VL);
|
|
return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
|
|
N->getOperand(2), N->getOperand(3));
|
|
}
|
|
break;
|
|
}
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
case ISD::SHL: {
|
|
SDValue ShAmt = N->getOperand(1);
|
|
if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
|
|
// We don't need the upper 32 bits of a 64-bit element for a shift amount.
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
|
|
ShAmt.getOperand(1),
|
|
DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
|
|
return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
|
|
}
|
|
break;
|
|
}
|
|
case RISCVISD::ADD_VL:
|
|
if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
|
|
return V;
|
|
return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
|
|
case RISCVISD::SUB_VL:
|
|
return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
|
|
case RISCVISD::VWADD_W_VL:
|
|
case RISCVISD::VWADDU_W_VL:
|
|
case RISCVISD::VWSUB_W_VL:
|
|
case RISCVISD::VWSUBU_W_VL:
|
|
return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
|
|
case RISCVISD::MUL_VL:
|
|
if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
|
|
return V;
|
|
// Mul is commutative.
|
|
return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
|
|
case ISD::STORE: {
|
|
auto *Store = cast<StoreSDNode>(N);
|
|
SDValue Val = Store->getValue();
|
|
// Combine store of vmv.x.s to vse with VL of 1.
|
|
// FIXME: Support FP.
|
|
if (Val.getOpcode() == RISCVISD::VMV_X_S) {
|
|
SDValue Src = Val.getOperand(0);
|
|
EVT VecVT = Src.getValueType();
|
|
EVT MemVT = Store->getMemoryVT();
|
|
// The memory VT and the element type must match.
|
|
if (VecVT.getVectorElementType() == MemVT) {
|
|
SDLoc DL(N);
|
|
MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
|
|
return DAG.getStoreVP(
|
|
Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
|
|
DAG.getConstant(1, DL, MaskVT),
|
|
DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
|
|
Store->getMemOperand(), Store->getAddressingMode(),
|
|
Store->isTruncatingStore(), /*IsCompress*/ false);
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
case ISD::SPLAT_VECTOR: {
|
|
EVT VT = N->getValueType(0);
|
|
// Only perform this combine on legal MVT types.
|
|
if (!isTypeLegal(VT))
|
|
break;
|
|
if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
|
|
DAG, Subtarget))
|
|
return Gather;
|
|
break;
|
|
}
|
|
case RISCVISD::VMV_V_X_VL: {
|
|
// Tail agnostic VMV.V.X only demands the vector element bitwidth from the
|
|
// scalar input.
|
|
unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
|
|
unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
|
|
if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
|
|
if (SimplifyDemandedLowBitsHelper(1, EltWidth))
|
|
return SDValue(N, 0);
|
|
|
|
break;
|
|
}
|
|
case ISD::INTRINSIC_WO_CHAIN: {
|
|
unsigned IntNo = N->getConstantOperandVal(0);
|
|
switch (IntNo) {
|
|
// By default we do not combine any intrinsic.
|
|
default:
|
|
return SDValue();
|
|
case Intrinsic::riscv_vcpop:
|
|
case Intrinsic::riscv_vcpop_mask:
|
|
case Intrinsic::riscv_vfirst:
|
|
case Intrinsic::riscv_vfirst_mask: {
|
|
SDValue VL = N->getOperand(2);
|
|
if (IntNo == Intrinsic::riscv_vcpop_mask ||
|
|
IntNo == Intrinsic::riscv_vfirst_mask)
|
|
VL = N->getOperand(3);
|
|
if (!isNullConstant(VL))
|
|
return SDValue();
|
|
// If VL is 0, vcpop -> li 0, vfirst -> li -1.
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
if (IntNo == Intrinsic::riscv_vfirst ||
|
|
IntNo == Intrinsic::riscv_vfirst_mask)
|
|
return DAG.getConstant(-1, DL, VT);
|
|
return DAG.getConstant(0, DL, VT);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
bool RISCVTargetLowering::isDesirableToCommuteWithShift(
|
|
const SDNode *N, CombineLevel Level) const {
|
|
// The following folds are only desirable if `(OP _, c1 << c2)` can be
|
|
// materialised in fewer instructions than `(OP _, c1)`:
|
|
//
|
|
// (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
|
|
// (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT Ty = N0.getValueType();
|
|
if (Ty.isScalarInteger() &&
|
|
(N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
|
|
auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
|
|
auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
if (C1 && C2) {
|
|
const APInt &C1Int = C1->getAPIntValue();
|
|
APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
|
|
|
|
// We can materialise `c1 << c2` into an add immediate, so it's "free",
|
|
// and the combine should happen, to potentially allow further combines
|
|
// later.
|
|
if (ShiftedC1Int.getMinSignedBits() <= 64 &&
|
|
isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
|
|
return true;
|
|
|
|
// We can materialise `c1` in an add immediate, so it's "free", and the
|
|
// combine should be prevented.
|
|
if (C1Int.getMinSignedBits() <= 64 &&
|
|
isLegalAddImmediate(C1Int.getSExtValue()))
|
|
return false;
|
|
|
|
// Neither constant will fit into an immediate, so find materialisation
|
|
// costs.
|
|
int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
|
|
Subtarget.getFeatureBits(),
|
|
/*CompressionCost*/true);
|
|
int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
|
|
ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
|
|
/*CompressionCost*/true);
|
|
|
|
// Materialising `c1` is cheaper than materialising `c1 << c2`, so the
|
|
// combine should be prevented.
|
|
if (C1Cost < ShiftedC1Cost)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool RISCVTargetLowering::targetShrinkDemandedConstant(
|
|
SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
|
|
TargetLoweringOpt &TLO) const {
|
|
// Delay this optimization as late as possible.
|
|
if (!TLO.LegalOps)
|
|
return false;
|
|
|
|
EVT VT = Op.getValueType();
|
|
if (VT.isVector())
|
|
return false;
|
|
|
|
// Only handle AND for now.
|
|
if (Op.getOpcode() != ISD::AND)
|
|
return false;
|
|
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
|
|
if (!C)
|
|
return false;
|
|
|
|
const APInt &Mask = C->getAPIntValue();
|
|
|
|
// Clear all non-demanded bits initially.
|
|
APInt ShrunkMask = Mask & DemandedBits;
|
|
|
|
// Try to make a smaller immediate by setting undemanded bits.
|
|
|
|
APInt ExpandedMask = Mask | ~DemandedBits;
|
|
|
|
auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
|
|
return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
|
|
};
|
|
auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
|
|
if (NewMask == Mask)
|
|
return true;
|
|
SDLoc DL(Op);
|
|
SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
|
|
SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
|
|
return TLO.CombineTo(Op, NewOp);
|
|
};
|
|
|
|
// If the shrunk mask fits in sign extended 12 bits, let the target
|
|
// independent code apply it.
|
|
if (ShrunkMask.isSignedIntN(12))
|
|
return false;
|
|
|
|
// Preserve (and X, 0xffff) when zext.h is supported.
|
|
if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
|
|
APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
|
|
if (IsLegalMask(NewMask))
|
|
return UseMask(NewMask);
|
|
}
|
|
|
|
// Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
|
|
if (VT == MVT::i64) {
|
|
APInt NewMask = APInt(64, 0xffffffff);
|
|
if (IsLegalMask(NewMask))
|
|
return UseMask(NewMask);
|
|
}
|
|
|
|
// For the remaining optimizations, we need to be able to make a negative
|
|
// number through a combination of mask and undemanded bits.
|
|
if (!ExpandedMask.isNegative())
|
|
return false;
|
|
|
|
// What is the fewest number of bits we need to represent the negative number.
|
|
unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
|
|
|
|
// Try to make a 12 bit negative immediate. If that fails try to make a 32
|
|
// bit negative immediate unless the shrunk immediate already fits in 32 bits.
|
|
APInt NewMask = ShrunkMask;
|
|
if (MinSignedBits <= 12)
|
|
NewMask.setBitsFrom(11);
|
|
else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
|
|
NewMask.setBitsFrom(31);
|
|
else
|
|
return false;
|
|
|
|
// Check that our new mask is a subset of the demanded mask.
|
|
assert(IsLegalMask(NewMask));
|
|
return UseMask(NewMask);
|
|
}
|
|
|
|
static void computeGREV(APInt &Src, unsigned ShAmt) {
|
|
ShAmt &= Src.getBitWidth() - 1;
|
|
uint64_t x = Src.getZExtValue();
|
|
if (ShAmt & 1)
|
|
x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
|
|
if (ShAmt & 2)
|
|
x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
|
|
if (ShAmt & 4)
|
|
x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
|
|
if (ShAmt & 8)
|
|
x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
|
|
if (ShAmt & 16)
|
|
x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
|
|
if (ShAmt & 32)
|
|
x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
|
|
Src = x;
|
|
}
|
|
|
|
void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
|
|
KnownBits &Known,
|
|
const APInt &DemandedElts,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth) const {
|
|
unsigned BitWidth = Known.getBitWidth();
|
|
unsigned Opc = Op.getOpcode();
|
|
assert((Opc >= ISD::BUILTIN_OP_END ||
|
|
Opc == ISD::INTRINSIC_WO_CHAIN ||
|
|
Opc == ISD::INTRINSIC_W_CHAIN ||
|
|
Opc == ISD::INTRINSIC_VOID) &&
|
|
"Should use MaskedValueIsZero if you don't know whether Op"
|
|
" is a target node!");
|
|
|
|
Known.resetAll();
|
|
switch (Opc) {
|
|
default: break;
|
|
case RISCVISD::SELECT_CC: {
|
|
Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
|
|
// If we don't know any bits, early out.
|
|
if (Known.isUnknown())
|
|
break;
|
|
KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
|
|
|
|
// Only known if known in both the LHS and RHS.
|
|
Known = KnownBits::commonBits(Known, Known2);
|
|
break;
|
|
}
|
|
case RISCVISD::REMUW: {
|
|
KnownBits Known2;
|
|
Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
|
|
Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
|
|
// We only care about the lower 32 bits.
|
|
Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
|
|
// Restore the original width by sign extending.
|
|
Known = Known.sext(BitWidth);
|
|
break;
|
|
}
|
|
case RISCVISD::DIVUW: {
|
|
KnownBits Known2;
|
|
Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
|
|
Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
|
|
// We only care about the lower 32 bits.
|
|
Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
|
|
// Restore the original width by sign extending.
|
|
Known = Known.sext(BitWidth);
|
|
break;
|
|
}
|
|
case RISCVISD::CTZW: {
|
|
KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
|
|
unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
|
|
unsigned LowBits = Log2_32(PossibleTZ) + 1;
|
|
Known.Zero.setBitsFrom(LowBits);
|
|
break;
|
|
}
|
|
case RISCVISD::CLZW: {
|
|
KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
|
|
unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
|
|
unsigned LowBits = Log2_32(PossibleLZ) + 1;
|
|
Known.Zero.setBitsFrom(LowBits);
|
|
break;
|
|
}
|
|
case RISCVISD::GREV: {
|
|
if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
|
|
unsigned ShAmt = C->getZExtValue();
|
|
computeGREV(Known.Zero, ShAmt);
|
|
computeGREV(Known.One, ShAmt);
|
|
}
|
|
break;
|
|
}
|
|
case RISCVISD::READ_VLENB: {
|
|
// If we know the minimum VLen from Zvl extensions, we can use that to
|
|
// determine the trailing zeros of VLENB.
|
|
// FIXME: Limit to 128 bit vectors until we have more testing.
|
|
unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8;
|
|
if (MinVLenB > 0)
|
|
Known.Zero.setLowBits(Log2_32(MinVLenB));
|
|
// We assume VLENB is no more than 65536 / 8 bytes.
|
|
Known.Zero.setBitsFrom(14);
|
|
break;
|
|
}
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
case ISD::INTRINSIC_WO_CHAIN: {
|
|
unsigned IntNo =
|
|
Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
|
|
switch (IntNo) {
|
|
default:
|
|
// We can't do anything for most intrinsics.
|
|
break;
|
|
case Intrinsic::riscv_vsetvli:
|
|
case Intrinsic::riscv_vsetvlimax:
|
|
case Intrinsic::riscv_vsetvli_opt:
|
|
case Intrinsic::riscv_vsetvlimax_opt:
|
|
// Assume that VL output is positive and would fit in an int32_t.
|
|
// TODO: VLEN might be capped at 16 bits in a future V spec update.
|
|
if (BitWidth >= 32)
|
|
Known.Zero.setBitsFrom(31);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
|
|
SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
|
|
unsigned Depth) const {
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
break;
|
|
case RISCVISD::SELECT_CC: {
|
|
unsigned Tmp =
|
|
DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
|
|
if (Tmp == 1) return 1; // Early out.
|
|
unsigned Tmp2 =
|
|
DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
|
|
return std::min(Tmp, Tmp2);
|
|
}
|
|
case RISCVISD::SLLW:
|
|
case RISCVISD::SRAW:
|
|
case RISCVISD::SRLW:
|
|
case RISCVISD::DIVW:
|
|
case RISCVISD::DIVUW:
|
|
case RISCVISD::REMUW:
|
|
case RISCVISD::ROLW:
|
|
case RISCVISD::RORW:
|
|
case RISCVISD::GREVW:
|
|
case RISCVISD::GORCW:
|
|
case RISCVISD::FSLW:
|
|
case RISCVISD::FSRW:
|
|
case RISCVISD::SHFLW:
|
|
case RISCVISD::UNSHFLW:
|
|
case RISCVISD::BCOMPRESSW:
|
|
case RISCVISD::BDECOMPRESSW:
|
|
case RISCVISD::BFPW:
|
|
case RISCVISD::FCVT_W_RV64:
|
|
case RISCVISD::FCVT_WU_RV64:
|
|
case RISCVISD::STRICT_FCVT_W_RV64:
|
|
case RISCVISD::STRICT_FCVT_WU_RV64:
|
|
// TODO: As the result is sign-extended, this is conservatively correct. A
|
|
// more precise answer could be calculated for SRAW depending on known
|
|
// bits in the shift amount.
|
|
return 33;
|
|
case RISCVISD::SHFL:
|
|
case RISCVISD::UNSHFL: {
|
|
// There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
|
|
// cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
|
|
// will stay within the upper 32 bits. If there were more than 32 sign bits
|
|
// before there will be at least 33 sign bits after.
|
|
if (Op.getValueType() == MVT::i64 &&
|
|
isa<ConstantSDNode>(Op.getOperand(1)) &&
|
|
(Op.getConstantOperandVal(1) & 0x10) == 0) {
|
|
unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
|
|
if (Tmp > 32)
|
|
return 33;
|
|
}
|
|
break;
|
|
}
|
|
case RISCVISD::VMV_X_S: {
|
|
// The number of sign bits of the scalar result is computed by obtaining the
|
|
// element type of the input vector operand, subtracting its width from the
|
|
// XLEN, and then adding one (sign bit within the element type). If the
|
|
// element type is wider than XLen, the least-significant XLEN bits are
|
|
// taken.
|
|
unsigned XLen = Subtarget.getXLen();
|
|
unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
|
|
if (EltBits <= XLen)
|
|
return XLen - EltBits + 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
|
|
MachineBasicBlock *BB) {
|
|
assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
|
|
|
|
// To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
|
|
// Should the count have wrapped while it was being read, we need to try
|
|
// again.
|
|
// ...
|
|
// read:
|
|
// rdcycleh x3 # load high word of cycle
|
|
// rdcycle x2 # load low word of cycle
|
|
// rdcycleh x4 # load high word of cycle
|
|
// bne x3, x4, read # check if high word reads match, otherwise try again
|
|
// ...
|
|
|
|
MachineFunction &MF = *BB->getParent();
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = ++BB->getIterator();
|
|
|
|
MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
|
|
MF.insert(It, LoopMBB);
|
|
|
|
MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
|
|
MF.insert(It, DoneMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to DoneMBB.
|
|
DoneMBB->splice(DoneMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
BB->addSuccessor(LoopMBB);
|
|
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
|
|
Register LoReg = MI.getOperand(0).getReg();
|
|
Register HiReg = MI.getOperand(1).getReg();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
|
|
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
|
|
BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
|
|
.addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
|
|
.addReg(RISCV::X0);
|
|
BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
|
|
.addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
|
|
.addReg(RISCV::X0);
|
|
BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
|
|
.addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
|
|
.addReg(RISCV::X0);
|
|
|
|
BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
|
|
.addReg(HiReg)
|
|
.addReg(ReadAgainReg)
|
|
.addMBB(LoopMBB);
|
|
|
|
LoopMBB->addSuccessor(LoopMBB);
|
|
LoopMBB->addSuccessor(DoneMBB);
|
|
|
|
MI.eraseFromParent();
|
|
|
|
return DoneMBB;
|
|
}
|
|
|
|
static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
|
|
MachineBasicBlock *BB) {
|
|
assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
|
|
|
|
MachineFunction &MF = *BB->getParent();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
|
|
const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
|
|
Register LoReg = MI.getOperand(0).getReg();
|
|
Register HiReg = MI.getOperand(1).getReg();
|
|
Register SrcReg = MI.getOperand(2).getReg();
|
|
const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
|
|
int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
|
|
|
|
TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
|
|
RI);
|
|
MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
|
|
MachineMemOperand *MMOLo =
|
|
MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
|
|
MachineMemOperand *MMOHi = MF.getMachineMemOperand(
|
|
MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
|
|
BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
|
|
.addFrameIndex(FI)
|
|
.addImm(0)
|
|
.addMemOperand(MMOLo);
|
|
BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
|
|
.addFrameIndex(FI)
|
|
.addImm(4)
|
|
.addMemOperand(MMOHi);
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
|
|
MachineBasicBlock *BB) {
|
|
assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
|
|
"Unexpected instruction");
|
|
|
|
MachineFunction &MF = *BB->getParent();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
|
|
const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
Register LoReg = MI.getOperand(1).getReg();
|
|
Register HiReg = MI.getOperand(2).getReg();
|
|
const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
|
|
int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
|
|
|
|
MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
|
|
MachineMemOperand *MMOLo =
|
|
MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
|
|
MachineMemOperand *MMOHi = MF.getMachineMemOperand(
|
|
MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
|
|
BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
|
|
.addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
|
|
.addFrameIndex(FI)
|
|
.addImm(0)
|
|
.addMemOperand(MMOLo);
|
|
BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
|
|
.addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
|
|
.addFrameIndex(FI)
|
|
.addImm(4)
|
|
.addMemOperand(MMOHi);
|
|
TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
static bool isSelectPseudo(MachineInstr &MI) {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return false;
|
|
case RISCV::Select_GPR_Using_CC_GPR:
|
|
case RISCV::Select_FPR16_Using_CC_GPR:
|
|
case RISCV::Select_FPR32_Using_CC_GPR:
|
|
case RISCV::Select_FPR64_Using_CC_GPR:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
|
|
unsigned RelOpcode, unsigned EqOpcode,
|
|
const RISCVSubtarget &Subtarget) {
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
Register Src1Reg = MI.getOperand(1).getReg();
|
|
Register Src2Reg = MI.getOperand(2).getReg();
|
|
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
|
|
Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
|
|
const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
|
|
|
|
// Save the current FFLAGS.
|
|
BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
|
|
|
|
auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
|
|
.addReg(Src1Reg)
|
|
.addReg(Src2Reg);
|
|
if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
|
|
MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
|
|
|
|
// Restore the FFLAGS.
|
|
BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
|
|
.addReg(SavedFFlags, RegState::Kill);
|
|
|
|
// Issue a dummy FEQ opcode to raise exception for signaling NaNs.
|
|
auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
|
|
.addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
|
|
.addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
|
|
if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
|
|
MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
|
|
|
|
// Erase the pseudoinstruction.
|
|
MI.eraseFromParent();
|
|
return BB;
|
|
}
|
|
|
|
static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
|
|
MachineBasicBlock *BB,
|
|
const RISCVSubtarget &Subtarget) {
|
|
// To "insert" Select_* instructions, we actually have to insert the triangle
|
|
// control-flow pattern. The incoming instructions know the destination vreg
|
|
// to set, the condition code register to branch on, the true/false values to
|
|
// select between, and the condcode to use to select the appropriate branch.
|
|
//
|
|
// We produce the following control flow:
|
|
// HeadMBB
|
|
// | \
|
|
// | IfFalseMBB
|
|
// | /
|
|
// TailMBB
|
|
//
|
|
// When we find a sequence of selects we attempt to optimize their emission
|
|
// by sharing the control flow. Currently we only handle cases where we have
|
|
// multiple selects with the exact same condition (same LHS, RHS and CC).
|
|
// The selects may be interleaved with other instructions if the other
|
|
// instructions meet some requirements we deem safe:
|
|
// - They are debug instructions. Otherwise,
|
|
// - They do not have side-effects, do not access memory and their inputs do
|
|
// not depend on the results of the select pseudo-instructions.
|
|
// The TrueV/FalseV operands of the selects cannot depend on the result of
|
|
// previous selects in the sequence.
|
|
// These conditions could be further relaxed. See the X86 target for a
|
|
// related approach and more information.
|
|
Register LHS = MI.getOperand(1).getReg();
|
|
Register RHS = MI.getOperand(2).getReg();
|
|
auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
|
|
|
|
SmallVector<MachineInstr *, 4> SelectDebugValues;
|
|
SmallSet<Register, 4> SelectDests;
|
|
SelectDests.insert(MI.getOperand(0).getReg());
|
|
|
|
MachineInstr *LastSelectPseudo = &MI;
|
|
|
|
for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
|
|
SequenceMBBI != E; ++SequenceMBBI) {
|
|
if (SequenceMBBI->isDebugInstr())
|
|
continue;
|
|
else if (isSelectPseudo(*SequenceMBBI)) {
|
|
if (SequenceMBBI->getOperand(1).getReg() != LHS ||
|
|
SequenceMBBI->getOperand(2).getReg() != RHS ||
|
|
SequenceMBBI->getOperand(3).getImm() != CC ||
|
|
SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
|
|
SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
|
|
break;
|
|
LastSelectPseudo = &*SequenceMBBI;
|
|
SequenceMBBI->collectDebugValues(SelectDebugValues);
|
|
SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
|
|
} else {
|
|
if (SequenceMBBI->hasUnmodeledSideEffects() ||
|
|
SequenceMBBI->mayLoadOrStore())
|
|
break;
|
|
if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
|
|
return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
|
|
}))
|
|
break;
|
|
}
|
|
}
|
|
|
|
const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
MachineFunction::iterator I = ++BB->getIterator();
|
|
|
|
MachineBasicBlock *HeadMBB = BB;
|
|
MachineFunction *F = BB->getParent();
|
|
MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
|
|
F->insert(I, IfFalseMBB);
|
|
F->insert(I, TailMBB);
|
|
|
|
// Transfer debug instructions associated with the selects to TailMBB.
|
|
for (MachineInstr *DebugInstr : SelectDebugValues) {
|
|
TailMBB->push_back(DebugInstr->removeFromParent());
|
|
}
|
|
|
|
// Move all instructions after the sequence to TailMBB.
|
|
TailMBB->splice(TailMBB->end(), HeadMBB,
|
|
std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
|
|
// Update machine-CFG edges by transferring all successors of the current
|
|
// block to the new block which will contain the Phi nodes for the selects.
|
|
TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
|
|
// Set the successors for HeadMBB.
|
|
HeadMBB->addSuccessor(IfFalseMBB);
|
|
HeadMBB->addSuccessor(TailMBB);
|
|
|
|
// Insert appropriate branch.
|
|
BuildMI(HeadMBB, DL, TII.getBrCond(CC))
|
|
.addReg(LHS)
|
|
.addReg(RHS)
|
|
.addMBB(TailMBB);
|
|
|
|
// IfFalseMBB just falls through to TailMBB.
|
|
IfFalseMBB->addSuccessor(TailMBB);
|
|
|
|
// Create PHIs for all of the select pseudo-instructions.
|
|
auto SelectMBBI = MI.getIterator();
|
|
auto SelectEnd = std::next(LastSelectPseudo->getIterator());
|
|
auto InsertionPoint = TailMBB->begin();
|
|
while (SelectMBBI != SelectEnd) {
|
|
auto Next = std::next(SelectMBBI);
|
|
if (isSelectPseudo(*SelectMBBI)) {
|
|
// %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
|
|
BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
|
|
TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
|
|
.addReg(SelectMBBI->getOperand(4).getReg())
|
|
.addMBB(HeadMBB)
|
|
.addReg(SelectMBBI->getOperand(5).getReg())
|
|
.addMBB(IfFalseMBB);
|
|
SelectMBBI->eraseFromParent();
|
|
}
|
|
SelectMBBI = Next;
|
|
}
|
|
|
|
F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
|
|
return TailMBB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unexpected instr type to insert");
|
|
case RISCV::ReadCycleWide:
|
|
assert(!Subtarget.is64Bit() &&
|
|
"ReadCycleWrite is only to be used on riscv32");
|
|
return emitReadCycleWidePseudo(MI, BB);
|
|
case RISCV::Select_GPR_Using_CC_GPR:
|
|
case RISCV::Select_FPR16_Using_CC_GPR:
|
|
case RISCV::Select_FPR32_Using_CC_GPR:
|
|
case RISCV::Select_FPR64_Using_CC_GPR:
|
|
return emitSelectPseudo(MI, BB, Subtarget);
|
|
case RISCV::BuildPairF64Pseudo:
|
|
return emitBuildPairF64Pseudo(MI, BB);
|
|
case RISCV::SplitF64Pseudo:
|
|
return emitSplitF64Pseudo(MI, BB);
|
|
case RISCV::PseudoQuietFLE_H:
|
|
return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
|
|
case RISCV::PseudoQuietFLT_H:
|
|
return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
|
|
case RISCV::PseudoQuietFLE_S:
|
|
return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
|
|
case RISCV::PseudoQuietFLT_S:
|
|
return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
|
|
case RISCV::PseudoQuietFLE_D:
|
|
return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
|
|
case RISCV::PseudoQuietFLT_D:
|
|
return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
|
|
}
|
|
}
|
|
|
|
void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
|
|
SDNode *Node) const {
|
|
// Add FRM dependency to any instructions with dynamic rounding mode.
|
|
unsigned Opc = MI.getOpcode();
|
|
auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
|
|
if (Idx < 0)
|
|
return;
|
|
if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
|
|
return;
|
|
// If the instruction already reads FRM, don't add another read.
|
|
if (MI.readsRegister(RISCV::FRM))
|
|
return;
|
|
MI.addOperand(
|
|
MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
|
|
}
|
|
|
|
// Calling Convention Implementation.
|
|
// The expectations for frontend ABI lowering vary from target to target.
|
|
// Ideally, an LLVM frontend would be able to avoid worrying about many ABI
|
|
// details, but this is a longer term goal. For now, we simply try to keep the
|
|
// role of the frontend as simple and well-defined as possible. The rules can
|
|
// be summarised as:
|
|
// * Never split up large scalar arguments. We handle them here.
|
|
// * If a hardfloat calling convention is being used, and the struct may be
|
|
// passed in a pair of registers (fp+fp, int+fp), and both registers are
|
|
// available, then pass as two separate arguments. If either the GPRs or FPRs
|
|
// are exhausted, then pass according to the rule below.
|
|
// * If a struct could never be passed in registers or directly in a stack
|
|
// slot (as it is larger than 2*XLEN and the floating point rules don't
|
|
// apply), then pass it using a pointer with the byval attribute.
|
|
// * If a struct is less than 2*XLEN, then coerce to either a two-element
|
|
// word-sized array or a 2*XLEN scalar (depending on alignment).
|
|
// * The frontend can determine whether a struct is returned by reference or
|
|
// not based on its size and fields. If it will be returned by reference, the
|
|
// frontend must modify the prototype so a pointer with the sret annotation is
|
|
// passed as the first argument. This is not necessary for large scalar
|
|
// returns.
|
|
// * Struct return values and varargs should be coerced to structs containing
|
|
// register-size fields in the same situations they would be for fixed
|
|
// arguments.
|
|
|
|
static const MCPhysReg ArgGPRs[] = {
|
|
RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
|
|
RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
|
|
};
|
|
static const MCPhysReg ArgFPR16s[] = {
|
|
RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
|
|
RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
|
|
};
|
|
static const MCPhysReg ArgFPR32s[] = {
|
|
RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
|
|
RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
|
|
};
|
|
static const MCPhysReg ArgFPR64s[] = {
|
|
RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
|
|
RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
|
|
};
|
|
// This is an interim calling convention and it may be changed in the future.
|
|
static const MCPhysReg ArgVRs[] = {
|
|
RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
|
|
RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
|
|
RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
|
|
static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2,
|
|
RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
|
|
RISCV::V20M2, RISCV::V22M2};
|
|
static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
|
|
RISCV::V20M4};
|
|
static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
|
|
|
|
// Pass a 2*XLEN argument that has been split into two XLEN values through
|
|
// registers or the stack as necessary.
|
|
static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
|
|
ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
|
|
MVT ValVT2, MVT LocVT2,
|
|
ISD::ArgFlagsTy ArgFlags2) {
|
|
unsigned XLenInBytes = XLen / 8;
|
|
if (Register Reg = State.AllocateReg(ArgGPRs)) {
|
|
// At least one half can be passed via register.
|
|
State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
|
|
VA1.getLocVT(), CCValAssign::Full));
|
|
} else {
|
|
// Both halves must be passed on the stack, with proper alignment.
|
|
Align StackAlign =
|
|
std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
|
|
State.addLoc(
|
|
CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
|
|
State.AllocateStack(XLenInBytes, StackAlign),
|
|
VA1.getLocVT(), CCValAssign::Full));
|
|
State.addLoc(CCValAssign::getMem(
|
|
ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
|
|
LocVT2, CCValAssign::Full));
|
|
return false;
|
|
}
|
|
|
|
if (Register Reg = State.AllocateReg(ArgGPRs)) {
|
|
// The second half can also be passed via register.
|
|
State.addLoc(
|
|
CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
|
|
} else {
|
|
// The second half is passed via the stack, without additional alignment.
|
|
State.addLoc(CCValAssign::getMem(
|
|
ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
|
|
LocVT2, CCValAssign::Full));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
|
|
Optional<unsigned> FirstMaskArgument,
|
|
CCState &State, const RISCVTargetLowering &TLI) {
|
|
const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
|
|
if (RC == &RISCV::VRRegClass) {
|
|
// Assign the first mask argument to V0.
|
|
// This is an interim calling convention and it may be changed in the
|
|
// future.
|
|
if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
|
|
return State.AllocateReg(RISCV::V0);
|
|
return State.AllocateReg(ArgVRs);
|
|
}
|
|
if (RC == &RISCV::VRM2RegClass)
|
|
return State.AllocateReg(ArgVRM2s);
|
|
if (RC == &RISCV::VRM4RegClass)
|
|
return State.AllocateReg(ArgVRM4s);
|
|
if (RC == &RISCV::VRM8RegClass)
|
|
return State.AllocateReg(ArgVRM8s);
|
|
llvm_unreachable("Unhandled register class for ValueType");
|
|
}
|
|
|
|
// Implements the RISC-V calling convention. Returns true upon failure.
|
|
static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
|
|
MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
|
|
ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
|
|
bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
|
|
Optional<unsigned> FirstMaskArgument) {
|
|
unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
|
|
assert(XLen == 32 || XLen == 64);
|
|
MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
|
|
|
|
// Any return value split in to more than two values can't be returned
|
|
// directly. Vectors are returned via the available vector registers.
|
|
if (!LocVT.isVector() && IsRet && ValNo > 1)
|
|
return true;
|
|
|
|
// UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
|
|
// variadic argument, or if no F16/F32 argument registers are available.
|
|
bool UseGPRForF16_F32 = true;
|
|
// UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
|
|
// variadic argument, or if no F64 argument registers are available.
|
|
bool UseGPRForF64 = true;
|
|
|
|
switch (ABI) {
|
|
default:
|
|
llvm_unreachable("Unexpected ABI");
|
|
case RISCVABI::ABI_ILP32:
|
|
case RISCVABI::ABI_LP64:
|
|
break;
|
|
case RISCVABI::ABI_ILP32F:
|
|
case RISCVABI::ABI_LP64F:
|
|
UseGPRForF16_F32 = !IsFixed;
|
|
break;
|
|
case RISCVABI::ABI_ILP32D:
|
|
case RISCVABI::ABI_LP64D:
|
|
UseGPRForF16_F32 = !IsFixed;
|
|
UseGPRForF64 = !IsFixed;
|
|
break;
|
|
}
|
|
|
|
// FPR16, FPR32, and FPR64 alias each other.
|
|
if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
|
|
UseGPRForF16_F32 = true;
|
|
UseGPRForF64 = true;
|
|
}
|
|
|
|
// From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
|
|
// similar local variables rather than directly checking against the target
|
|
// ABI.
|
|
|
|
if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
|
|
LocVT = XLenVT;
|
|
LocInfo = CCValAssign::BCvt;
|
|
} else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
|
|
LocVT = MVT::i64;
|
|
LocInfo = CCValAssign::BCvt;
|
|
}
|
|
|
|
// If this is a variadic argument, the RISC-V calling convention requires
|
|
// that it is assigned an 'even' or 'aligned' register if it has 8-byte
|
|
// alignment (RV32) or 16-byte alignment (RV64). An aligned register should
|
|
// be used regardless of whether the original argument was split during
|
|
// legalisation or not. The argument will not be passed by registers if the
|
|
// original type is larger than 2*XLEN, so the register alignment rule does
|
|
// not apply.
|
|
unsigned TwoXLenInBytes = (2 * XLen) / 8;
|
|
if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
|
|
DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
|
|
unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
|
|
// Skip 'odd' register if necessary.
|
|
if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
|
|
State.AllocateReg(ArgGPRs);
|
|
}
|
|
|
|
SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
|
|
SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
|
|
State.getPendingArgFlags();
|
|
|
|
assert(PendingLocs.size() == PendingArgFlags.size() &&
|
|
"PendingLocs and PendingArgFlags out of sync");
|
|
|
|
// Handle passing f64 on RV32D with a soft float ABI or when floating point
|
|
// registers are exhausted.
|
|
if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
|
|
assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
|
|
"Can't lower f64 if it is split");
|
|
// Depending on available argument GPRS, f64 may be passed in a pair of
|
|
// GPRs, split between a GPR and the stack, or passed completely on the
|
|
// stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
|
|
// cases.
|
|
Register Reg = State.AllocateReg(ArgGPRs);
|
|
LocVT = MVT::i32;
|
|
if (!Reg) {
|
|
unsigned StackOffset = State.AllocateStack(8, Align(8));
|
|
State.addLoc(
|
|
CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
|
|
return false;
|
|
}
|
|
if (!State.AllocateReg(ArgGPRs))
|
|
State.AllocateStack(4, Align(4));
|
|
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
return false;
|
|
}
|
|
|
|
// Fixed-length vectors are located in the corresponding scalable-vector
|
|
// container types.
|
|
if (ValVT.isFixedLengthVector())
|
|
LocVT = TLI.getContainerForFixedLengthVector(LocVT);
|
|
|
|
// Split arguments might be passed indirectly, so keep track of the pending
|
|
// values. Split vectors are passed via a mix of registers and indirectly, so
|
|
// treat them as we would any other argument.
|
|
if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
|
|
LocVT = XLenVT;
|
|
LocInfo = CCValAssign::Indirect;
|
|
PendingLocs.push_back(
|
|
CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
|
|
PendingArgFlags.push_back(ArgFlags);
|
|
if (!ArgFlags.isSplitEnd()) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If the split argument only had two elements, it should be passed directly
|
|
// in registers or on the stack.
|
|
if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
|
|
PendingLocs.size() <= 2) {
|
|
assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
|
|
// Apply the normal calling convention rules to the first half of the
|
|
// split argument.
|
|
CCValAssign VA = PendingLocs[0];
|
|
ISD::ArgFlagsTy AF = PendingArgFlags[0];
|
|
PendingLocs.clear();
|
|
PendingArgFlags.clear();
|
|
return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
|
|
ArgFlags);
|
|
}
|
|
|
|
// Allocate to a register if possible, or else a stack slot.
|
|
Register Reg;
|
|
unsigned StoreSizeBytes = XLen / 8;
|
|
Align StackAlign = Align(XLen / 8);
|
|
|
|
if (ValVT == MVT::f16 && !UseGPRForF16_F32)
|
|
Reg = State.AllocateReg(ArgFPR16s);
|
|
else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
|
|
Reg = State.AllocateReg(ArgFPR32s);
|
|
else if (ValVT == MVT::f64 && !UseGPRForF64)
|
|
Reg = State.AllocateReg(ArgFPR64s);
|
|
else if (ValVT.isVector()) {
|
|
Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
|
|
if (!Reg) {
|
|
// For return values, the vector must be passed fully via registers or
|
|
// via the stack.
|
|
// FIXME: The proposed vector ABI only mandates v8-v15 for return values,
|
|
// but we're using all of them.
|
|
if (IsRet)
|
|
return true;
|
|
// Try using a GPR to pass the address
|
|
if ((Reg = State.AllocateReg(ArgGPRs))) {
|
|
LocVT = XLenVT;
|
|
LocInfo = CCValAssign::Indirect;
|
|
} else if (ValVT.isScalableVector()) {
|
|
LocVT = XLenVT;
|
|
LocInfo = CCValAssign::Indirect;
|
|
} else {
|
|
// Pass fixed-length vectors on the stack.
|
|
LocVT = ValVT;
|
|
StoreSizeBytes = ValVT.getStoreSize();
|
|
// Align vectors to their element sizes, being careful for vXi1
|
|
// vectors.
|
|
StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
|
|
}
|
|
}
|
|
} else {
|
|
Reg = State.AllocateReg(ArgGPRs);
|
|
}
|
|
|
|
unsigned StackOffset =
|
|
Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
|
|
|
|
// If we reach this point and PendingLocs is non-empty, we must be at the
|
|
// end of a split argument that must be passed indirectly.
|
|
if (!PendingLocs.empty()) {
|
|
assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
|
|
assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
|
|
|
|
for (auto &It : PendingLocs) {
|
|
if (Reg)
|
|
It.convertToReg(Reg);
|
|
else
|
|
It.convertToMem(StackOffset);
|
|
State.addLoc(It);
|
|
}
|
|
PendingLocs.clear();
|
|
PendingArgFlags.clear();
|
|
return false;
|
|
}
|
|
|
|
assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
|
|
(TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
|
|
"Expected an XLenVT or vector types at this stage");
|
|
|
|
if (Reg) {
|
|
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
return false;
|
|
}
|
|
|
|
// When a floating-point value is passed on the stack, no bit-conversion is
|
|
// needed.
|
|
if (ValVT.isFloatingPoint()) {
|
|
LocVT = ValVT;
|
|
LocInfo = CCValAssign::Full;
|
|
}
|
|
State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
|
|
return false;
|
|
}
|
|
|
|
template <typename ArgTy>
|
|
static Optional<unsigned> preAssignMask(const ArgTy &Args) {
|
|
for (const auto &ArgIdx : enumerate(Args)) {
|
|
MVT ArgVT = ArgIdx.value().VT;
|
|
if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
|
|
return ArgIdx.index();
|
|
}
|
|
return None;
|
|
}
|
|
|
|
void RISCVTargetLowering::analyzeInputArgs(
|
|
MachineFunction &MF, CCState &CCInfo,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
|
|
RISCVCCAssignFn Fn) const {
|
|
unsigned NumArgs = Ins.size();
|
|
FunctionType *FType = MF.getFunction().getFunctionType();
|
|
|
|
Optional<unsigned> FirstMaskArgument;
|
|
if (Subtarget.hasVInstructions())
|
|
FirstMaskArgument = preAssignMask(Ins);
|
|
|
|
for (unsigned i = 0; i != NumArgs; ++i) {
|
|
MVT ArgVT = Ins[i].VT;
|
|
ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
|
|
|
|
Type *ArgTy = nullptr;
|
|
if (IsRet)
|
|
ArgTy = FType->getReturnType();
|
|
else if (Ins[i].isOrigArg())
|
|
ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
|
|
|
|
RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
|
|
if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
|
|
ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
|
|
FirstMaskArgument)) {
|
|
LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
|
|
<< EVT(ArgVT).getEVTString() << '\n');
|
|
llvm_unreachable(nullptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
void RISCVTargetLowering::analyzeOutputArgs(
|
|
MachineFunction &MF, CCState &CCInfo,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
|
|
CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
|
|
unsigned NumArgs = Outs.size();
|
|
|
|
Optional<unsigned> FirstMaskArgument;
|
|
if (Subtarget.hasVInstructions())
|
|
FirstMaskArgument = preAssignMask(Outs);
|
|
|
|
for (unsigned i = 0; i != NumArgs; i++) {
|
|
MVT ArgVT = Outs[i].VT;
|
|
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
|
|
Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
|
|
|
|
RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
|
|
if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
|
|
ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
|
|
FirstMaskArgument)) {
|
|
LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
|
|
<< EVT(ArgVT).getEVTString() << "\n");
|
|
llvm_unreachable(nullptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
|
|
// values.
|
|
static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
|
|
const CCValAssign &VA, const SDLoc &DL,
|
|
const RISCVSubtarget &Subtarget) {
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unexpected CCValAssign::LocInfo");
|
|
case CCValAssign::Full:
|
|
if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
|
|
Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
|
|
Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
|
|
else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
|
|
Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
|
|
else
|
|
Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
|
|
break;
|
|
}
|
|
return Val;
|
|
}
|
|
|
|
// The caller is responsible for loading the full value if the argument is
|
|
// passed with CCValAssign::Indirect.
|
|
static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
|
|
const CCValAssign &VA, const SDLoc &DL,
|
|
const RISCVTargetLowering &TLI) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
EVT LocVT = VA.getLocVT();
|
|
SDValue Val;
|
|
const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
|
|
Register VReg = RegInfo.createVirtualRegister(RC);
|
|
RegInfo.addLiveIn(VA.getLocReg(), VReg);
|
|
Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
|
|
|
|
if (VA.getLocInfo() == CCValAssign::Indirect)
|
|
return Val;
|
|
|
|
return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
|
|
}
|
|
|
|
static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
|
|
const CCValAssign &VA, const SDLoc &DL,
|
|
const RISCVSubtarget &Subtarget) {
|
|
EVT LocVT = VA.getLocVT();
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unexpected CCValAssign::LocInfo");
|
|
case CCValAssign::Full:
|
|
if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
|
|
Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
|
|
Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
|
|
else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
|
|
Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
|
|
else
|
|
Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
|
|
break;
|
|
}
|
|
return Val;
|
|
}
|
|
|
|
// The caller is responsible for loading the full value if the argument is
|
|
// passed with CCValAssign::Indirect.
|
|
static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
|
|
const CCValAssign &VA, const SDLoc &DL) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
EVT LocVT = VA.getLocVT();
|
|
EVT ValVT = VA.getValVT();
|
|
EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
|
|
if (ValVT.isScalableVector()) {
|
|
// When the value is a scalable vector, we save the pointer which points to
|
|
// the scalable vector value in the stack. The ValVT will be the pointer
|
|
// type, instead of the scalable vector type.
|
|
ValVT = LocVT;
|
|
}
|
|
int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
|
|
/*IsImmutable=*/true);
|
|
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
|
SDValue Val;
|
|
|
|
ISD::LoadExtType ExtType;
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unexpected CCValAssign::LocInfo");
|
|
case CCValAssign::Full:
|
|
case CCValAssign::Indirect:
|
|
case CCValAssign::BCvt:
|
|
ExtType = ISD::NON_EXTLOAD;
|
|
break;
|
|
}
|
|
Val = DAG.getExtLoad(
|
|
ExtType, DL, LocVT, Chain, FIN,
|
|
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
|
|
return Val;
|
|
}
|
|
|
|
static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
|
|
const CCValAssign &VA, const SDLoc &DL) {
|
|
assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
|
|
"Unexpected VA");
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
|
|
if (VA.isMemLoc()) {
|
|
// f64 is passed on the stack.
|
|
int FI =
|
|
MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
|
|
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
|
|
return DAG.getLoad(MVT::f64, DL, Chain, FIN,
|
|
MachinePointerInfo::getFixedStack(MF, FI));
|
|
}
|
|
|
|
assert(VA.isRegLoc() && "Expected register VA assignment");
|
|
|
|
Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
|
|
RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
|
|
SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
|
|
SDValue Hi;
|
|
if (VA.getLocReg() == RISCV::X17) {
|
|
// Second half of f64 is passed on the stack.
|
|
int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
|
|
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
|
|
Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
|
|
MachinePointerInfo::getFixedStack(MF, FI));
|
|
} else {
|
|
// Second half of f64 is passed in another GPR.
|
|
Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
|
|
RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
|
|
Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
|
|
}
|
|
return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
|
|
}
|
|
|
|
// FastCC has less than 1% performance improvement for some particular
|
|
// benchmark. But theoretically, it may has benenfit for some cases.
|
|
static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
|
|
unsigned ValNo, MVT ValVT, MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo,
|
|
ISD::ArgFlagsTy ArgFlags, CCState &State,
|
|
bool IsFixed, bool IsRet, Type *OrigTy,
|
|
const RISCVTargetLowering &TLI,
|
|
Optional<unsigned> FirstMaskArgument) {
|
|
|
|
// X5 and X6 might be used for save-restore libcall.
|
|
static const MCPhysReg GPRList[] = {
|
|
RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
|
|
RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28,
|
|
RISCV::X29, RISCV::X30, RISCV::X31};
|
|
|
|
if (LocVT == MVT::i32 || LocVT == MVT::i64) {
|
|
if (unsigned Reg = State.AllocateReg(GPRList)) {
|
|
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (LocVT == MVT::f16) {
|
|
static const MCPhysReg FPR16List[] = {
|
|
RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
|
|
RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H,
|
|
RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H,
|
|
RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
|
|
if (unsigned Reg = State.AllocateReg(FPR16List)) {
|
|
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (LocVT == MVT::f32) {
|
|
static const MCPhysReg FPR32List[] = {
|
|
RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
|
|
RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F,
|
|
RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F,
|
|
RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
|
|
if (unsigned Reg = State.AllocateReg(FPR32List)) {
|
|
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (LocVT == MVT::f64) {
|
|
static const MCPhysReg FPR64List[] = {
|
|
RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
|
|
RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D,
|
|
RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D,
|
|
RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
|
|
if (unsigned Reg = State.AllocateReg(FPR64List)) {
|
|
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (LocVT == MVT::i32 || LocVT == MVT::f32) {
|
|
unsigned Offset4 = State.AllocateStack(4, Align(4));
|
|
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
|
|
return false;
|
|
}
|
|
|
|
if (LocVT == MVT::i64 || LocVT == MVT::f64) {
|
|
unsigned Offset5 = State.AllocateStack(8, Align(8));
|
|
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
|
|
return false;
|
|
}
|
|
|
|
if (LocVT.isVector()) {
|
|
if (unsigned Reg =
|
|
allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
|
|
// Fixed-length vectors are located in the corresponding scalable-vector
|
|
// container types.
|
|
if (ValVT.isFixedLengthVector())
|
|
LocVT = TLI.getContainerForFixedLengthVector(LocVT);
|
|
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
} else {
|
|
// Try and pass the address via a "fast" GPR.
|
|
if (unsigned GPRReg = State.AllocateReg(GPRList)) {
|
|
LocInfo = CCValAssign::Indirect;
|
|
LocVT = TLI.getSubtarget().getXLenVT();
|
|
State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
|
|
} else if (ValVT.isFixedLengthVector()) {
|
|
auto StackAlign =
|
|
MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
|
|
unsigned StackOffset =
|
|
State.AllocateStack(ValVT.getStoreSize(), StackAlign);
|
|
State.addLoc(
|
|
CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
|
|
} else {
|
|
// Can't pass scalable vectors on the stack.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
return true; // CC didn't match.
|
|
}
|
|
|
|
static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo,
|
|
ISD::ArgFlagsTy ArgFlags, CCState &State) {
|
|
|
|
if (LocVT == MVT::i32 || LocVT == MVT::i64) {
|
|
// Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
|
|
// s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
|
|
static const MCPhysReg GPRList[] = {
|
|
RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
|
|
RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
|
|
if (unsigned Reg = State.AllocateReg(GPRList)) {
|
|
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (LocVT == MVT::f32) {
|
|
// Pass in STG registers: F1, ..., F6
|
|
// fs0 ... fs5
|
|
static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
|
|
RISCV::F18_F, RISCV::F19_F,
|
|
RISCV::F20_F, RISCV::F21_F};
|
|
if (unsigned Reg = State.AllocateReg(FPR32List)) {
|
|
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (LocVT == MVT::f64) {
|
|
// Pass in STG registers: D1, ..., D6
|
|
// fs6 ... fs11
|
|
static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
|
|
RISCV::F24_D, RISCV::F25_D,
|
|
RISCV::F26_D, RISCV::F27_D};
|
|
if (unsigned Reg = State.AllocateReg(FPR64List)) {
|
|
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
report_fatal_error("No registers left in GHC calling convention");
|
|
return true;
|
|
}
|
|
|
|
// Transform physical registers into virtual registers.
|
|
SDValue RISCVTargetLowering::LowerFormalArguments(
|
|
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
|
|
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
|
|
switch (CallConv) {
|
|
default:
|
|
report_fatal_error("Unsupported calling convention");
|
|
case CallingConv::C:
|
|
case CallingConv::Fast:
|
|
break;
|
|
case CallingConv::GHC:
|
|
if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
|
|
!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
|
|
report_fatal_error(
|
|
"GHC calling convention requires the F and D instruction set extensions");
|
|
}
|
|
|
|
const Function &Func = MF.getFunction();
|
|
if (Func.hasFnAttribute("interrupt")) {
|
|
if (!Func.arg_empty())
|
|
report_fatal_error(
|
|
"Functions with the interrupt attribute cannot have arguments!");
|
|
|
|
StringRef Kind =
|
|
MF.getFunction().getFnAttribute("interrupt").getValueAsString();
|
|
|
|
if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
|
|
report_fatal_error(
|
|
"Function interrupt attribute argument not supported!");
|
|
}
|
|
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
unsigned XLenInBytes = Subtarget.getXLen() / 8;
|
|
// Used with vargs to acumulate store chains.
|
|
std::vector<SDValue> OutChains;
|
|
|
|
// Assign locations to all of the incoming arguments.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
|
|
|
|
if (CallConv == CallingConv::GHC)
|
|
CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
|
|
else
|
|
analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
|
|
CallConv == CallingConv::Fast ? CC_RISCV_FastCC
|
|
: CC_RISCV);
|
|
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
SDValue ArgValue;
|
|
// Passing f64 on RV32D with a soft float ABI must be handled as a special
|
|
// case.
|
|
if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
|
|
ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
|
|
else if (VA.isRegLoc())
|
|
ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
|
|
else
|
|
ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
|
|
|
|
if (VA.getLocInfo() == CCValAssign::Indirect) {
|
|
// If the original argument was split and passed by reference (e.g. i128
|
|
// on RV32), we need to load all parts of it here (using the same
|
|
// address). Vectors may be partly split to registers and partly to the
|
|
// stack, in which case the base address is partly offset and subsequent
|
|
// stores are relative to that.
|
|
InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
|
|
MachinePointerInfo()));
|
|
unsigned ArgIndex = Ins[i].OrigArgIndex;
|
|
unsigned ArgPartOffset = Ins[i].PartOffset;
|
|
assert(VA.getValVT().isVector() || ArgPartOffset == 0);
|
|
while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
|
|
CCValAssign &PartVA = ArgLocs[i + 1];
|
|
unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
|
|
SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
|
|
if (PartVA.getValVT().isScalableVector())
|
|
Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
|
|
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
|
|
InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
|
|
MachinePointerInfo()));
|
|
++i;
|
|
}
|
|
continue;
|
|
}
|
|
InVals.push_back(ArgValue);
|
|
}
|
|
|
|
if (IsVarArg) {
|
|
ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
|
|
unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
|
|
const TargetRegisterClass *RC = &RISCV::GPRRegClass;
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
|
|
|
|
// Offset of the first variable argument from stack pointer, and size of
|
|
// the vararg save area. For now, the varargs save area is either zero or
|
|
// large enough to hold a0-a7.
|
|
int VaArgOffset, VarArgsSaveSize;
|
|
|
|
// If all registers are allocated, then all varargs must be passed on the
|
|
// stack and we don't need to save any argregs.
|
|
if (ArgRegs.size() == Idx) {
|
|
VaArgOffset = CCInfo.getNextStackOffset();
|
|
VarArgsSaveSize = 0;
|
|
} else {
|
|
VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
|
|
VaArgOffset = -VarArgsSaveSize;
|
|
}
|
|
|
|
// Record the frame index of the first variable argument
|
|
// which is a value necessary to VASTART.
|
|
int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
|
|
RVFI->setVarArgsFrameIndex(FI);
|
|
|
|
// If saving an odd number of registers then create an extra stack slot to
|
|
// ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
|
|
// offsets to even-numbered registered remain 2*XLEN-aligned.
|
|
if (Idx % 2) {
|
|
MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
|
|
VarArgsSaveSize += XLenInBytes;
|
|
}
|
|
|
|
// Copy the integer registers that may have been used for passing varargs
|
|
// to the vararg save area.
|
|
for (unsigned I = Idx; I < ArgRegs.size();
|
|
++I, VaArgOffset += XLenInBytes) {
|
|
const Register Reg = RegInfo.createVirtualRegister(RC);
|
|
RegInfo.addLiveIn(ArgRegs[I], Reg);
|
|
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
|
|
FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
|
|
SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
|
|
SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
|
|
MachinePointerInfo::getFixedStack(MF, FI));
|
|
cast<StoreSDNode>(Store.getNode())
|
|
->getMemOperand()
|
|
->setValue((Value *)nullptr);
|
|
OutChains.push_back(Store);
|
|
}
|
|
RVFI->setVarArgsSaveSize(VarArgsSaveSize);
|
|
}
|
|
|
|
// All stores are grouped in one node to allow the matching between
|
|
// the size of Ins and InVals. This only happens for vararg functions.
|
|
if (!OutChains.empty()) {
|
|
OutChains.push_back(Chain);
|
|
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
/// isEligibleForTailCallOptimization - Check whether the call is eligible
|
|
/// for tail call optimization.
|
|
/// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
|
|
bool RISCVTargetLowering::isEligibleForTailCallOptimization(
|
|
CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
|
|
const SmallVector<CCValAssign, 16> &ArgLocs) const {
|
|
|
|
auto &Callee = CLI.Callee;
|
|
auto CalleeCC = CLI.CallConv;
|
|
auto &Outs = CLI.Outs;
|
|
auto &Caller = MF.getFunction();
|
|
auto CallerCC = Caller.getCallingConv();
|
|
|
|
// Exception-handling functions need a special set of instructions to
|
|
// indicate a return to the hardware. Tail-calling another function would
|
|
// probably break this.
|
|
// TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
|
|
// should be expanded as new function attributes are introduced.
|
|
if (Caller.hasFnAttribute("interrupt"))
|
|
return false;
|
|
|
|
// Do not tail call opt if the stack is used to pass parameters.
|
|
if (CCInfo.getNextStackOffset() != 0)
|
|
return false;
|
|
|
|
// Do not tail call opt if any parameters need to be passed indirectly.
|
|
// Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
|
|
// passed indirectly. So the address of the value will be passed in a
|
|
// register, or if not available, then the address is put on the stack. In
|
|
// order to pass indirectly, space on the stack often needs to be allocated
|
|
// in order to store the value. In this case the CCInfo.getNextStackOffset()
|
|
// != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
|
|
// are passed CCValAssign::Indirect.
|
|
for (auto &VA : ArgLocs)
|
|
if (VA.getLocInfo() == CCValAssign::Indirect)
|
|
return false;
|
|
|
|
// Do not tail call opt if either caller or callee uses struct return
|
|
// semantics.
|
|
auto IsCallerStructRet = Caller.hasStructRetAttr();
|
|
auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
|
|
if (IsCallerStructRet || IsCalleeStructRet)
|
|
return false;
|
|
|
|
// Externally-defined functions with weak linkage should not be
|
|
// tail-called. The behaviour of branch instructions in this situation (as
|
|
// used for tail calls) is implementation-defined, so we cannot rely on the
|
|
// linker replacing the tail call with a return.
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
const GlobalValue *GV = G->getGlobal();
|
|
if (GV->hasExternalWeakLinkage())
|
|
return false;
|
|
}
|
|
|
|
// The callee has to preserve all registers the caller needs to preserve.
|
|
const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
|
|
const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
|
|
if (CalleeCC != CallerCC) {
|
|
const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
|
|
if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
|
|
return false;
|
|
}
|
|
|
|
// Byval parameters hand the function a pointer directly into the stack area
|
|
// we want to reuse during a tail call. Working around this *is* possible
|
|
// but less efficient and uglier in LowerCall.
|
|
for (auto &Arg : Outs)
|
|
if (Arg.Flags.isByVal())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
|
|
return DAG.getDataLayout().getPrefTypeAlign(
|
|
VT.getTypeForEVT(*DAG.getContext()));
|
|
}
|
|
|
|
// Lower a call to a callseq_start + CALL + callseq_end chain, and add input
|
|
// and output parameter nodes.
|
|
SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
SelectionDAG &DAG = CLI.DAG;
|
|
SDLoc &DL = CLI.DL;
|
|
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
|
|
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
|
|
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
|
|
SDValue Chain = CLI.Chain;
|
|
SDValue Callee = CLI.Callee;
|
|
bool &IsTailCall = CLI.IsTailCall;
|
|
CallingConv::ID CallConv = CLI.CallConv;
|
|
bool IsVarArg = CLI.IsVarArg;
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
|
|
// Analyze the operands of the call, assigning locations to each operand.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
|
|
|
|
if (CallConv == CallingConv::GHC)
|
|
ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
|
|
else
|
|
analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
|
|
CallConv == CallingConv::Fast ? CC_RISCV_FastCC
|
|
: CC_RISCV);
|
|
|
|
// Check if it's really possible to do a tail call.
|
|
if (IsTailCall)
|
|
IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
|
|
|
|
if (IsTailCall)
|
|
++NumTailCalls;
|
|
else if (CLI.CB && CLI.CB->isMustTailCall())
|
|
report_fatal_error("failed to perform tail call elimination on a call "
|
|
"site marked musttail");
|
|
|
|
// Get a count of how many bytes are to be pushed on the stack.
|
|
unsigned NumBytes = ArgCCInfo.getNextStackOffset();
|
|
|
|
// Create local copies for byval args
|
|
SmallVector<SDValue, 8> ByValArgs;
|
|
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
|
|
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
|
if (!Flags.isByVal())
|
|
continue;
|
|
|
|
SDValue Arg = OutVals[i];
|
|
unsigned Size = Flags.getByValSize();
|
|
Align Alignment = Flags.getNonZeroByValAlign();
|
|
|
|
int FI =
|
|
MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
|
|
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
|
|
SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
|
|
|
|
Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
|
|
/*IsVolatile=*/false,
|
|
/*AlwaysInline=*/false, IsTailCall,
|
|
MachinePointerInfo(), MachinePointerInfo());
|
|
ByValArgs.push_back(FIPtr);
|
|
}
|
|
|
|
if (!IsTailCall)
|
|
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
|
|
|
|
// Copy argument values to their designated locations.
|
|
SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
|
|
SmallVector<SDValue, 8> MemOpChains;
|
|
SDValue StackPtr;
|
|
for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
SDValue ArgValue = OutVals[i];
|
|
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
|
|
|
// Handle passing f64 on RV32D with a soft float ABI as a special case.
|
|
bool IsF64OnRV32DSoftABI =
|
|
VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
|
|
if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
|
|
SDValue SplitF64 = DAG.getNode(
|
|
RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
|
|
SDValue Lo = SplitF64.getValue(0);
|
|
SDValue Hi = SplitF64.getValue(1);
|
|
|
|
Register RegLo = VA.getLocReg();
|
|
RegsToPass.push_back(std::make_pair(RegLo, Lo));
|
|
|
|
if (RegLo == RISCV::X17) {
|
|
// Second half of f64 is passed on the stack.
|
|
// Work out the address of the stack slot.
|
|
if (!StackPtr.getNode())
|
|
StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
|
|
// Emit the store.
|
|
MemOpChains.push_back(
|
|
DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
|
|
} else {
|
|
// Second half of f64 is passed in another GPR.
|
|
assert(RegLo < RISCV::X31 && "Invalid register pair");
|
|
Register RegHigh = RegLo + 1;
|
|
RegsToPass.push_back(std::make_pair(RegHigh, Hi));
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
|
|
// as any other MemLoc.
|
|
|
|
// Promote the value if needed.
|
|
// For now, only handle fully promoted and indirect arguments.
|
|
if (VA.getLocInfo() == CCValAssign::Indirect) {
|
|
// Store the argument in a stack slot and pass its address.
|
|
Align StackAlign =
|
|
std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
|
|
getPrefTypeAlign(ArgValue.getValueType(), DAG));
|
|
TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
|
|
// If the original argument was split (e.g. i128), we need
|
|
// to store the required parts of it here (and pass just one address).
|
|
// Vectors may be partly split to registers and partly to the stack, in
|
|
// which case the base address is partly offset and subsequent stores are
|
|
// relative to that.
|
|
unsigned ArgIndex = Outs[i].OrigArgIndex;
|
|
unsigned ArgPartOffset = Outs[i].PartOffset;
|
|
assert(VA.getValVT().isVector() || ArgPartOffset == 0);
|
|
// Calculate the total size to store. We don't have access to what we're
|
|
// actually storing other than performing the loop and collecting the
|
|
// info.
|
|
SmallVector<std::pair<SDValue, SDValue>> Parts;
|
|
while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
|
|
SDValue PartValue = OutVals[i + 1];
|
|
unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
|
|
SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
|
|
EVT PartVT = PartValue.getValueType();
|
|
if (PartVT.isScalableVector())
|
|
Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
|
|
StoredSize += PartVT.getStoreSize();
|
|
StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
|
|
Parts.push_back(std::make_pair(PartValue, Offset));
|
|
++i;
|
|
}
|
|
SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
|
|
int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
|
|
MemOpChains.push_back(
|
|
DAG.getStore(Chain, DL, ArgValue, SpillSlot,
|
|
MachinePointerInfo::getFixedStack(MF, FI)));
|
|
for (const auto &Part : Parts) {
|
|
SDValue PartValue = Part.first;
|
|
SDValue PartOffset = Part.second;
|
|
SDValue Address =
|
|
DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
|
|
MemOpChains.push_back(
|
|
DAG.getStore(Chain, DL, PartValue, Address,
|
|
MachinePointerInfo::getFixedStack(MF, FI)));
|
|
}
|
|
ArgValue = SpillSlot;
|
|
} else {
|
|
ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
|
|
}
|
|
|
|
// Use local copy if it is a byval arg.
|
|
if (Flags.isByVal())
|
|
ArgValue = ByValArgs[j++];
|
|
|
|
if (VA.isRegLoc()) {
|
|
// Queue up the argument copies and emit them at the end.
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
|
|
} else {
|
|
assert(VA.isMemLoc() && "Argument not register or memory");
|
|
assert(!IsTailCall && "Tail call not allowed if stack is used "
|
|
"for passing parameters");
|
|
|
|
// Work out the address of the stack slot.
|
|
if (!StackPtr.getNode())
|
|
StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
|
|
SDValue Address =
|
|
DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
|
|
DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
|
|
|
|
// Emit the store.
|
|
MemOpChains.push_back(
|
|
DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
|
|
}
|
|
}
|
|
|
|
// Join the stores, which are independent of one another.
|
|
if (!MemOpChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
|
|
|
|
SDValue Glue;
|
|
|
|
// Build a sequence of copy-to-reg nodes, chained and glued together.
|
|
for (auto &Reg : RegsToPass) {
|
|
Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
|
|
Glue = Chain.getValue(1);
|
|
}
|
|
|
|
// Validate that none of the argument registers have been marked as
|
|
// reserved, if so report an error. Do the same for the return address if this
|
|
// is not a tailcall.
|
|
validateCCReservedRegs(RegsToPass, MF);
|
|
if (!IsTailCall &&
|
|
MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
|
|
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
|
|
MF.getFunction(),
|
|
"Return address register required, but has been reserved."});
|
|
|
|
// If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
|
|
// TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
|
|
// split it and then direct call can be matched by PseudoCALL.
|
|
if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
const GlobalValue *GV = S->getGlobal();
|
|
|
|
unsigned OpFlags = RISCVII::MO_CALL;
|
|
if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
|
|
OpFlags = RISCVII::MO_PLT;
|
|
|
|
Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
|
|
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
unsigned OpFlags = RISCVII::MO_CALL;
|
|
|
|
if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
|
|
nullptr))
|
|
OpFlags = RISCVII::MO_PLT;
|
|
|
|
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
|
|
}
|
|
|
|
// The first call operand is the chain and the second is the target address.
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
|
|
// Add argument registers to the end of the list so that they are
|
|
// known live into the call.
|
|
for (auto &Reg : RegsToPass)
|
|
Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
|
|
|
|
if (!IsTailCall) {
|
|
// Add a register mask operand representing the call-preserved registers.
|
|
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
|
|
const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
|
|
assert(Mask && "Missing call preserved mask for calling convention");
|
|
Ops.push_back(DAG.getRegisterMask(Mask));
|
|
}
|
|
|
|
// Glue the call to the argument copies, if any.
|
|
if (Glue.getNode())
|
|
Ops.push_back(Glue);
|
|
|
|
// Emit the call.
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
|
|
if (IsTailCall) {
|
|
MF.getFrameInfo().setHasTailCall();
|
|
return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
|
|
}
|
|
|
|
Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
|
|
DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
|
|
Glue = Chain.getValue(1);
|
|
|
|
// Mark the end of the call, which is glued to the call itself.
|
|
Chain = DAG.getCALLSEQ_END(Chain,
|
|
DAG.getConstant(NumBytes, DL, PtrVT, true),
|
|
DAG.getConstant(0, DL, PtrVT, true),
|
|
Glue, DL);
|
|
Glue = Chain.getValue(1);
|
|
|
|
// Assign locations to each value returned by this call.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
|
|
analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
|
|
|
|
// Copy all of the result registers out of their specified physreg.
|
|
for (auto &VA : RVLocs) {
|
|
// Copy the value out
|
|
SDValue RetValue =
|
|
DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
|
|
// Glue the RetValue to the end of the call sequence
|
|
Chain = RetValue.getValue(1);
|
|
Glue = RetValue.getValue(2);
|
|
|
|
if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
|
|
assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
|
|
SDValue RetValue2 =
|
|
DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
|
|
Chain = RetValue2.getValue(1);
|
|
Glue = RetValue2.getValue(2);
|
|
RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
|
|
RetValue2);
|
|
}
|
|
|
|
RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
|
|
|
|
InVals.push_back(RetValue);
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
bool RISCVTargetLowering::CanLowerReturn(
|
|
CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
|
|
|
|
Optional<unsigned> FirstMaskArgument;
|
|
if (Subtarget.hasVInstructions())
|
|
FirstMaskArgument = preAssignMask(Outs);
|
|
|
|
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
|
|
MVT VT = Outs[i].VT;
|
|
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
|
|
RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
|
|
if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
|
|
ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
|
|
*this, FirstMaskArgument))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
SDValue
|
|
RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
|
|
bool IsVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SDLoc &DL, SelectionDAG &DAG) const {
|
|
const MachineFunction &MF = DAG.getMachineFunction();
|
|
const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
|
|
|
|
// Stores the assignment of the return value to a location.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
|
|
// Info about the registers and stack slot.
|
|
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
|
|
*DAG.getContext());
|
|
|
|
analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
|
|
nullptr, CC_RISCV);
|
|
|
|
if (CallConv == CallingConv::GHC && !RVLocs.empty())
|
|
report_fatal_error("GHC functions return void only");
|
|
|
|
SDValue Glue;
|
|
SmallVector<SDValue, 4> RetOps(1, Chain);
|
|
|
|
// Copy the result values into the output registers.
|
|
for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
|
|
SDValue Val = OutVals[i];
|
|
CCValAssign &VA = RVLocs[i];
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
|
|
if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
|
|
// Handle returning f64 on RV32D with a soft float ABI.
|
|
assert(VA.isRegLoc() && "Expected return via registers");
|
|
SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
|
|
DAG.getVTList(MVT::i32, MVT::i32), Val);
|
|
SDValue Lo = SplitF64.getValue(0);
|
|
SDValue Hi = SplitF64.getValue(1);
|
|
Register RegLo = VA.getLocReg();
|
|
assert(RegLo < RISCV::X31 && "Invalid register pair");
|
|
Register RegHi = RegLo + 1;
|
|
|
|
if (STI.isRegisterReservedByUser(RegLo) ||
|
|
STI.isRegisterReservedByUser(RegHi))
|
|
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
|
|
MF.getFunction(),
|
|
"Return value register required, but has been reserved."});
|
|
|
|
Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
|
|
Glue = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
|
|
Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
|
|
Glue = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
|
|
} else {
|
|
// Handle a 'normal' return.
|
|
Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
|
|
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
|
|
|
|
if (STI.isRegisterReservedByUser(VA.getLocReg()))
|
|
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
|
|
MF.getFunction(),
|
|
"Return value register required, but has been reserved."});
|
|
|
|
// Guarantee that all emitted copies are stuck together.
|
|
Glue = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
|
|
}
|
|
}
|
|
|
|
RetOps[0] = Chain; // Update chain.
|
|
|
|
// Add the glue node if we have it.
|
|
if (Glue.getNode()) {
|
|
RetOps.push_back(Glue);
|
|
}
|
|
|
|
unsigned RetOpc = RISCVISD::RET_FLAG;
|
|
// Interrupt service routines use different return instructions.
|
|
const Function &Func = DAG.getMachineFunction().getFunction();
|
|
if (Func.hasFnAttribute("interrupt")) {
|
|
if (!Func.getReturnType()->isVoidTy())
|
|
report_fatal_error(
|
|
"Functions with the interrupt attribute must have void return type!");
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
StringRef Kind =
|
|
MF.getFunction().getFnAttribute("interrupt").getValueAsString();
|
|
|
|
if (Kind == "user")
|
|
RetOpc = RISCVISD::URET_FLAG;
|
|
else if (Kind == "supervisor")
|
|
RetOpc = RISCVISD::SRET_FLAG;
|
|
else
|
|
RetOpc = RISCVISD::MRET_FLAG;
|
|
}
|
|
|
|
return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
|
|
}
|
|
|
|
void RISCVTargetLowering::validateCCReservedRegs(
|
|
const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
|
|
MachineFunction &MF) const {
|
|
const Function &F = MF.getFunction();
|
|
const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
|
|
|
|
if (llvm::any_of(Regs, [&STI](auto Reg) {
|
|
return STI.isRegisterReservedByUser(Reg.first);
|
|
}))
|
|
F.getContext().diagnose(DiagnosticInfoUnsupported{
|
|
F, "Argument register required, but has been reserved."});
|
|
}
|
|
|
|
bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
|
|
return CI->isTailCall();
|
|
}
|
|
|
|
const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
#define NODE_NAME_CASE(NODE) \
|
|
case RISCVISD::NODE: \
|
|
return "RISCVISD::" #NODE;
|
|
// clang-format off
|
|
switch ((RISCVISD::NodeType)Opcode) {
|
|
case RISCVISD::FIRST_NUMBER:
|
|
break;
|
|
NODE_NAME_CASE(RET_FLAG)
|
|
NODE_NAME_CASE(URET_FLAG)
|
|
NODE_NAME_CASE(SRET_FLAG)
|
|
NODE_NAME_CASE(MRET_FLAG)
|
|
NODE_NAME_CASE(CALL)
|
|
NODE_NAME_CASE(SELECT_CC)
|
|
NODE_NAME_CASE(BR_CC)
|
|
NODE_NAME_CASE(BuildPairF64)
|
|
NODE_NAME_CASE(SplitF64)
|
|
NODE_NAME_CASE(TAIL)
|
|
NODE_NAME_CASE(MULHSU)
|
|
NODE_NAME_CASE(SLLW)
|
|
NODE_NAME_CASE(SRAW)
|
|
NODE_NAME_CASE(SRLW)
|
|
NODE_NAME_CASE(DIVW)
|
|
NODE_NAME_CASE(DIVUW)
|
|
NODE_NAME_CASE(REMUW)
|
|
NODE_NAME_CASE(ROLW)
|
|
NODE_NAME_CASE(RORW)
|
|
NODE_NAME_CASE(CLZW)
|
|
NODE_NAME_CASE(CTZW)
|
|
NODE_NAME_CASE(FSLW)
|
|
NODE_NAME_CASE(FSRW)
|
|
NODE_NAME_CASE(FSL)
|
|
NODE_NAME_CASE(FSR)
|
|
NODE_NAME_CASE(FMV_H_X)
|
|
NODE_NAME_CASE(FMV_X_ANYEXTH)
|
|
NODE_NAME_CASE(FMV_X_SIGNEXTH)
|
|
NODE_NAME_CASE(FMV_W_X_RV64)
|
|
NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
|
|
NODE_NAME_CASE(FCVT_X)
|
|
NODE_NAME_CASE(FCVT_XU)
|
|
NODE_NAME_CASE(FCVT_W_RV64)
|
|
NODE_NAME_CASE(FCVT_WU_RV64)
|
|
NODE_NAME_CASE(STRICT_FCVT_W_RV64)
|
|
NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
|
|
NODE_NAME_CASE(READ_CYCLE_WIDE)
|
|
NODE_NAME_CASE(GREV)
|
|
NODE_NAME_CASE(GREVW)
|
|
NODE_NAME_CASE(GORC)
|
|
NODE_NAME_CASE(GORCW)
|
|
NODE_NAME_CASE(SHFL)
|
|
NODE_NAME_CASE(SHFLW)
|
|
NODE_NAME_CASE(UNSHFL)
|
|
NODE_NAME_CASE(UNSHFLW)
|
|
NODE_NAME_CASE(BFP)
|
|
NODE_NAME_CASE(BFPW)
|
|
NODE_NAME_CASE(BCOMPRESS)
|
|
NODE_NAME_CASE(BCOMPRESSW)
|
|
NODE_NAME_CASE(BDECOMPRESS)
|
|
NODE_NAME_CASE(BDECOMPRESSW)
|
|
NODE_NAME_CASE(VMV_V_X_VL)
|
|
NODE_NAME_CASE(VFMV_V_F_VL)
|
|
NODE_NAME_CASE(VMV_X_S)
|
|
NODE_NAME_CASE(VMV_S_X_VL)
|
|
NODE_NAME_CASE(VFMV_S_F_VL)
|
|
NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
|
|
NODE_NAME_CASE(READ_VLENB)
|
|
NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
|
|
NODE_NAME_CASE(VSLIDEUP_VL)
|
|
NODE_NAME_CASE(VSLIDE1UP_VL)
|
|
NODE_NAME_CASE(VSLIDEDOWN_VL)
|
|
NODE_NAME_CASE(VSLIDE1DOWN_VL)
|
|
NODE_NAME_CASE(VID_VL)
|
|
NODE_NAME_CASE(VFNCVT_ROD_VL)
|
|
NODE_NAME_CASE(VECREDUCE_ADD_VL)
|
|
NODE_NAME_CASE(VECREDUCE_UMAX_VL)
|
|
NODE_NAME_CASE(VECREDUCE_SMAX_VL)
|
|
NODE_NAME_CASE(VECREDUCE_UMIN_VL)
|
|
NODE_NAME_CASE(VECREDUCE_SMIN_VL)
|
|
NODE_NAME_CASE(VECREDUCE_AND_VL)
|
|
NODE_NAME_CASE(VECREDUCE_OR_VL)
|
|
NODE_NAME_CASE(VECREDUCE_XOR_VL)
|
|
NODE_NAME_CASE(VECREDUCE_FADD_VL)
|
|
NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
|
|
NODE_NAME_CASE(VECREDUCE_FMIN_VL)
|
|
NODE_NAME_CASE(VECREDUCE_FMAX_VL)
|
|
NODE_NAME_CASE(ADD_VL)
|
|
NODE_NAME_CASE(AND_VL)
|
|
NODE_NAME_CASE(MUL_VL)
|
|
NODE_NAME_CASE(OR_VL)
|
|
NODE_NAME_CASE(SDIV_VL)
|
|
NODE_NAME_CASE(SHL_VL)
|
|
NODE_NAME_CASE(SREM_VL)
|
|
NODE_NAME_CASE(SRA_VL)
|
|
NODE_NAME_CASE(SRL_VL)
|
|
NODE_NAME_CASE(SUB_VL)
|
|
NODE_NAME_CASE(UDIV_VL)
|
|
NODE_NAME_CASE(UREM_VL)
|
|
NODE_NAME_CASE(XOR_VL)
|
|
NODE_NAME_CASE(SADDSAT_VL)
|
|
NODE_NAME_CASE(UADDSAT_VL)
|
|
NODE_NAME_CASE(SSUBSAT_VL)
|
|
NODE_NAME_CASE(USUBSAT_VL)
|
|
NODE_NAME_CASE(FADD_VL)
|
|
NODE_NAME_CASE(FSUB_VL)
|
|
NODE_NAME_CASE(FMUL_VL)
|
|
NODE_NAME_CASE(FDIV_VL)
|
|
NODE_NAME_CASE(FNEG_VL)
|
|
NODE_NAME_CASE(FABS_VL)
|
|
NODE_NAME_CASE(FSQRT_VL)
|
|
NODE_NAME_CASE(FMA_VL)
|
|
NODE_NAME_CASE(FCOPYSIGN_VL)
|
|
NODE_NAME_CASE(SMIN_VL)
|
|
NODE_NAME_CASE(SMAX_VL)
|
|
NODE_NAME_CASE(UMIN_VL)
|
|
NODE_NAME_CASE(UMAX_VL)
|
|
NODE_NAME_CASE(FMINNUM_VL)
|
|
NODE_NAME_CASE(FMAXNUM_VL)
|
|
NODE_NAME_CASE(MULHS_VL)
|
|
NODE_NAME_CASE(MULHU_VL)
|
|
NODE_NAME_CASE(FP_TO_SINT_VL)
|
|
NODE_NAME_CASE(FP_TO_UINT_VL)
|
|
NODE_NAME_CASE(SINT_TO_FP_VL)
|
|
NODE_NAME_CASE(UINT_TO_FP_VL)
|
|
NODE_NAME_CASE(FP_EXTEND_VL)
|
|
NODE_NAME_CASE(FP_ROUND_VL)
|
|
NODE_NAME_CASE(VWMUL_VL)
|
|
NODE_NAME_CASE(VWMULU_VL)
|
|
NODE_NAME_CASE(VWMULSU_VL)
|
|
NODE_NAME_CASE(VWADD_VL)
|
|
NODE_NAME_CASE(VWADDU_VL)
|
|
NODE_NAME_CASE(VWSUB_VL)
|
|
NODE_NAME_CASE(VWSUBU_VL)
|
|
NODE_NAME_CASE(VWADD_W_VL)
|
|
NODE_NAME_CASE(VWADDU_W_VL)
|
|
NODE_NAME_CASE(VWSUB_W_VL)
|
|
NODE_NAME_CASE(VWSUBU_W_VL)
|
|
NODE_NAME_CASE(SETCC_VL)
|
|
NODE_NAME_CASE(VSELECT_VL)
|
|
NODE_NAME_CASE(VP_MERGE_VL)
|
|
NODE_NAME_CASE(VMAND_VL)
|
|
NODE_NAME_CASE(VMOR_VL)
|
|
NODE_NAME_CASE(VMXOR_VL)
|
|
NODE_NAME_CASE(VMCLR_VL)
|
|
NODE_NAME_CASE(VMSET_VL)
|
|
NODE_NAME_CASE(VRGATHER_VX_VL)
|
|
NODE_NAME_CASE(VRGATHER_VV_VL)
|
|
NODE_NAME_CASE(VRGATHEREI16_VV_VL)
|
|
NODE_NAME_CASE(VSEXT_VL)
|
|
NODE_NAME_CASE(VZEXT_VL)
|
|
NODE_NAME_CASE(VCPOP_VL)
|
|
NODE_NAME_CASE(READ_CSR)
|
|
NODE_NAME_CASE(WRITE_CSR)
|
|
NODE_NAME_CASE(SWAP_CSR)
|
|
}
|
|
// clang-format on
|
|
return nullptr;
|
|
#undef NODE_NAME_CASE
|
|
}
|
|
|
|
/// getConstraintType - Given a constraint letter, return the type of
|
|
/// constraint it is for this target.
|
|
RISCVTargetLowering::ConstraintType
|
|
RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
default:
|
|
break;
|
|
case 'f':
|
|
return C_RegisterClass;
|
|
case 'I':
|
|
case 'J':
|
|
case 'K':
|
|
return C_Immediate;
|
|
case 'A':
|
|
return C_Memory;
|
|
case 'S': // A symbolic address
|
|
return C_Other;
|
|
}
|
|
} else {
|
|
if (Constraint == "vr" || Constraint == "vm")
|
|
return C_RegisterClass;
|
|
}
|
|
return TargetLowering::getConstraintType(Constraint);
|
|
}
|
|
|
|
std::pair<unsigned, const TargetRegisterClass *>
|
|
RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
|
|
StringRef Constraint,
|
|
MVT VT) const {
|
|
// First, see if this is a constraint that directly corresponds to a
|
|
// RISCV register class.
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
case 'r':
|
|
// TODO: Support fixed vectors up to XLen for P extension?
|
|
if (VT.isVector())
|
|
break;
|
|
return std::make_pair(0U, &RISCV::GPRRegClass);
|
|
case 'f':
|
|
if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
|
|
return std::make_pair(0U, &RISCV::FPR16RegClass);
|
|
if (Subtarget.hasStdExtF() && VT == MVT::f32)
|
|
return std::make_pair(0U, &RISCV::FPR32RegClass);
|
|
if (Subtarget.hasStdExtD() && VT == MVT::f64)
|
|
return std::make_pair(0U, &RISCV::FPR64RegClass);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
} else if (Constraint == "vr") {
|
|
for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
|
|
&RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
|
|
if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
|
|
return std::make_pair(0U, RC);
|
|
}
|
|
} else if (Constraint == "vm") {
|
|
if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
|
|
return std::make_pair(0U, &RISCV::VMV0RegClass);
|
|
}
|
|
|
|
// Clang will correctly decode the usage of register name aliases into their
|
|
// official names. However, other frontends like `rustc` do not. This allows
|
|
// users of these frontends to use the ABI names for registers in LLVM-style
|
|
// register constraints.
|
|
unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
|
|
.Case("{zero}", RISCV::X0)
|
|
.Case("{ra}", RISCV::X1)
|
|
.Case("{sp}", RISCV::X2)
|
|
.Case("{gp}", RISCV::X3)
|
|
.Case("{tp}", RISCV::X4)
|
|
.Case("{t0}", RISCV::X5)
|
|
.Case("{t1}", RISCV::X6)
|
|
.Case("{t2}", RISCV::X7)
|
|
.Cases("{s0}", "{fp}", RISCV::X8)
|
|
.Case("{s1}", RISCV::X9)
|
|
.Case("{a0}", RISCV::X10)
|
|
.Case("{a1}", RISCV::X11)
|
|
.Case("{a2}", RISCV::X12)
|
|
.Case("{a3}", RISCV::X13)
|
|
.Case("{a4}", RISCV::X14)
|
|
.Case("{a5}", RISCV::X15)
|
|
.Case("{a6}", RISCV::X16)
|
|
.Case("{a7}", RISCV::X17)
|
|
.Case("{s2}", RISCV::X18)
|
|
.Case("{s3}", RISCV::X19)
|
|
.Case("{s4}", RISCV::X20)
|
|
.Case("{s5}", RISCV::X21)
|
|
.Case("{s6}", RISCV::X22)
|
|
.Case("{s7}", RISCV::X23)
|
|
.Case("{s8}", RISCV::X24)
|
|
.Case("{s9}", RISCV::X25)
|
|
.Case("{s10}", RISCV::X26)
|
|
.Case("{s11}", RISCV::X27)
|
|
.Case("{t3}", RISCV::X28)
|
|
.Case("{t4}", RISCV::X29)
|
|
.Case("{t5}", RISCV::X30)
|
|
.Case("{t6}", RISCV::X31)
|
|
.Default(RISCV::NoRegister);
|
|
if (XRegFromAlias != RISCV::NoRegister)
|
|
return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
|
|
|
|
// Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
|
|
// TableGen record rather than the AsmName to choose registers for InlineAsm
|
|
// constraints, plus we want to match those names to the widest floating point
|
|
// register type available, manually select floating point registers here.
|
|
//
|
|
// The second case is the ABI name of the register, so that frontends can also
|
|
// use the ABI names in register constraint lists.
|
|
if (Subtarget.hasStdExtF()) {
|
|
unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
|
|
.Cases("{f0}", "{ft0}", RISCV::F0_F)
|
|
.Cases("{f1}", "{ft1}", RISCV::F1_F)
|
|
.Cases("{f2}", "{ft2}", RISCV::F2_F)
|
|
.Cases("{f3}", "{ft3}", RISCV::F3_F)
|
|
.Cases("{f4}", "{ft4}", RISCV::F4_F)
|
|
.Cases("{f5}", "{ft5}", RISCV::F5_F)
|
|
.Cases("{f6}", "{ft6}", RISCV::F6_F)
|
|
.Cases("{f7}", "{ft7}", RISCV::F7_F)
|
|
.Cases("{f8}", "{fs0}", RISCV::F8_F)
|
|
.Cases("{f9}", "{fs1}", RISCV::F9_F)
|
|
.Cases("{f10}", "{fa0}", RISCV::F10_F)
|
|
.Cases("{f11}", "{fa1}", RISCV::F11_F)
|
|
.Cases("{f12}", "{fa2}", RISCV::F12_F)
|
|
.Cases("{f13}", "{fa3}", RISCV::F13_F)
|
|
.Cases("{f14}", "{fa4}", RISCV::F14_F)
|
|
.Cases("{f15}", "{fa5}", RISCV::F15_F)
|
|
.Cases("{f16}", "{fa6}", RISCV::F16_F)
|
|
.Cases("{f17}", "{fa7}", RISCV::F17_F)
|
|
.Cases("{f18}", "{fs2}", RISCV::F18_F)
|
|
.Cases("{f19}", "{fs3}", RISCV::F19_F)
|
|
.Cases("{f20}", "{fs4}", RISCV::F20_F)
|
|
.Cases("{f21}", "{fs5}", RISCV::F21_F)
|
|
.Cases("{f22}", "{fs6}", RISCV::F22_F)
|
|
.Cases("{f23}", "{fs7}", RISCV::F23_F)
|
|
.Cases("{f24}", "{fs8}", RISCV::F24_F)
|
|
.Cases("{f25}", "{fs9}", RISCV::F25_F)
|
|
.Cases("{f26}", "{fs10}", RISCV::F26_F)
|
|
.Cases("{f27}", "{fs11}", RISCV::F27_F)
|
|
.Cases("{f28}", "{ft8}", RISCV::F28_F)
|
|
.Cases("{f29}", "{ft9}", RISCV::F29_F)
|
|
.Cases("{f30}", "{ft10}", RISCV::F30_F)
|
|
.Cases("{f31}", "{ft11}", RISCV::F31_F)
|
|
.Default(RISCV::NoRegister);
|
|
if (FReg != RISCV::NoRegister) {
|
|
assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
|
|
if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
|
|
unsigned RegNo = FReg - RISCV::F0_F;
|
|
unsigned DReg = RISCV::F0_D + RegNo;
|
|
return std::make_pair(DReg, &RISCV::FPR64RegClass);
|
|
}
|
|
if (VT == MVT::f32 || VT == MVT::Other)
|
|
return std::make_pair(FReg, &RISCV::FPR32RegClass);
|
|
if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
|
|
unsigned RegNo = FReg - RISCV::F0_F;
|
|
unsigned HReg = RISCV::F0_H + RegNo;
|
|
return std::make_pair(HReg, &RISCV::FPR16RegClass);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Subtarget.hasVInstructions()) {
|
|
Register VReg = StringSwitch<Register>(Constraint.lower())
|
|
.Case("{v0}", RISCV::V0)
|
|
.Case("{v1}", RISCV::V1)
|
|
.Case("{v2}", RISCV::V2)
|
|
.Case("{v3}", RISCV::V3)
|
|
.Case("{v4}", RISCV::V4)
|
|
.Case("{v5}", RISCV::V5)
|
|
.Case("{v6}", RISCV::V6)
|
|
.Case("{v7}", RISCV::V7)
|
|
.Case("{v8}", RISCV::V8)
|
|
.Case("{v9}", RISCV::V9)
|
|
.Case("{v10}", RISCV::V10)
|
|
.Case("{v11}", RISCV::V11)
|
|
.Case("{v12}", RISCV::V12)
|
|
.Case("{v13}", RISCV::V13)
|
|
.Case("{v14}", RISCV::V14)
|
|
.Case("{v15}", RISCV::V15)
|
|
.Case("{v16}", RISCV::V16)
|
|
.Case("{v17}", RISCV::V17)
|
|
.Case("{v18}", RISCV::V18)
|
|
.Case("{v19}", RISCV::V19)
|
|
.Case("{v20}", RISCV::V20)
|
|
.Case("{v21}", RISCV::V21)
|
|
.Case("{v22}", RISCV::V22)
|
|
.Case("{v23}", RISCV::V23)
|
|
.Case("{v24}", RISCV::V24)
|
|
.Case("{v25}", RISCV::V25)
|
|
.Case("{v26}", RISCV::V26)
|
|
.Case("{v27}", RISCV::V27)
|
|
.Case("{v28}", RISCV::V28)
|
|
.Case("{v29}", RISCV::V29)
|
|
.Case("{v30}", RISCV::V30)
|
|
.Case("{v31}", RISCV::V31)
|
|
.Default(RISCV::NoRegister);
|
|
if (VReg != RISCV::NoRegister) {
|
|
if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
|
|
return std::make_pair(VReg, &RISCV::VMRegClass);
|
|
if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
|
|
return std::make_pair(VReg, &RISCV::VRRegClass);
|
|
for (const auto *RC :
|
|
{&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
|
|
if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
|
|
VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
|
|
return std::make_pair(VReg, RC);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
std::pair<Register, const TargetRegisterClass *> Res =
|
|
TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
|
|
|
|
// If we picked one of the Zfinx register classes, remap it to the GPR class.
|
|
// FIXME: When Zfinx is supported in CodeGen this will need to take the
|
|
// Subtarget into account.
|
|
if (Res.second == &RISCV::GPRF16RegClass ||
|
|
Res.second == &RISCV::GPRF32RegClass ||
|
|
Res.second == &RISCV::GPRF64RegClass)
|
|
return std::make_pair(Res.first, &RISCV::GPRRegClass);
|
|
|
|
return Res;
|
|
}
|
|
|
|
unsigned
|
|
RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
|
|
// Currently only support length 1 constraints.
|
|
if (ConstraintCode.size() == 1) {
|
|
switch (ConstraintCode[0]) {
|
|
case 'A':
|
|
return InlineAsm::Constraint_A;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
|
|
}
|
|
|
|
void RISCVTargetLowering::LowerAsmOperandForConstraint(
|
|
SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
|
|
SelectionDAG &DAG) const {
|
|
// Currently only support length 1 constraints.
|
|
if (Constraint.length() == 1) {
|
|
switch (Constraint[0]) {
|
|
case 'I':
|
|
// Validate & create a 12-bit signed immediate operand.
|
|
if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
uint64_t CVal = C->getSExtValue();
|
|
if (isInt<12>(CVal))
|
|
Ops.push_back(
|
|
DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
|
|
}
|
|
return;
|
|
case 'J':
|
|
// Validate & create an integer zero operand.
|
|
if (auto *C = dyn_cast<ConstantSDNode>(Op))
|
|
if (C->getZExtValue() == 0)
|
|
Ops.push_back(
|
|
DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
|
|
return;
|
|
case 'K':
|
|
// Validate & create a 5-bit unsigned immediate operand.
|
|
if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
uint64_t CVal = C->getZExtValue();
|
|
if (isUInt<5>(CVal))
|
|
Ops.push_back(
|
|
DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
|
|
}
|
|
return;
|
|
case 'S':
|
|
if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
|
|
Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
|
|
GA->getValueType(0)));
|
|
} else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
|
|
Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
|
|
BA->getValueType(0)));
|
|
}
|
|
return;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
|
|
}
|
|
|
|
Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
|
|
Instruction *Inst,
|
|
AtomicOrdering Ord) const {
|
|
if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
|
|
return Builder.CreateFence(Ord);
|
|
if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
|
|
return Builder.CreateFence(AtomicOrdering::Release);
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
|
|
Instruction *Inst,
|
|
AtomicOrdering Ord) const {
|
|
if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
|
|
return Builder.CreateFence(AtomicOrdering::Acquire);
|
|
return nullptr;
|
|
}
|
|
|
|
TargetLowering::AtomicExpansionKind
|
|
RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
|
|
// atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
|
|
// point operations can't be used in an lr/sc sequence without breaking the
|
|
// forward-progress guarantee.
|
|
if (AI->isFloatingPointOperation())
|
|
return AtomicExpansionKind::CmpXChg;
|
|
|
|
unsigned Size = AI->getType()->getPrimitiveSizeInBits();
|
|
if (Size == 8 || Size == 16)
|
|
return AtomicExpansionKind::MaskedIntrinsic;
|
|
return AtomicExpansionKind::None;
|
|
}
|
|
|
|
static Intrinsic::ID
|
|
getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
|
|
if (XLen == 32) {
|
|
switch (BinOp) {
|
|
default:
|
|
llvm_unreachable("Unexpected AtomicRMW BinOp");
|
|
case AtomicRMWInst::Xchg:
|
|
return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
|
|
case AtomicRMWInst::Add:
|
|
return Intrinsic::riscv_masked_atomicrmw_add_i32;
|
|
case AtomicRMWInst::Sub:
|
|
return Intrinsic::riscv_masked_atomicrmw_sub_i32;
|
|
case AtomicRMWInst::Nand:
|
|
return Intrinsic::riscv_masked_atomicrmw_nand_i32;
|
|
case AtomicRMWInst::Max:
|
|
return Intrinsic::riscv_masked_atomicrmw_max_i32;
|
|
case AtomicRMWInst::Min:
|
|
return Intrinsic::riscv_masked_atomicrmw_min_i32;
|
|
case AtomicRMWInst::UMax:
|
|
return Intrinsic::riscv_masked_atomicrmw_umax_i32;
|
|
case AtomicRMWInst::UMin:
|
|
return Intrinsic::riscv_masked_atomicrmw_umin_i32;
|
|
}
|
|
}
|
|
|
|
if (XLen == 64) {
|
|
switch (BinOp) {
|
|
default:
|
|
llvm_unreachable("Unexpected AtomicRMW BinOp");
|
|
case AtomicRMWInst::Xchg:
|
|
return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
|
|
case AtomicRMWInst::Add:
|
|
return Intrinsic::riscv_masked_atomicrmw_add_i64;
|
|
case AtomicRMWInst::Sub:
|
|
return Intrinsic::riscv_masked_atomicrmw_sub_i64;
|
|
case AtomicRMWInst::Nand:
|
|
return Intrinsic::riscv_masked_atomicrmw_nand_i64;
|
|
case AtomicRMWInst::Max:
|
|
return Intrinsic::riscv_masked_atomicrmw_max_i64;
|
|
case AtomicRMWInst::Min:
|
|
return Intrinsic::riscv_masked_atomicrmw_min_i64;
|
|
case AtomicRMWInst::UMax:
|
|
return Intrinsic::riscv_masked_atomicrmw_umax_i64;
|
|
case AtomicRMWInst::UMin:
|
|
return Intrinsic::riscv_masked_atomicrmw_umin_i64;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Unexpected XLen\n");
|
|
}
|
|
|
|
Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
|
|
IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
|
|
Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
|
|
unsigned XLen = Subtarget.getXLen();
|
|
Value *Ordering =
|
|
Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
|
|
Type *Tys[] = {AlignedAddr->getType()};
|
|
Function *LrwOpScwLoop = Intrinsic::getDeclaration(
|
|
AI->getModule(),
|
|
getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
|
|
|
|
if (XLen == 64) {
|
|
Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
|
|
Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
|
|
ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
|
|
}
|
|
|
|
Value *Result;
|
|
|
|
// Must pass the shift amount needed to sign extend the loaded value prior
|
|
// to performing a signed comparison for min/max. ShiftAmt is the number of
|
|
// bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
|
|
// is the number of bits to left+right shift the value in order to
|
|
// sign-extend.
|
|
if (AI->getOperation() == AtomicRMWInst::Min ||
|
|
AI->getOperation() == AtomicRMWInst::Max) {
|
|
const DataLayout &DL = AI->getModule()->getDataLayout();
|
|
unsigned ValWidth =
|
|
DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
|
|
Value *SextShamt =
|
|
Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
|
|
Result = Builder.CreateCall(LrwOpScwLoop,
|
|
{AlignedAddr, Incr, Mask, SextShamt, Ordering});
|
|
} else {
|
|
Result =
|
|
Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
|
|
}
|
|
|
|
if (XLen == 64)
|
|
Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
|
|
return Result;
|
|
}
|
|
|
|
TargetLowering::AtomicExpansionKind
|
|
RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
|
|
AtomicCmpXchgInst *CI) const {
|
|
unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
|
|
if (Size == 8 || Size == 16)
|
|
return AtomicExpansionKind::MaskedIntrinsic;
|
|
return AtomicExpansionKind::None;
|
|
}
|
|
|
|
Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
|
|
IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
|
|
Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
|
|
unsigned XLen = Subtarget.getXLen();
|
|
Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
|
|
Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
|
|
if (XLen == 64) {
|
|
CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
|
|
NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
|
|
Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
|
|
CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
|
|
}
|
|
Type *Tys[] = {AlignedAddr->getType()};
|
|
Function *MaskedCmpXchg =
|
|
Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
|
|
Value *Result = Builder.CreateCall(
|
|
MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
|
|
if (XLen == 64)
|
|
Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
|
|
return Result;
|
|
}
|
|
|
|
bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
|
|
return false;
|
|
}
|
|
|
|
bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
|
|
EVT VT) const {
|
|
if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
|
|
return false;
|
|
|
|
switch (FPVT.getSimpleVT().SimpleTy) {
|
|
case MVT::f16:
|
|
return Subtarget.hasStdExtZfh();
|
|
case MVT::f32:
|
|
return Subtarget.hasStdExtF();
|
|
case MVT::f64:
|
|
return Subtarget.hasStdExtD();
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
unsigned RISCVTargetLowering::getJumpTableEncoding() const {
|
|
// If we are using the small code model, we can reduce size of jump table
|
|
// entry to 4 bytes.
|
|
if (Subtarget.is64Bit() && !isPositionIndependent() &&
|
|
getTargetMachine().getCodeModel() == CodeModel::Small) {
|
|
return MachineJumpTableInfo::EK_Custom32;
|
|
}
|
|
return TargetLowering::getJumpTableEncoding();
|
|
}
|
|
|
|
const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
|
|
const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
|
|
unsigned uid, MCContext &Ctx) const {
|
|
assert(Subtarget.is64Bit() && !isPositionIndependent() &&
|
|
getTargetMachine().getCodeModel() == CodeModel::Small);
|
|
return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
|
|
}
|
|
|
|
bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
|
|
EVT VT) const {
|
|
VT = VT.getScalarType();
|
|
|
|
if (!VT.isSimple())
|
|
return false;
|
|
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
case MVT::f16:
|
|
return Subtarget.hasStdExtZfh();
|
|
case MVT::f32:
|
|
return Subtarget.hasStdExtF();
|
|
case MVT::f64:
|
|
return Subtarget.hasStdExtD();
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Register RISCVTargetLowering::getExceptionPointerRegister(
|
|
const Constant *PersonalityFn) const {
|
|
return RISCV::X10;
|
|
}
|
|
|
|
Register RISCVTargetLowering::getExceptionSelectorRegister(
|
|
const Constant *PersonalityFn) const {
|
|
return RISCV::X11;
|
|
}
|
|
|
|
bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
|
|
// Return false to suppress the unnecessary extensions if the LibCall
|
|
// arguments or return value is f32 type for LP64 ABI.
|
|
RISCVABI::ABI ABI = Subtarget.getTargetABI();
|
|
if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
|
|
if (Subtarget.is64Bit() && Type == MVT::i32)
|
|
return true;
|
|
|
|
return IsSigned;
|
|
}
|
|
|
|
bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
|
|
SDValue C) const {
|
|
// Check integral scalar types.
|
|
if (VT.isScalarInteger()) {
|
|
// Omit the optimization if the sub target has the M extension and the data
|
|
// size exceeds XLen.
|
|
if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
|
|
return false;
|
|
if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
|
|
// Break the MUL to a SLLI and an ADD/SUB.
|
|
const APInt &Imm = ConstNode->getAPIntValue();
|
|
if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
|
|
(1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
|
|
return true;
|
|
// Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
|
|
if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
|
|
((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
|
|
(Imm - 8).isPowerOf2()))
|
|
return true;
|
|
// Omit the following optimization if the sub target has the M extension
|
|
// and the data size >= XLen.
|
|
if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
|
|
return false;
|
|
// Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
|
|
// a pair of LUI/ADDI.
|
|
if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
|
|
APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
|
|
if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
|
|
(1 - ImmS).isPowerOf2())
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
|
|
SDValue ConstNode) const {
|
|
// Let the DAGCombiner decide for vectors.
|
|
EVT VT = AddNode.getValueType();
|
|
if (VT.isVector())
|
|
return true;
|
|
|
|
// Let the DAGCombiner decide for larger types.
|
|
if (VT.getScalarSizeInBits() > Subtarget.getXLen())
|
|
return true;
|
|
|
|
// It is worse if c1 is simm12 while c1*c2 is not.
|
|
ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
|
|
ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
|
|
const APInt &C1 = C1Node->getAPIntValue();
|
|
const APInt &C2 = C2Node->getAPIntValue();
|
|
if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
|
|
return false;
|
|
|
|
// Default to true and let the DAGCombiner decide.
|
|
return true;
|
|
}
|
|
|
|
bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
|
|
EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
|
|
bool *Fast) const {
|
|
if (!VT.isVector())
|
|
return false;
|
|
|
|
EVT ElemVT = VT.getVectorElementType();
|
|
if (Alignment >= ElemVT.getStoreSize()) {
|
|
if (Fast)
|
|
*Fast = true;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool RISCVTargetLowering::splitValueIntoRegisterParts(
|
|
SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
|
|
unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
|
|
bool IsABIRegCopy = CC.hasValue();
|
|
EVT ValueVT = Val.getValueType();
|
|
if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
|
|
// Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
|
|
// and cast to f32.
|
|
Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
|
|
Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
|
|
Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
|
|
DAG.getConstant(0xFFFF0000, DL, MVT::i32));
|
|
Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
|
|
Parts[0] = Val;
|
|
return true;
|
|
}
|
|
|
|
if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
|
|
LLVMContext &Context = *DAG.getContext();
|
|
EVT ValueEltVT = ValueVT.getVectorElementType();
|
|
EVT PartEltVT = PartVT.getVectorElementType();
|
|
unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
|
|
unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
|
|
if (PartVTBitSize % ValueVTBitSize == 0) {
|
|
assert(PartVTBitSize >= ValueVTBitSize);
|
|
// If the element types are different, bitcast to the same element type of
|
|
// PartVT first.
|
|
// Give an example here, we want copy a <vscale x 1 x i8> value to
|
|
// <vscale x 4 x i16>.
|
|
// We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
|
|
// subvector, then we can bitcast to <vscale x 4 x i16>.
|
|
if (ValueEltVT != PartEltVT) {
|
|
if (PartVTBitSize > ValueVTBitSize) {
|
|
unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
|
|
assert(Count != 0 && "The number of element should not be zero.");
|
|
EVT SameEltTypeVT =
|
|
EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
|
|
Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
|
|
DAG.getUNDEF(SameEltTypeVT), Val,
|
|
DAG.getVectorIdxConstant(0, DL));
|
|
}
|
|
Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
|
|
} else {
|
|
Val =
|
|
DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
|
|
Val, DAG.getVectorIdxConstant(0, DL));
|
|
}
|
|
Parts[0] = Val;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
|
|
SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
|
|
MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
|
|
bool IsABIRegCopy = CC.hasValue();
|
|
if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
|
|
SDValue Val = Parts[0];
|
|
|
|
// Cast the f32 to i32, truncate to i16, and cast back to f16.
|
|
Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
|
|
Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
|
|
Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
|
|
return Val;
|
|
}
|
|
|
|
if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
|
|
LLVMContext &Context = *DAG.getContext();
|
|
SDValue Val = Parts[0];
|
|
EVT ValueEltVT = ValueVT.getVectorElementType();
|
|
EVT PartEltVT = PartVT.getVectorElementType();
|
|
unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
|
|
unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
|
|
if (PartVTBitSize % ValueVTBitSize == 0) {
|
|
assert(PartVTBitSize >= ValueVTBitSize);
|
|
EVT SameEltTypeVT = ValueVT;
|
|
// If the element types are different, convert it to the same element type
|
|
// of PartVT.
|
|
// Give an example here, we want copy a <vscale x 1 x i8> value from
|
|
// <vscale x 4 x i16>.
|
|
// We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
|
|
// then we can extract <vscale x 1 x i8>.
|
|
if (ValueEltVT != PartEltVT) {
|
|
unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
|
|
assert(Count != 0 && "The number of element should not be zero.");
|
|
SameEltTypeVT =
|
|
EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
|
|
Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
|
|
}
|
|
Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
|
|
DAG.getVectorIdxConstant(0, DL));
|
|
return Val;
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue
|
|
RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
|
|
SelectionDAG &DAG,
|
|
SmallVectorImpl<SDNode *> &Created) const {
|
|
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
|
|
if (isIntDivCheap(N->getValueType(0), Attr))
|
|
return SDValue(N, 0); // Lower SDIV as SDIV
|
|
|
|
assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
|
|
"Unexpected divisor!");
|
|
|
|
// Conditional move is needed, so do the transformation iff Zbt is enabled.
|
|
if (!Subtarget.hasStdExtZbt())
|
|
return SDValue();
|
|
|
|
// When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
|
|
// Besides, more critical path instructions will be generated when dividing
|
|
// by 2. So we keep using the original DAGs for these cases.
|
|
unsigned Lg2 = Divisor.countTrailingZeros();
|
|
if (Lg2 == 1 || Lg2 >= 12)
|
|
return SDValue();
|
|
|
|
// fold (sdiv X, pow2)
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue Zero = DAG.getConstant(0, DL, VT);
|
|
SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
|
|
|
|
// Add (N0 < 0) ? Pow2 - 1 : 0;
|
|
SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
|
|
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
|
|
SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
|
|
|
|
Created.push_back(Cmp.getNode());
|
|
Created.push_back(Add.getNode());
|
|
Created.push_back(Sel.getNode());
|
|
|
|
// Divide by pow2.
|
|
SDValue SRA =
|
|
DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
|
|
|
|
// If we're dividing by a positive value, we're done. Otherwise, we must
|
|
// negate the result.
|
|
if (Divisor.isNonNegative())
|
|
return SRA;
|
|
|
|
Created.push_back(SRA.getNode());
|
|
return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
|
|
}
|
|
|
|
#define GET_REGISTER_MATCHER
|
|
#include "RISCVGenAsmMatcher.inc"
|
|
|
|
Register
|
|
RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
|
|
const MachineFunction &MF) const {
|
|
Register Reg = MatchRegisterAltName(RegName);
|
|
if (Reg == RISCV::NoRegister)
|
|
Reg = MatchRegisterName(RegName);
|
|
if (Reg == RISCV::NoRegister)
|
|
report_fatal_error(
|
|
Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
|
|
BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
|
|
if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
|
|
report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
|
|
StringRef(RegName) + "\"."));
|
|
return Reg;
|
|
}
|
|
|
|
namespace llvm {
|
|
namespace RISCVVIntrinsicsTable {
|
|
|
|
#define GET_RISCVVIntrinsicsTable_IMPL
|
|
#include "RISCVGenSearchableTables.inc"
|
|
|
|
} // namespace RISCVVIntrinsicsTable
|
|
|
|
} // namespace llvm
|