2653 lines
102 KiB
C++
2653 lines
102 KiB
C++
//=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file implements the WebAssemblyTargetLowering class.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "WebAssemblyISelLowering.h"
|
|
#include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
|
|
#include "Utils/WebAssemblyTypeUtilities.h"
|
|
#include "Utils/WebAssemblyUtilities.h"
|
|
#include "WebAssemblyMachineFunctionInfo.h"
|
|
#include "WebAssemblySubtarget.h"
|
|
#include "WebAssemblyTargetMachine.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGNodes.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/DiagnosticPrinter.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/IntrinsicsWebAssembly.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "wasm-lower"
|
|
|
|
WebAssemblyTargetLowering::WebAssemblyTargetLowering(
|
|
const TargetMachine &TM, const WebAssemblySubtarget &STI)
|
|
: TargetLowering(TM), Subtarget(&STI) {
|
|
auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
|
|
|
|
// Booleans always contain 0 or 1.
|
|
setBooleanContents(ZeroOrOneBooleanContent);
|
|
// Except in SIMD vectors
|
|
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
|
|
// We don't know the microarchitecture here, so just reduce register pressure.
|
|
setSchedulingPreference(Sched::RegPressure);
|
|
// Tell ISel that we have a stack pointer.
|
|
setStackPointerRegisterToSaveRestore(
|
|
Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
|
|
// Set up the register classes.
|
|
addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
|
|
addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
|
|
addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
|
|
addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
|
|
if (Subtarget->hasSIMD128()) {
|
|
addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
|
|
addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
|
|
addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
|
|
addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
|
|
addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
|
|
addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
|
|
}
|
|
if (Subtarget->hasReferenceTypes()) {
|
|
addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass);
|
|
addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass);
|
|
}
|
|
// Compute derived properties from the register classes.
|
|
computeRegisterProperties(Subtarget->getRegisterInfo());
|
|
|
|
// Transform loads and stores to pointers in address space 1 to loads and
|
|
// stores to WebAssembly global variables, outside linear memory.
|
|
for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) {
|
|
setOperationAction(ISD::LOAD, T, Custom);
|
|
setOperationAction(ISD::STORE, T, Custom);
|
|
}
|
|
if (Subtarget->hasSIMD128()) {
|
|
for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
|
|
MVT::v2f64}) {
|
|
setOperationAction(ISD::LOAD, T, Custom);
|
|
setOperationAction(ISD::STORE, T, Custom);
|
|
}
|
|
}
|
|
if (Subtarget->hasReferenceTypes()) {
|
|
// We need custom load and store lowering for both externref, funcref and
|
|
// Other. The MVT::Other here represents tables of reference types.
|
|
for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) {
|
|
setOperationAction(ISD::LOAD, T, Custom);
|
|
setOperationAction(ISD::STORE, T, Custom);
|
|
}
|
|
}
|
|
|
|
setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
|
|
setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom);
|
|
setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
|
|
setOperationAction(ISD::JumpTable, MVTPtr, Custom);
|
|
setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
|
|
setOperationAction(ISD::BRIND, MVT::Other, Custom);
|
|
|
|
// Take the default expansion for va_arg, va_copy, and va_end. There is no
|
|
// default action for va_start, so we do that custom.
|
|
setOperationAction(ISD::VASTART, MVT::Other, Custom);
|
|
setOperationAction(ISD::VAARG, MVT::Other, Expand);
|
|
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
|
|
setOperationAction(ISD::VAEND, MVT::Other, Expand);
|
|
|
|
for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
|
|
// Don't expand the floating-point types to constant pools.
|
|
setOperationAction(ISD::ConstantFP, T, Legal);
|
|
// Expand floating-point comparisons.
|
|
for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
|
|
ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
|
|
setCondCodeAction(CC, T, Expand);
|
|
// Expand floating-point library function operators.
|
|
for (auto Op :
|
|
{ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
|
|
setOperationAction(Op, T, Expand);
|
|
// Note supported floating-point library function operators that otherwise
|
|
// default to expand.
|
|
for (auto Op :
|
|
{ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
|
|
setOperationAction(Op, T, Legal);
|
|
// Support minimum and maximum, which otherwise default to expand.
|
|
setOperationAction(ISD::FMINIMUM, T, Legal);
|
|
setOperationAction(ISD::FMAXIMUM, T, Legal);
|
|
// WebAssembly currently has no builtin f16 support.
|
|
setOperationAction(ISD::FP16_TO_FP, T, Expand);
|
|
setOperationAction(ISD::FP_TO_FP16, T, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
|
|
setTruncStoreAction(T, MVT::f16, Expand);
|
|
}
|
|
|
|
// Expand unavailable integer operations.
|
|
for (auto Op :
|
|
{ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
|
|
ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
|
|
ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
|
|
for (auto T : {MVT::i32, MVT::i64})
|
|
setOperationAction(Op, T, Expand);
|
|
if (Subtarget->hasSIMD128())
|
|
for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
|
|
setOperationAction(Op, T, Expand);
|
|
}
|
|
|
|
if (Subtarget->hasNontrappingFPToInt())
|
|
for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
|
|
for (auto T : {MVT::i32, MVT::i64})
|
|
setOperationAction(Op, T, Custom);
|
|
|
|
// SIMD-specific configuration
|
|
if (Subtarget->hasSIMD128()) {
|
|
// Hoist bitcasts out of shuffles
|
|
setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
|
|
|
|
// Combine extends of extract_subvectors into widening ops
|
|
setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND});
|
|
|
|
// Combine int_to_fp or fp_extend of extract_vectors and vice versa into
|
|
// conversions ops
|
|
setTargetDAGCombine({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_EXTEND,
|
|
ISD::EXTRACT_SUBVECTOR});
|
|
|
|
// Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa
|
|
// into conversion ops
|
|
setTargetDAGCombine({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT,
|
|
ISD::FP_ROUND, ISD::CONCAT_VECTORS});
|
|
|
|
setTargetDAGCombine(ISD::TRUNCATE);
|
|
|
|
// Support saturating add for i8x16 and i16x8
|
|
for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
|
|
for (auto T : {MVT::v16i8, MVT::v8i16})
|
|
setOperationAction(Op, T, Legal);
|
|
|
|
// Support integer abs
|
|
for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
|
|
setOperationAction(ISD::ABS, T, Legal);
|
|
|
|
// Custom lower BUILD_VECTORs to minimize number of replace_lanes
|
|
for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
|
|
MVT::v2f64})
|
|
setOperationAction(ISD::BUILD_VECTOR, T, Custom);
|
|
|
|
// We have custom shuffle lowering to expose the shuffle mask
|
|
for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
|
|
MVT::v2f64})
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
|
|
|
|
// Custom lowering since wasm shifts must have a scalar shift amount
|
|
for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
|
|
for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
|
|
setOperationAction(Op, T, Custom);
|
|
|
|
// Custom lower lane accesses to expand out variable indices
|
|
for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
|
|
for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
|
|
MVT::v2f64})
|
|
setOperationAction(Op, T, Custom);
|
|
|
|
// There is no i8x16.mul instruction
|
|
setOperationAction(ISD::MUL, MVT::v16i8, Expand);
|
|
|
|
// There is no vector conditional select instruction
|
|
for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
|
|
MVT::v2f64})
|
|
setOperationAction(ISD::SELECT_CC, T, Expand);
|
|
|
|
// Expand integer operations supported for scalars but not SIMD
|
|
for (auto Op :
|
|
{ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
|
|
for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
|
|
setOperationAction(Op, T, Expand);
|
|
|
|
// But we do have integer min and max operations
|
|
for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
|
|
for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
|
|
setOperationAction(Op, T, Legal);
|
|
|
|
// And we have popcnt for i8x16. It can be used to expand ctlz/cttz.
|
|
setOperationAction(ISD::CTPOP, MVT::v16i8, Legal);
|
|
setOperationAction(ISD::CTLZ, MVT::v16i8, Expand);
|
|
setOperationAction(ISD::CTTZ, MVT::v16i8, Expand);
|
|
|
|
// Custom lower bit counting operations for other types to scalarize them.
|
|
for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP})
|
|
for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64})
|
|
setOperationAction(Op, T, Custom);
|
|
|
|
// Expand float operations supported for scalars but not SIMD
|
|
for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
|
|
ISD::FEXP, ISD::FEXP2, ISD::FRINT})
|
|
for (auto T : {MVT::v4f32, MVT::v2f64})
|
|
setOperationAction(Op, T, Expand);
|
|
|
|
// Unsigned comparison operations are unavailable for i64x2 vectors.
|
|
for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE})
|
|
setCondCodeAction(CC, MVT::v2i64, Custom);
|
|
|
|
// 64x2 conversions are not in the spec
|
|
for (auto Op :
|
|
{ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
|
|
for (auto T : {MVT::v2i64, MVT::v2f64})
|
|
setOperationAction(Op, T, Expand);
|
|
|
|
// But saturating fp_to_int converstions are
|
|
for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
|
|
setOperationAction(Op, MVT::v4i32, Custom);
|
|
}
|
|
|
|
// As a special case, these operators use the type to mean the type to
|
|
// sign-extend from.
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
|
|
if (!Subtarget->hasSignExt()) {
|
|
// Sign extends are legal only when extending a vector extract
|
|
auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
|
|
for (auto T : {MVT::i8, MVT::i16, MVT::i32})
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
|
|
}
|
|
for (auto T : MVT::integer_fixedlen_vector_valuetypes())
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
|
|
|
|
// Dynamic stack allocation: use the default expansion.
|
|
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
|
|
|
|
setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
|
|
setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
|
|
setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
|
|
|
|
// Expand these forms; we pattern-match the forms that we can handle in isel.
|
|
for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
|
|
for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
|
|
setOperationAction(Op, T, Expand);
|
|
|
|
// We have custom switch handling.
|
|
setOperationAction(ISD::BR_JT, MVT::Other, Custom);
|
|
|
|
// WebAssembly doesn't have:
|
|
// - Floating-point extending loads.
|
|
// - Floating-point truncating stores.
|
|
// - i1 extending loads.
|
|
// - truncating SIMD stores and most extending loads
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
|
|
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
|
|
for (auto T : MVT::integer_valuetypes())
|
|
for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
|
|
setLoadExtAction(Ext, T, MVT::i1, Promote);
|
|
if (Subtarget->hasSIMD128()) {
|
|
for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
|
|
MVT::v2f64}) {
|
|
for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
|
|
if (MVT(T) != MemT) {
|
|
setTruncStoreAction(T, MemT, Expand);
|
|
for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
|
|
setLoadExtAction(Ext, T, MemT, Expand);
|
|
}
|
|
}
|
|
}
|
|
// But some vector extending loads are legal
|
|
for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
|
|
setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
|
|
setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
|
|
setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
|
|
}
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal);
|
|
}
|
|
|
|
// Don't do anything clever with build_pairs
|
|
setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
|
|
|
|
// Trap lowers to wasm unreachable
|
|
setOperationAction(ISD::TRAP, MVT::Other, Legal);
|
|
setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
|
|
|
|
// Exception handling intrinsics
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
|
|
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
|
|
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
|
|
|
|
setMaxAtomicSizeInBitsSupported(64);
|
|
|
|
// Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
|
|
// consistent with the f64 and f128 names.
|
|
setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
|
|
setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
|
|
|
|
// Define the emscripten name for return address helper.
|
|
// TODO: when implementing other Wasm backends, make this generic or only do
|
|
// this on emscripten depending on what they end up doing.
|
|
setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
|
|
|
|
// Always convert switches to br_tables unless there is only one case, which
|
|
// is equivalent to a simple branch. This reduces code size for wasm, and we
|
|
// defer possible jump table optimizations to the VM.
|
|
setMinimumJumpTableEntries(2);
|
|
}
|
|
|
|
MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL,
|
|
uint32_t AS) const {
|
|
if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
|
|
return MVT::externref;
|
|
if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
|
|
return MVT::funcref;
|
|
return TargetLowering::getPointerTy(DL, AS);
|
|
}
|
|
|
|
MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL,
|
|
uint32_t AS) const {
|
|
if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
|
|
return MVT::externref;
|
|
if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
|
|
return MVT::funcref;
|
|
return TargetLowering::getPointerMemTy(DL, AS);
|
|
}
|
|
|
|
TargetLowering::AtomicExpansionKind
|
|
WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
|
|
// We have wasm instructions for these
|
|
switch (AI->getOperation()) {
|
|
case AtomicRMWInst::Add:
|
|
case AtomicRMWInst::Sub:
|
|
case AtomicRMWInst::And:
|
|
case AtomicRMWInst::Or:
|
|
case AtomicRMWInst::Xor:
|
|
case AtomicRMWInst::Xchg:
|
|
return AtomicExpansionKind::None;
|
|
default:
|
|
break;
|
|
}
|
|
return AtomicExpansionKind::CmpXChg;
|
|
}
|
|
|
|
bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
|
|
// Implementation copied from X86TargetLowering.
|
|
unsigned Opc = VecOp.getOpcode();
|
|
|
|
// Assume target opcodes can't be scalarized.
|
|
// TODO - do we have any exceptions?
|
|
if (Opc >= ISD::BUILTIN_OP_END)
|
|
return false;
|
|
|
|
// If the vector op is not supported, try to convert to scalar.
|
|
EVT VecVT = VecOp.getValueType();
|
|
if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
|
|
return true;
|
|
|
|
// If the vector op is supported, but the scalar op is not, the transform may
|
|
// not be worthwhile.
|
|
EVT ScalarVT = VecVT.getScalarType();
|
|
return isOperationLegalOrCustomOrPromote(Opc, ScalarVT);
|
|
}
|
|
|
|
FastISel *WebAssemblyTargetLowering::createFastISel(
|
|
FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
|
|
return WebAssembly::createFastISel(FuncInfo, LibInfo);
|
|
}
|
|
|
|
MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
|
|
EVT VT) const {
|
|
unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
|
|
if (BitWidth > 1 && BitWidth < 8)
|
|
BitWidth = 8;
|
|
|
|
if (BitWidth > 64) {
|
|
// The shift will be lowered to a libcall, and compiler-rt libcalls expect
|
|
// the count to be an i32.
|
|
BitWidth = 32;
|
|
assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
|
|
"32-bit shift counts ought to be enough for anyone");
|
|
}
|
|
|
|
MVT Result = MVT::getIntegerVT(BitWidth);
|
|
assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
|
|
"Unable to represent scalar shift amount type");
|
|
return Result;
|
|
}
|
|
|
|
// Lower an fp-to-int conversion operator from the LLVM opcode, which has an
|
|
// undefined result on invalid/overflow, to the WebAssembly opcode, which
|
|
// traps on invalid/overflow.
|
|
static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
|
|
MachineBasicBlock *BB,
|
|
const TargetInstrInfo &TII,
|
|
bool IsUnsigned, bool Int64,
|
|
bool Float64, unsigned LoweredOpcode) {
|
|
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
|
|
|
|
Register OutReg = MI.getOperand(0).getReg();
|
|
Register InReg = MI.getOperand(1).getReg();
|
|
|
|
unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
|
|
unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
|
|
unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
|
|
unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
|
|
unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
|
|
unsigned Eqz = WebAssembly::EQZ_I32;
|
|
unsigned And = WebAssembly::AND_I32;
|
|
int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
|
|
int64_t Substitute = IsUnsigned ? 0 : Limit;
|
|
double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
|
|
auto &Context = BB->getParent()->getFunction().getContext();
|
|
Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
|
|
|
|
const BasicBlock *LLVMBB = BB->getBasicBlock();
|
|
MachineFunction *F = BB->getParent();
|
|
MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
|
|
MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
|
|
MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
|
|
|
|
MachineFunction::iterator It = ++BB->getIterator();
|
|
F->insert(It, FalseMBB);
|
|
F->insert(It, TrueMBB);
|
|
F->insert(It, DoneMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to DoneMBB.
|
|
DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
|
|
DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
BB->addSuccessor(TrueMBB);
|
|
BB->addSuccessor(FalseMBB);
|
|
TrueMBB->addSuccessor(DoneMBB);
|
|
FalseMBB->addSuccessor(DoneMBB);
|
|
|
|
unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
|
|
Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
|
|
Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
|
|
CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
|
|
EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
|
|
FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
|
|
TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
|
|
|
|
MI.eraseFromParent();
|
|
// For signed numbers, we can do a single comparison to determine whether
|
|
// fabs(x) is within range.
|
|
if (IsUnsigned) {
|
|
Tmp0 = InReg;
|
|
} else {
|
|
BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
|
|
}
|
|
BuildMI(BB, DL, TII.get(FConst), Tmp1)
|
|
.addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
|
|
BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
|
|
|
|
// For unsigned numbers, we have to do a separate comparison with zero.
|
|
if (IsUnsigned) {
|
|
Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
|
|
Register SecondCmpReg =
|
|
MRI.createVirtualRegister(&WebAssembly::I32RegClass);
|
|
Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
|
|
BuildMI(BB, DL, TII.get(FConst), Tmp1)
|
|
.addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
|
|
BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
|
|
BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
|
|
CmpReg = AndReg;
|
|
}
|
|
|
|
BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
|
|
|
|
// Create the CFG diamond to select between doing the conversion or using
|
|
// the substitute value.
|
|
BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
|
|
BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
|
|
BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
|
|
BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
|
|
BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
|
|
.addReg(FalseReg)
|
|
.addMBB(FalseMBB)
|
|
.addReg(TrueReg)
|
|
.addMBB(TrueMBB);
|
|
|
|
return DoneMBB;
|
|
}
|
|
|
|
static MachineBasicBlock *
|
|
LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB,
|
|
const WebAssemblySubtarget *Subtarget,
|
|
const TargetInstrInfo &TII) {
|
|
MachineInstr &CallParams = *CallResults.getPrevNode();
|
|
assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
|
|
assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
|
|
CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);
|
|
|
|
bool IsIndirect = CallParams.getOperand(0).isReg();
|
|
bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;
|
|
|
|
bool IsFuncrefCall = false;
|
|
if (IsIndirect) {
|
|
Register Reg = CallParams.getOperand(0).getReg();
|
|
const MachineFunction *MF = BB->getParent();
|
|
const MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
const TargetRegisterClass *TRC = MRI.getRegClass(Reg);
|
|
IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass);
|
|
assert(!IsFuncrefCall || Subtarget->hasReferenceTypes());
|
|
}
|
|
|
|
unsigned CallOp;
|
|
if (IsIndirect && IsRetCall) {
|
|
CallOp = WebAssembly::RET_CALL_INDIRECT;
|
|
} else if (IsIndirect) {
|
|
CallOp = WebAssembly::CALL_INDIRECT;
|
|
} else if (IsRetCall) {
|
|
CallOp = WebAssembly::RET_CALL;
|
|
} else {
|
|
CallOp = WebAssembly::CALL;
|
|
}
|
|
|
|
MachineFunction &MF = *BB->getParent();
|
|
const MCInstrDesc &MCID = TII.get(CallOp);
|
|
MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));
|
|
|
|
// See if we must truncate the function pointer.
|
|
// CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers
|
|
// as 64-bit for uniformity with other pointer types.
|
|
// See also: WebAssemblyFastISel::selectCall
|
|
if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) {
|
|
Register Reg32 =
|
|
MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
|
|
auto &FnPtr = CallParams.getOperand(0);
|
|
BuildMI(*BB, CallResults.getIterator(), DL,
|
|
TII.get(WebAssembly::I32_WRAP_I64), Reg32)
|
|
.addReg(FnPtr.getReg());
|
|
FnPtr.setReg(Reg32);
|
|
}
|
|
|
|
// Move the function pointer to the end of the arguments for indirect calls
|
|
if (IsIndirect) {
|
|
auto FnPtr = CallParams.getOperand(0);
|
|
CallParams.removeOperand(0);
|
|
|
|
// For funcrefs, call_indirect is done through __funcref_call_table and the
|
|
// funcref is always installed in slot 0 of the table, therefore instead of
|
|
// having the function pointer added at the end of the params list, a zero
|
|
// (the index in
|
|
// __funcref_call_table is added).
|
|
if (IsFuncrefCall) {
|
|
Register RegZero =
|
|
MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
|
|
MachineInstrBuilder MIBC0 =
|
|
BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
|
|
|
|
BB->insert(CallResults.getIterator(), MIBC0);
|
|
MachineInstrBuilder(MF, CallParams).addReg(RegZero);
|
|
} else
|
|
CallParams.addOperand(FnPtr);
|
|
}
|
|
|
|
for (auto Def : CallResults.defs())
|
|
MIB.add(Def);
|
|
|
|
if (IsIndirect) {
|
|
// Placeholder for the type index.
|
|
MIB.addImm(0);
|
|
// The table into which this call_indirect indexes.
|
|
MCSymbolWasm *Table = IsFuncrefCall
|
|
? WebAssembly::getOrCreateFuncrefCallTableSymbol(
|
|
MF.getContext(), Subtarget)
|
|
: WebAssembly::getOrCreateFunctionTableSymbol(
|
|
MF.getContext(), Subtarget);
|
|
if (Subtarget->hasReferenceTypes()) {
|
|
MIB.addSym(Table);
|
|
} else {
|
|
// For the MVP there is at most one table whose number is 0, but we can't
|
|
// write a table symbol or issue relocations. Instead we just ensure the
|
|
// table is live and write a zero.
|
|
Table->setNoStrip();
|
|
MIB.addImm(0);
|
|
}
|
|
}
|
|
|
|
for (auto Use : CallParams.uses())
|
|
MIB.add(Use);
|
|
|
|
BB->insert(CallResults.getIterator(), MIB);
|
|
CallParams.eraseFromParent();
|
|
CallResults.eraseFromParent();
|
|
|
|
// If this is a funcref call, to avoid hidden GC roots, we need to clear the
|
|
// table slot with ref.null upon call_indirect return.
|
|
//
|
|
// This generates the following code, which comes right after a call_indirect
|
|
// of a funcref:
|
|
//
|
|
// i32.const 0
|
|
// ref.null func
|
|
// table.set __funcref_call_table
|
|
if (IsIndirect && IsFuncrefCall) {
|
|
MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
|
|
MF.getContext(), Subtarget);
|
|
Register RegZero =
|
|
MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
|
|
MachineInstr *Const0 =
|
|
BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
|
|
BB->insertAfter(MIB.getInstr()->getIterator(), Const0);
|
|
|
|
Register RegFuncref =
|
|
MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass);
|
|
MachineInstr *RefNull =
|
|
BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref);
|
|
BB->insertAfter(Const0->getIterator(), RefNull);
|
|
|
|
MachineInstr *TableSet =
|
|
BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF))
|
|
.addSym(Table)
|
|
.addReg(RegZero)
|
|
.addReg(RegFuncref);
|
|
BB->insertAfter(RefNull->getIterator(), TableSet);
|
|
}
|
|
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
|
|
MachineInstr &MI, MachineBasicBlock *BB) const {
|
|
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unexpected instr type to insert");
|
|
case WebAssembly::FP_TO_SINT_I32_F32:
|
|
return LowerFPToInt(MI, DL, BB, TII, false, false, false,
|
|
WebAssembly::I32_TRUNC_S_F32);
|
|
case WebAssembly::FP_TO_UINT_I32_F32:
|
|
return LowerFPToInt(MI, DL, BB, TII, true, false, false,
|
|
WebAssembly::I32_TRUNC_U_F32);
|
|
case WebAssembly::FP_TO_SINT_I64_F32:
|
|
return LowerFPToInt(MI, DL, BB, TII, false, true, false,
|
|
WebAssembly::I64_TRUNC_S_F32);
|
|
case WebAssembly::FP_TO_UINT_I64_F32:
|
|
return LowerFPToInt(MI, DL, BB, TII, true, true, false,
|
|
WebAssembly::I64_TRUNC_U_F32);
|
|
case WebAssembly::FP_TO_SINT_I32_F64:
|
|
return LowerFPToInt(MI, DL, BB, TII, false, false, true,
|
|
WebAssembly::I32_TRUNC_S_F64);
|
|
case WebAssembly::FP_TO_UINT_I32_F64:
|
|
return LowerFPToInt(MI, DL, BB, TII, true, false, true,
|
|
WebAssembly::I32_TRUNC_U_F64);
|
|
case WebAssembly::FP_TO_SINT_I64_F64:
|
|
return LowerFPToInt(MI, DL, BB, TII, false, true, true,
|
|
WebAssembly::I64_TRUNC_S_F64);
|
|
case WebAssembly::FP_TO_UINT_I64_F64:
|
|
return LowerFPToInt(MI, DL, BB, TII, true, true, true,
|
|
WebAssembly::I64_TRUNC_U_F64);
|
|
case WebAssembly::CALL_RESULTS:
|
|
case WebAssembly::RET_CALL_RESULTS:
|
|
return LowerCallResults(MI, DL, BB, Subtarget, TII);
|
|
}
|
|
}
|
|
|
|
const char *
|
|
WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
|
|
case WebAssemblyISD::FIRST_NUMBER:
|
|
case WebAssemblyISD::FIRST_MEM_OPCODE:
|
|
break;
|
|
#define HANDLE_NODETYPE(NODE) \
|
|
case WebAssemblyISD::NODE: \
|
|
return "WebAssemblyISD::" #NODE;
|
|
#define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
|
|
#include "WebAssemblyISD.def"
|
|
#undef HANDLE_MEM_NODETYPE
|
|
#undef HANDLE_NODETYPE
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
std::pair<unsigned, const TargetRegisterClass *>
|
|
WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
|
|
const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
|
|
// First, see if this is a constraint that directly corresponds to a
|
|
// WebAssembly register class.
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
case 'r':
|
|
assert(VT != MVT::iPTR && "Pointer MVT not expected here");
|
|
if (Subtarget->hasSIMD128() && VT.isVector()) {
|
|
if (VT.getSizeInBits() == 128)
|
|
return std::make_pair(0U, &WebAssembly::V128RegClass);
|
|
}
|
|
if (VT.isInteger() && !VT.isVector()) {
|
|
if (VT.getSizeInBits() <= 32)
|
|
return std::make_pair(0U, &WebAssembly::I32RegClass);
|
|
if (VT.getSizeInBits() <= 64)
|
|
return std::make_pair(0U, &WebAssembly::I64RegClass);
|
|
}
|
|
if (VT.isFloatingPoint() && !VT.isVector()) {
|
|
switch (VT.getSizeInBits()) {
|
|
case 32:
|
|
return std::make_pair(0U, &WebAssembly::F32RegClass);
|
|
case 64:
|
|
return std::make_pair(0U, &WebAssembly::F64RegClass);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
|
|
}
|
|
|
|
bool WebAssemblyTargetLowering::isCheapToSpeculateCttz(Type *Ty) const {
|
|
// Assume ctz is a relatively cheap operation.
|
|
return true;
|
|
}
|
|
|
|
bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const {
|
|
// Assume clz is a relatively cheap operation.
|
|
return true;
|
|
}
|
|
|
|
bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
|
|
const AddrMode &AM,
|
|
Type *Ty, unsigned AS,
|
|
Instruction *I) const {
|
|
// WebAssembly offsets are added as unsigned without wrapping. The
|
|
// isLegalAddressingMode gives us no way to determine if wrapping could be
|
|
// happening, so we approximate this by accepting only non-negative offsets.
|
|
if (AM.BaseOffs < 0)
|
|
return false;
|
|
|
|
// WebAssembly has no scale register operands.
|
|
if (AM.Scale != 0)
|
|
return false;
|
|
|
|
// Everything else is legal.
|
|
return true;
|
|
}
|
|
|
|
bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
|
|
EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/,
|
|
MachineMemOperand::Flags /*Flags*/, unsigned *Fast) const {
|
|
// WebAssembly supports unaligned accesses, though it should be declared
|
|
// with the p2align attribute on loads and stores which do so, and there
|
|
// may be a performance impact. We tell LLVM they're "fast" because
|
|
// for the kinds of things that LLVM uses this for (merging adjacent stores
|
|
// of constants, etc.), WebAssembly implementations will either want the
|
|
// unaligned access or they'll split anyway.
|
|
if (Fast)
|
|
*Fast = 1;
|
|
return true;
|
|
}
|
|
|
|
bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
|
|
AttributeList Attr) const {
|
|
// The current thinking is that wasm engines will perform this optimization,
|
|
// so we can save on code size.
|
|
return true;
|
|
}
|
|
|
|
bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
|
|
EVT ExtT = ExtVal.getValueType();
|
|
EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
|
|
return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
|
|
(ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
|
|
(ExtT == MVT::v2i64 && MemT == MVT::v2i32);
|
|
}
|
|
|
|
bool WebAssemblyTargetLowering::isOffsetFoldingLegal(
|
|
const GlobalAddressSDNode *GA) const {
|
|
// Wasm doesn't support function addresses with offsets
|
|
const GlobalValue *GV = GA->getGlobal();
|
|
return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA);
|
|
}
|
|
|
|
EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
|
|
LLVMContext &C,
|
|
EVT VT) const {
|
|
if (VT.isVector())
|
|
return VT.changeVectorElementTypeToInteger();
|
|
|
|
// So far, all branch instructions in Wasm take an I32 condition.
|
|
// The default TargetLowering::getSetCCResultType returns the pointer size,
|
|
// which would be useful to reduce instruction counts when testing
|
|
// against 64-bit pointers/values if at some point Wasm supports that.
|
|
return EVT::getIntegerVT(C, 32);
|
|
}
|
|
|
|
bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
|
|
const CallInst &I,
|
|
MachineFunction &MF,
|
|
unsigned Intrinsic) const {
|
|
switch (Intrinsic) {
|
|
case Intrinsic::wasm_memory_atomic_notify:
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::i32;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.align = Align(4);
|
|
// atomic.notify instruction does not really load the memory specified with
|
|
// this argument, but MachineMemOperand should either be load or store, so
|
|
// we set this to a load.
|
|
// FIXME Volatile isn't really correct, but currently all LLVM atomic
|
|
// instructions are treated as volatiles in the backend, so we should be
|
|
// consistent. The same applies for wasm_atomic_wait intrinsics too.
|
|
Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
|
|
return true;
|
|
case Intrinsic::wasm_memory_atomic_wait32:
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::i32;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.align = Align(4);
|
|
Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
|
|
return true;
|
|
case Intrinsic::wasm_memory_atomic_wait64:
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::i64;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.align = Align(8);
|
|
Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void WebAssemblyTargetLowering::computeKnownBitsForTargetNode(
|
|
const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
|
|
const SelectionDAG &DAG, unsigned Depth) const {
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
break;
|
|
case ISD::INTRINSIC_WO_CHAIN: {
|
|
unsigned IntNo = Op.getConstantOperandVal(0);
|
|
switch (IntNo) {
|
|
default:
|
|
break;
|
|
case Intrinsic::wasm_bitmask: {
|
|
unsigned BitWidth = Known.getBitWidth();
|
|
EVT VT = Op.getOperand(1).getSimpleValueType();
|
|
unsigned PossibleBits = VT.getVectorNumElements();
|
|
APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits);
|
|
Known.Zero |= ZeroMask;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TargetLoweringBase::LegalizeTypeAction
|
|
WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const {
|
|
if (VT.isFixedLengthVector()) {
|
|
MVT EltVT = VT.getVectorElementType();
|
|
// We have legal vector types with these lane types, so widening the
|
|
// vector would let us use some of the lanes directly without having to
|
|
// extend or truncate values.
|
|
if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
|
|
EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64)
|
|
return TypeWidenVector;
|
|
}
|
|
|
|
return TargetLoweringBase::getPreferredVectorAction(VT);
|
|
}
|
|
|
|
bool WebAssemblyTargetLowering::shouldSimplifyDemandedVectorElts(
|
|
SDValue Op, const TargetLoweringOpt &TLO) const {
|
|
// ISel process runs DAGCombiner after legalization; this step is called
|
|
// SelectionDAG optimization phase. This post-legalization combining process
|
|
// runs DAGCombiner on each node, and if there was a change to be made,
|
|
// re-runs legalization again on it and its user nodes to make sure
|
|
// everythiing is in a legalized state.
|
|
//
|
|
// The legalization calls lowering routines, and we do our custom lowering for
|
|
// build_vectors (LowerBUILD_VECTOR), which converts undef vector elements
|
|
// into zeros. But there is a set of routines in DAGCombiner that turns unused
|
|
// (= not demanded) nodes into undef, among which SimplifyDemandedVectorElts
|
|
// turns unused vector elements into undefs. But this routine does not work
|
|
// with our custom LowerBUILD_VECTOR, which turns undefs into zeros. This
|
|
// combination can result in a infinite loop, in which undefs are converted to
|
|
// zeros in legalization and back to undefs in combining.
|
|
//
|
|
// So after DAG is legalized, we prevent SimplifyDemandedVectorElts from
|
|
// running for build_vectors.
|
|
if (Op.getOpcode() == ISD::BUILD_VECTOR && TLO.LegalOps && TLO.LegalTys)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// WebAssembly Lowering private implementation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Lowering Code
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
DAG.getContext()->diagnose(
|
|
DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
|
|
}
|
|
|
|
// Test whether the given calling convention is supported.
|
|
static bool callingConvSupported(CallingConv::ID CallConv) {
|
|
// We currently support the language-independent target-independent
|
|
// conventions. We don't yet have a way to annotate calls with properties like
|
|
// "cold", and we don't have any call-clobbered registers, so these are mostly
|
|
// all handled the same.
|
|
return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
|
|
CallConv == CallingConv::Cold ||
|
|
CallConv == CallingConv::PreserveMost ||
|
|
CallConv == CallingConv::PreserveAll ||
|
|
CallConv == CallingConv::CXX_FAST_TLS ||
|
|
CallConv == CallingConv::WASM_EmscriptenInvoke ||
|
|
CallConv == CallingConv::Swift;
|
|
}
|
|
|
|
SDValue
|
|
WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
SelectionDAG &DAG = CLI.DAG;
|
|
SDLoc DL = CLI.DL;
|
|
SDValue Chain = CLI.Chain;
|
|
SDValue Callee = CLI.Callee;
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
auto Layout = MF.getDataLayout();
|
|
|
|
CallingConv::ID CallConv = CLI.CallConv;
|
|
if (!callingConvSupported(CallConv))
|
|
fail(DL, DAG,
|
|
"WebAssembly doesn't support language-specific or target-specific "
|
|
"calling conventions yet");
|
|
if (CLI.IsPatchPoint)
|
|
fail(DL, DAG, "WebAssembly doesn't support patch point yet");
|
|
|
|
if (CLI.IsTailCall) {
|
|
auto NoTail = [&](const char *Msg) {
|
|
if (CLI.CB && CLI.CB->isMustTailCall())
|
|
fail(DL, DAG, Msg);
|
|
CLI.IsTailCall = false;
|
|
};
|
|
|
|
if (!Subtarget->hasTailCall())
|
|
NoTail("WebAssembly 'tail-call' feature not enabled");
|
|
|
|
// Varargs calls cannot be tail calls because the buffer is on the stack
|
|
if (CLI.IsVarArg)
|
|
NoTail("WebAssembly does not support varargs tail calls");
|
|
|
|
// Do not tail call unless caller and callee return types match
|
|
const Function &F = MF.getFunction();
|
|
const TargetMachine &TM = getTargetMachine();
|
|
Type *RetTy = F.getReturnType();
|
|
SmallVector<MVT, 4> CallerRetTys;
|
|
SmallVector<MVT, 4> CalleeRetTys;
|
|
computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
|
|
computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
|
|
bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
|
|
std::equal(CallerRetTys.begin(), CallerRetTys.end(),
|
|
CalleeRetTys.begin());
|
|
if (!TypesMatch)
|
|
NoTail("WebAssembly tail call requires caller and callee return types to "
|
|
"match");
|
|
|
|
// If pointers to local stack values are passed, we cannot tail call
|
|
if (CLI.CB) {
|
|
for (auto &Arg : CLI.CB->args()) {
|
|
Value *Val = Arg.get();
|
|
// Trace the value back through pointer operations
|
|
while (true) {
|
|
Value *Src = Val->stripPointerCastsAndAliases();
|
|
if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
|
|
Src = GEP->getPointerOperand();
|
|
if (Val == Src)
|
|
break;
|
|
Val = Src;
|
|
}
|
|
if (isa<AllocaInst>(Val)) {
|
|
NoTail(
|
|
"WebAssembly does not support tail calling with stack arguments");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
|
|
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
|
|
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
|
|
|
|
// The generic code may have added an sret argument. If we're lowering an
|
|
// invoke function, the ABI requires that the function pointer be the first
|
|
// argument, so we may have to swap the arguments.
|
|
if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
|
|
Outs[0].Flags.isSRet()) {
|
|
std::swap(Outs[0], Outs[1]);
|
|
std::swap(OutVals[0], OutVals[1]);
|
|
}
|
|
|
|
bool HasSwiftSelfArg = false;
|
|
bool HasSwiftErrorArg = false;
|
|
unsigned NumFixedArgs = 0;
|
|
for (unsigned I = 0; I < Outs.size(); ++I) {
|
|
const ISD::OutputArg &Out = Outs[I];
|
|
SDValue &OutVal = OutVals[I];
|
|
HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
|
|
HasSwiftErrorArg |= Out.Flags.isSwiftError();
|
|
if (Out.Flags.isNest())
|
|
fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
|
|
if (Out.Flags.isInAlloca())
|
|
fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
|
|
if (Out.Flags.isInConsecutiveRegs())
|
|
fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
|
|
if (Out.Flags.isInConsecutiveRegsLast())
|
|
fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
|
|
if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
|
|
auto &MFI = MF.getFrameInfo();
|
|
int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
|
|
Out.Flags.getNonZeroByValAlign(),
|
|
/*isSS=*/false);
|
|
SDValue SizeNode =
|
|
DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
|
|
SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
|
|
Chain = DAG.getMemcpy(
|
|
Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(),
|
|
/*isVolatile*/ false, /*AlwaysInline=*/false,
|
|
/*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
|
|
OutVal = FINode;
|
|
}
|
|
// Count the number of fixed args *after* legalization.
|
|
NumFixedArgs += Out.IsFixed;
|
|
}
|
|
|
|
bool IsVarArg = CLI.IsVarArg;
|
|
auto PtrVT = getPointerTy(Layout);
|
|
|
|
// For swiftcc, emit additional swiftself and swifterror arguments
|
|
// if there aren't. These additional arguments are also added for callee
|
|
// signature They are necessary to match callee and caller signature for
|
|
// indirect call.
|
|
if (CallConv == CallingConv::Swift) {
|
|
if (!HasSwiftSelfArg) {
|
|
NumFixedArgs++;
|
|
ISD::OutputArg Arg;
|
|
Arg.Flags.setSwiftSelf();
|
|
CLI.Outs.push_back(Arg);
|
|
SDValue ArgVal = DAG.getUNDEF(PtrVT);
|
|
CLI.OutVals.push_back(ArgVal);
|
|
}
|
|
if (!HasSwiftErrorArg) {
|
|
NumFixedArgs++;
|
|
ISD::OutputArg Arg;
|
|
Arg.Flags.setSwiftError();
|
|
CLI.Outs.push_back(Arg);
|
|
SDValue ArgVal = DAG.getUNDEF(PtrVT);
|
|
CLI.OutVals.push_back(ArgVal);
|
|
}
|
|
}
|
|
|
|
// Analyze operands of the call, assigning locations to each operand.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
|
|
|
|
if (IsVarArg) {
|
|
// Outgoing non-fixed arguments are placed in a buffer. First
|
|
// compute their offsets and the total amount of buffer space needed.
|
|
for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
|
|
const ISD::OutputArg &Out = Outs[I];
|
|
SDValue &Arg = OutVals[I];
|
|
EVT VT = Arg.getValueType();
|
|
assert(VT != MVT::iPTR && "Legalized args should be concrete");
|
|
Type *Ty = VT.getTypeForEVT(*DAG.getContext());
|
|
Align Alignment =
|
|
std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
|
|
unsigned Offset =
|
|
CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
|
|
CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
|
|
Offset, VT.getSimpleVT(),
|
|
CCValAssign::Full));
|
|
}
|
|
}
|
|
|
|
unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
|
|
|
|
SDValue FINode;
|
|
if (IsVarArg && NumBytes) {
|
|
// For non-fixed arguments, next emit stores to store the argument values
|
|
// to the stack buffer at the offsets computed above.
|
|
int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
|
|
Layout.getStackAlignment(),
|
|
/*isSS=*/false);
|
|
unsigned ValNo = 0;
|
|
SmallVector<SDValue, 8> Chains;
|
|
for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) {
|
|
assert(ArgLocs[ValNo].getValNo() == ValNo &&
|
|
"ArgLocs should remain in order and only hold varargs args");
|
|
unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
|
|
FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
|
|
SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
|
|
DAG.getConstant(Offset, DL, PtrVT));
|
|
Chains.push_back(
|
|
DAG.getStore(Chain, DL, Arg, Add,
|
|
MachinePointerInfo::getFixedStack(MF, FI, Offset)));
|
|
}
|
|
if (!Chains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
|
|
} else if (IsVarArg) {
|
|
FINode = DAG.getIntPtrConstant(0, DL);
|
|
}
|
|
|
|
if (Callee->getOpcode() == ISD::GlobalAddress) {
|
|
// If the callee is a GlobalAddress node (quite common, every direct call
|
|
// is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
|
|
// doesn't at MO_GOT which is not needed for direct calls.
|
|
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Callee);
|
|
Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
|
|
getPointerTy(DAG.getDataLayout()),
|
|
GA->getOffset());
|
|
Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
|
|
getPointerTy(DAG.getDataLayout()), Callee);
|
|
}
|
|
|
|
// Compute the operands for the CALLn node.
|
|
SmallVector<SDValue, 16> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
|
|
// Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
|
|
// isn't reliable.
|
|
Ops.append(OutVals.begin(),
|
|
IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
|
|
// Add a pointer to the vararg buffer.
|
|
if (IsVarArg)
|
|
Ops.push_back(FINode);
|
|
|
|
SmallVector<EVT, 8> InTys;
|
|
for (const auto &In : Ins) {
|
|
assert(!In.Flags.isByVal() && "byval is not valid for return values");
|
|
assert(!In.Flags.isNest() && "nest is not valid for return values");
|
|
if (In.Flags.isInAlloca())
|
|
fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
|
|
if (In.Flags.isInConsecutiveRegs())
|
|
fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
|
|
if (In.Flags.isInConsecutiveRegsLast())
|
|
fail(DL, DAG,
|
|
"WebAssembly hasn't implemented cons regs last return values");
|
|
// Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
|
|
// registers.
|
|
InTys.push_back(In.VT);
|
|
}
|
|
|
|
// Lastly, if this is a call to a funcref we need to add an instruction
|
|
// table.set to the chain and transform the call.
|
|
if (CLI.CB &&
|
|
WebAssembly::isFuncrefType(CLI.CB->getCalledOperand()->getType())) {
|
|
// In the absence of function references proposal where a funcref call is
|
|
// lowered to call_ref, using reference types we generate a table.set to set
|
|
// the funcref to a special table used solely for this purpose, followed by
|
|
// a call_indirect. Here we just generate the table set, and return the
|
|
// SDValue of the table.set so that LowerCall can finalize the lowering by
|
|
// generating the call_indirect.
|
|
SDValue Chain = Ops[0];
|
|
|
|
MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
|
|
MF.getContext(), Subtarget);
|
|
SDValue Sym = DAG.getMCSymbol(Table, PtrVT);
|
|
SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32);
|
|
SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee};
|
|
SDValue TableSet = DAG.getMemIntrinsicNode(
|
|
WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps,
|
|
MVT::funcref,
|
|
// Machine Mem Operand args
|
|
MachinePointerInfo(
|
|
WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF),
|
|
CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()),
|
|
MachineMemOperand::MOStore);
|
|
|
|
Ops[0] = TableSet; // The new chain is the TableSet itself
|
|
}
|
|
|
|
if (CLI.IsTailCall) {
|
|
// ret_calls do not return values to the current frame
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
|
|
}
|
|
|
|
InTys.push_back(MVT::Other);
|
|
SDVTList InTyList = DAG.getVTList(InTys);
|
|
SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);
|
|
|
|
for (size_t I = 0; I < Ins.size(); ++I)
|
|
InVals.push_back(Res.getValue(I));
|
|
|
|
// Return the chain
|
|
return Res.getValue(Ins.size());
|
|
}
|
|
|
|
bool WebAssemblyTargetLowering::CanLowerReturn(
|
|
CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
LLVMContext & /*Context*/) const {
|
|
// WebAssembly can only handle returning tuples with multivalue enabled
|
|
return Subtarget->hasMultivalue() || Outs.size() <= 1;
|
|
}
|
|
|
|
SDValue WebAssemblyTargetLowering::LowerReturn(
|
|
SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
|
|
SelectionDAG &DAG) const {
|
|
assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
|
|
"MVP WebAssembly can only return up to one value");
|
|
if (!callingConvSupported(CallConv))
|
|
fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
|
|
|
|
SmallVector<SDValue, 4> RetOps(1, Chain);
|
|
RetOps.append(OutVals.begin(), OutVals.end());
|
|
Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
|
|
|
|
// Record the number and types of the return values.
|
|
for (const ISD::OutputArg &Out : Outs) {
|
|
assert(!Out.Flags.isByVal() && "byval is not valid for return values");
|
|
assert(!Out.Flags.isNest() && "nest is not valid for return values");
|
|
assert(Out.IsFixed && "non-fixed return value is not valid");
|
|
if (Out.Flags.isInAlloca())
|
|
fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
|
|
if (Out.Flags.isInConsecutiveRegs())
|
|
fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
|
|
if (Out.Flags.isInConsecutiveRegsLast())
|
|
fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
SDValue WebAssemblyTargetLowering::LowerFormalArguments(
|
|
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
|
|
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
|
|
if (!callingConvSupported(CallConv))
|
|
fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
|
|
|
|
// Set up the incoming ARGUMENTS value, which serves to represent the liveness
|
|
// of the incoming values before they're represented by virtual registers.
|
|
MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
|
|
|
|
bool HasSwiftErrorArg = false;
|
|
bool HasSwiftSelfArg = false;
|
|
for (const ISD::InputArg &In : Ins) {
|
|
HasSwiftSelfArg |= In.Flags.isSwiftSelf();
|
|
HasSwiftErrorArg |= In.Flags.isSwiftError();
|
|
if (In.Flags.isInAlloca())
|
|
fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
|
|
if (In.Flags.isNest())
|
|
fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
|
|
if (In.Flags.isInConsecutiveRegs())
|
|
fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
|
|
if (In.Flags.isInConsecutiveRegsLast())
|
|
fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
|
|
// Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
|
|
// registers.
|
|
InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
|
|
DAG.getTargetConstant(InVals.size(),
|
|
DL, MVT::i32))
|
|
: DAG.getUNDEF(In.VT));
|
|
|
|
// Record the number and types of arguments.
|
|
MFI->addParam(In.VT);
|
|
}
|
|
|
|
// For swiftcc, emit additional swiftself and swifterror arguments
|
|
// if there aren't. These additional arguments are also added for callee
|
|
// signature They are necessary to match callee and caller signature for
|
|
// indirect call.
|
|
auto PtrVT = getPointerTy(MF.getDataLayout());
|
|
if (CallConv == CallingConv::Swift) {
|
|
if (!HasSwiftSelfArg) {
|
|
MFI->addParam(PtrVT);
|
|
}
|
|
if (!HasSwiftErrorArg) {
|
|
MFI->addParam(PtrVT);
|
|
}
|
|
}
|
|
// Varargs are copied into a buffer allocated by the caller, and a pointer to
|
|
// the buffer is passed as an argument.
|
|
if (IsVarArg) {
|
|
MVT PtrVT = getPointerTy(MF.getDataLayout());
|
|
Register VarargVreg =
|
|
MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
|
|
MFI->setVarargBufferVreg(VarargVreg);
|
|
Chain = DAG.getCopyToReg(
|
|
Chain, DL, VarargVreg,
|
|
DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
|
|
DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
|
|
MFI->addParam(PtrVT);
|
|
}
|
|
|
|
// Record the number and types of arguments and results.
|
|
SmallVector<MVT, 4> Params;
|
|
SmallVector<MVT, 4> Results;
|
|
computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
|
|
MF.getFunction(), DAG.getTarget(), Params, Results);
|
|
for (MVT VT : Results)
|
|
MFI->addResult(VT);
|
|
// TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
|
|
// the param logic here with ComputeSignatureVTs
|
|
assert(MFI->getParams().size() == Params.size() &&
|
|
std::equal(MFI->getParams().begin(), MFI->getParams().end(),
|
|
Params.begin()));
|
|
|
|
return Chain;
|
|
}
|
|
|
|
void WebAssemblyTargetLowering::ReplaceNodeResults(
|
|
SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
|
|
switch (N->getOpcode()) {
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
// Do not add any results, signifying that N should not be custom lowered
|
|
// after all. This happens because simd128 turns on custom lowering for
|
|
// SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
|
|
// illegal type.
|
|
break;
|
|
default:
|
|
llvm_unreachable(
|
|
"ReplaceNodeResults not implemented for this op for WebAssembly!");
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Custom lowering hooks.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("unimplemented operation lowering");
|
|
return SDValue();
|
|
case ISD::FrameIndex:
|
|
return LowerFrameIndex(Op, DAG);
|
|
case ISD::GlobalAddress:
|
|
return LowerGlobalAddress(Op, DAG);
|
|
case ISD::GlobalTLSAddress:
|
|
return LowerGlobalTLSAddress(Op, DAG);
|
|
case ISD::ExternalSymbol:
|
|
return LowerExternalSymbol(Op, DAG);
|
|
case ISD::JumpTable:
|
|
return LowerJumpTable(Op, DAG);
|
|
case ISD::BR_JT:
|
|
return LowerBR_JT(Op, DAG);
|
|
case ISD::VASTART:
|
|
return LowerVASTART(Op, DAG);
|
|
case ISD::BlockAddress:
|
|
case ISD::BRIND:
|
|
fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
|
|
return SDValue();
|
|
case ISD::RETURNADDR:
|
|
return LowerRETURNADDR(Op, DAG);
|
|
case ISD::FRAMEADDR:
|
|
return LowerFRAMEADDR(Op, DAG);
|
|
case ISD::CopyToReg:
|
|
return LowerCopyToReg(Op, DAG);
|
|
case ISD::EXTRACT_VECTOR_ELT:
|
|
case ISD::INSERT_VECTOR_ELT:
|
|
return LowerAccessVectorElement(Op, DAG);
|
|
case ISD::INTRINSIC_VOID:
|
|
case ISD::INTRINSIC_WO_CHAIN:
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
return LowerIntrinsic(Op, DAG);
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
return LowerSIGN_EXTEND_INREG(Op, DAG);
|
|
case ISD::BUILD_VECTOR:
|
|
return LowerBUILD_VECTOR(Op, DAG);
|
|
case ISD::VECTOR_SHUFFLE:
|
|
return LowerVECTOR_SHUFFLE(Op, DAG);
|
|
case ISD::SETCC:
|
|
return LowerSETCC(Op, DAG);
|
|
case ISD::SHL:
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
return LowerShift(Op, DAG);
|
|
case ISD::FP_TO_SINT_SAT:
|
|
case ISD::FP_TO_UINT_SAT:
|
|
return LowerFP_TO_INT_SAT(Op, DAG);
|
|
case ISD::LOAD:
|
|
return LowerLoad(Op, DAG);
|
|
case ISD::STORE:
|
|
return LowerStore(Op, DAG);
|
|
case ISD::CTPOP:
|
|
case ISD::CTLZ:
|
|
case ISD::CTTZ:
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
}
|
|
}
|
|
|
|
static bool IsWebAssemblyGlobal(SDValue Op) {
|
|
if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
|
|
return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace());
|
|
|
|
return false;
|
|
}
|
|
|
|
static std::optional<unsigned> IsWebAssemblyLocal(SDValue Op,
|
|
SelectionDAG &DAG) {
|
|
const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op);
|
|
if (!FI)
|
|
return std::nullopt;
|
|
|
|
auto &MF = DAG.getMachineFunction();
|
|
return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex());
|
|
}
|
|
|
|
SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
|
|
const SDValue &Value = SN->getValue();
|
|
const SDValue &Base = SN->getBasePtr();
|
|
const SDValue &Offset = SN->getOffset();
|
|
|
|
if (IsWebAssemblyGlobal(Base)) {
|
|
if (!Offset->isUndef())
|
|
report_fatal_error("unexpected offset when storing to webassembly global",
|
|
false);
|
|
|
|
SDVTList Tys = DAG.getVTList(MVT::Other);
|
|
SDValue Ops[] = {SN->getChain(), Value, Base};
|
|
return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops,
|
|
SN->getMemoryVT(), SN->getMemOperand());
|
|
}
|
|
|
|
if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
|
|
if (!Offset->isUndef())
|
|
report_fatal_error("unexpected offset when storing to webassembly local",
|
|
false);
|
|
|
|
SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
|
|
SDVTList Tys = DAG.getVTList(MVT::Other); // The chain.
|
|
SDValue Ops[] = {SN->getChain(), Idx, Value};
|
|
return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops);
|
|
}
|
|
|
|
if (WebAssembly::isWasmVarAddressSpace(SN->getAddressSpace()))
|
|
report_fatal_error(
|
|
"Encountered an unlowerable store to the wasm_var address space",
|
|
false);
|
|
|
|
return Op;
|
|
}
|
|
|
|
SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
|
|
const SDValue &Base = LN->getBasePtr();
|
|
const SDValue &Offset = LN->getOffset();
|
|
|
|
if (IsWebAssemblyGlobal(Base)) {
|
|
if (!Offset->isUndef())
|
|
report_fatal_error(
|
|
"unexpected offset when loading from webassembly global", false);
|
|
|
|
SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other);
|
|
SDValue Ops[] = {LN->getChain(), Base};
|
|
return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops,
|
|
LN->getMemoryVT(), LN->getMemOperand());
|
|
}
|
|
|
|
if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
|
|
if (!Offset->isUndef())
|
|
report_fatal_error(
|
|
"unexpected offset when loading from webassembly local", false);
|
|
|
|
SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
|
|
EVT LocalVT = LN->getValueType(0);
|
|
SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT,
|
|
{LN->getChain(), Idx});
|
|
SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL);
|
|
assert(Result->getNumValues() == 2 && "Loads must carry a chain!");
|
|
return Result;
|
|
}
|
|
|
|
if (WebAssembly::isWasmVarAddressSpace(LN->getAddressSpace()))
|
|
report_fatal_error(
|
|
"Encountered an unlowerable load from the wasm_var address space",
|
|
false);
|
|
|
|
return Op;
|
|
}
|
|
|
|
SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Src = Op.getOperand(2);
|
|
if (isa<FrameIndexSDNode>(Src.getNode())) {
|
|
// CopyToReg nodes don't support FrameIndex operands. Other targets select
|
|
// the FI to some LEA-like instruction, but since we don't have that, we
|
|
// need to insert some kind of instruction that can take an FI operand and
|
|
// produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
|
|
// local.copy between Op and its FI operand.
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDLoc DL(Op);
|
|
Register Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
|
|
EVT VT = Src.getValueType();
|
|
SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
|
|
: WebAssembly::COPY_I64,
|
|
DL, VT, Src),
|
|
0);
|
|
return Op.getNode()->getNumValues() == 1
|
|
? DAG.getCopyToReg(Chain, DL, Reg, Copy)
|
|
: DAG.getCopyToReg(Chain, DL, Reg, Copy,
|
|
Op.getNumOperands() == 4 ? Op.getOperand(3)
|
|
: SDValue());
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
int FI = cast<FrameIndexSDNode>(Op)->getIndex();
|
|
return DAG.getTargetFrameIndex(FI, Op.getValueType());
|
|
}
|
|
|
|
SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
|
|
if (!Subtarget->getTargetTriple().isOSEmscripten()) {
|
|
fail(DL, DAG,
|
|
"Non-Emscripten WebAssembly hasn't implemented "
|
|
"__builtin_return_address");
|
|
return SDValue();
|
|
}
|
|
|
|
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
|
|
return SDValue();
|
|
|
|
unsigned Depth = Op.getConstantOperandVal(0);
|
|
MakeLibCallOptions CallOptions;
|
|
return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
|
|
{DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
|
|
.first;
|
|
}
|
|
|
|
SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// Non-zero depths are not supported by WebAssembly currently. Use the
|
|
// legalizer's default expansion, which is to return 0 (what this function is
|
|
// documented to do).
|
|
if (Op.getConstantOperandVal(0) > 0)
|
|
return SDValue();
|
|
|
|
DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
|
|
EVT VT = Op.getValueType();
|
|
Register FP =
|
|
Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
|
|
return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
|
|
}
|
|
|
|
SDValue
|
|
WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
const auto *GA = cast<GlobalAddressSDNode>(Op);
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
|
|
report_fatal_error("cannot use thread-local storage without bulk memory",
|
|
false);
|
|
|
|
const GlobalValue *GV = GA->getGlobal();
|
|
|
|
// Currently only Emscripten supports dynamic linking with threads. Therefore,
|
|
// on other targets, if we have thread-local storage, only the local-exec
|
|
// model is possible.
|
|
auto model = Subtarget->getTargetTriple().isOSEmscripten()
|
|
? GV->getThreadLocalMode()
|
|
: GlobalValue::LocalExecTLSModel;
|
|
|
|
// Unsupported TLS modes
|
|
assert(model != GlobalValue::NotThreadLocal);
|
|
assert(model != GlobalValue::InitialExecTLSModel);
|
|
|
|
if (model == GlobalValue::LocalExecTLSModel ||
|
|
model == GlobalValue::LocalDynamicTLSModel ||
|
|
(model == GlobalValue::GeneralDynamicTLSModel &&
|
|
getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))) {
|
|
// For DSO-local TLS variables we use offset from __tls_base
|
|
|
|
MVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
|
|
: WebAssembly::GLOBAL_GET_I32;
|
|
const char *BaseName = MF.createExternalSymbolName("__tls_base");
|
|
|
|
SDValue BaseAddr(
|
|
DAG.getMachineNode(GlobalGet, DL, PtrVT,
|
|
DAG.getTargetExternalSymbol(BaseName, PtrVT)),
|
|
0);
|
|
|
|
SDValue TLSOffset = DAG.getTargetGlobalAddress(
|
|
GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL);
|
|
SDValue SymOffset =
|
|
DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset);
|
|
|
|
return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset);
|
|
}
|
|
|
|
assert(model == GlobalValue::GeneralDynamicTLSModel);
|
|
|
|
EVT VT = Op.getValueType();
|
|
return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
|
|
DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
|
|
GA->getOffset(),
|
|
WebAssemblyII::MO_GOT_TLS));
|
|
}
|
|
|
|
SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
const auto *GA = cast<GlobalAddressSDNode>(Op);
|
|
EVT VT = Op.getValueType();
|
|
assert(GA->getTargetFlags() == 0 &&
|
|
"Unexpected target flags on generic GlobalAddressSDNode");
|
|
if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace()))
|
|
fail(DL, DAG, "Invalid address space for WebAssembly target");
|
|
|
|
unsigned OperandFlags = 0;
|
|
if (isPositionIndependent()) {
|
|
const GlobalValue *GV = GA->getGlobal();
|
|
if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MVT PtrVT = getPointerTy(MF.getDataLayout());
|
|
const char *BaseName;
|
|
if (GV->getValueType()->isFunctionTy()) {
|
|
BaseName = MF.createExternalSymbolName("__table_base");
|
|
OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
|
|
} else {
|
|
BaseName = MF.createExternalSymbolName("__memory_base");
|
|
OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
|
|
}
|
|
SDValue BaseAddr =
|
|
DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
|
|
DAG.getTargetExternalSymbol(BaseName, PtrVT));
|
|
|
|
SDValue SymAddr = DAG.getNode(
|
|
WebAssemblyISD::WrapperREL, DL, VT,
|
|
DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
|
|
OperandFlags));
|
|
|
|
return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
|
|
}
|
|
OperandFlags = WebAssemblyII::MO_GOT;
|
|
}
|
|
|
|
return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
|
|
DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
|
|
GA->getOffset(), OperandFlags));
|
|
}
|
|
|
|
SDValue
|
|
WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
const auto *ES = cast<ExternalSymbolSDNode>(Op);
|
|
EVT VT = Op.getValueType();
|
|
assert(ES->getTargetFlags() == 0 &&
|
|
"Unexpected target flags on generic ExternalSymbolSDNode");
|
|
return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
|
|
DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
|
|
}
|
|
|
|
SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// There's no need for a Wrapper node because we always incorporate a jump
|
|
// table operand into a BR_TABLE instruction, rather than ever
|
|
// materializing it in a register.
|
|
const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
|
|
return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
|
|
JT->getTargetFlags());
|
|
}
|
|
|
|
SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
SDValue Chain = Op.getOperand(0);
|
|
const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
|
|
SDValue Index = Op.getOperand(2);
|
|
assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
|
|
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Index);
|
|
|
|
MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
|
|
const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
|
|
|
|
// Add an operand for each case.
|
|
for (auto *MBB : MBBs)
|
|
Ops.push_back(DAG.getBasicBlock(MBB));
|
|
|
|
// Add the first MBB as a dummy default target for now. This will be replaced
|
|
// with the proper default target (and the preceding range check eliminated)
|
|
// if possible by WebAssemblyFixBrTableDefaults.
|
|
Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
|
|
return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
|
|
}
|
|
|
|
SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
|
|
|
|
auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
|
|
SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
|
|
MFI->getVarargBufferVreg(), PtrVT);
|
|
return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
|
|
MachinePointerInfo(SV));
|
|
}
|
|
|
|
SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
unsigned IntNo;
|
|
switch (Op.getOpcode()) {
|
|
case ISD::INTRINSIC_VOID:
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
IntNo = Op.getConstantOperandVal(1);
|
|
break;
|
|
case ISD::INTRINSIC_WO_CHAIN:
|
|
IntNo = Op.getConstantOperandVal(0);
|
|
break;
|
|
default:
|
|
llvm_unreachable("Invalid intrinsic");
|
|
}
|
|
SDLoc DL(Op);
|
|
|
|
switch (IntNo) {
|
|
default:
|
|
return SDValue(); // Don't custom lower most intrinsics.
|
|
|
|
case Intrinsic::wasm_lsda: {
|
|
auto PtrVT = getPointerTy(MF.getDataLayout());
|
|
const char *SymName = MF.createExternalSymbolName(
|
|
"GCC_except_table" + std::to_string(MF.getFunctionNumber()));
|
|
if (isPositionIndependent()) {
|
|
SDValue Node = DAG.getTargetExternalSymbol(
|
|
SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL);
|
|
const char *BaseName = MF.createExternalSymbolName("__memory_base");
|
|
SDValue BaseAddr =
|
|
DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
|
|
DAG.getTargetExternalSymbol(BaseName, PtrVT));
|
|
SDValue SymAddr =
|
|
DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node);
|
|
return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr);
|
|
}
|
|
SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT);
|
|
return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node);
|
|
}
|
|
|
|
case Intrinsic::wasm_shuffle: {
|
|
// Drop in-chain and replace undefs, but otherwise pass through unchanged
|
|
SDValue Ops[18];
|
|
size_t OpIdx = 0;
|
|
Ops[OpIdx++] = Op.getOperand(1);
|
|
Ops[OpIdx++] = Op.getOperand(2);
|
|
while (OpIdx < 18) {
|
|
const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
|
|
if (MaskIdx.isUndef() ||
|
|
cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) {
|
|
Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32);
|
|
} else {
|
|
Ops[OpIdx++] = MaskIdx;
|
|
}
|
|
}
|
|
return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
|
|
}
|
|
}
|
|
}
|
|
|
|
SDValue
|
|
WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
// If sign extension operations are disabled, allow sext_inreg only if operand
|
|
// is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
|
|
// extension operations, but allowing sext_inreg in this context lets us have
|
|
// simple patterns to select extract_lane_s instructions. Expanding sext_inreg
|
|
// everywhere would be simpler in this file, but would necessitate large and
|
|
// brittle patterns to undo the expansion and select extract_lane_s
|
|
// instructions.
|
|
assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
|
|
if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
|
|
return SDValue();
|
|
|
|
const SDValue &Extract = Op.getOperand(0);
|
|
MVT VecT = Extract.getOperand(0).getSimpleValueType();
|
|
if (VecT.getVectorElementType().getSizeInBits() > 32)
|
|
return SDValue();
|
|
MVT ExtractedLaneT =
|
|
cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
|
|
MVT ExtractedVecT =
|
|
MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
|
|
if (ExtractedVecT == VecT)
|
|
return Op;
|
|
|
|
// Bitcast vector to appropriate type to ensure ISel pattern coverage
|
|
const SDNode *Index = Extract.getOperand(1).getNode();
|
|
if (!isa<ConstantSDNode>(Index))
|
|
return SDValue();
|
|
unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue();
|
|
unsigned Scale =
|
|
ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
|
|
assert(Scale > 1);
|
|
SDValue NewIndex =
|
|
DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
|
|
SDValue NewExtract = DAG.getNode(
|
|
ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
|
|
DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
|
|
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
|
|
Op.getOperand(1));
|
|
}
|
|
|
|
static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
if (Op.getValueType() != MVT::v2f64)
|
|
return SDValue();
|
|
|
|
auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec,
|
|
unsigned &Index) -> bool {
|
|
switch (Op.getOpcode()) {
|
|
case ISD::SINT_TO_FP:
|
|
Opcode = WebAssemblyISD::CONVERT_LOW_S;
|
|
break;
|
|
case ISD::UINT_TO_FP:
|
|
Opcode = WebAssemblyISD::CONVERT_LOW_U;
|
|
break;
|
|
case ISD::FP_EXTEND:
|
|
Opcode = WebAssemblyISD::PROMOTE_LOW;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
auto ExtractVector = Op.getOperand(0);
|
|
if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
|
|
return false;
|
|
|
|
if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode()))
|
|
return false;
|
|
|
|
SrcVec = ExtractVector.getOperand(0);
|
|
Index = ExtractVector.getConstantOperandVal(1);
|
|
return true;
|
|
};
|
|
|
|
unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex;
|
|
SDValue LHSSrcVec, RHSSrcVec;
|
|
if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) ||
|
|
!GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex))
|
|
return SDValue();
|
|
|
|
if (LHSOpcode != RHSOpcode)
|
|
return SDValue();
|
|
|
|
MVT ExpectedSrcVT;
|
|
switch (LHSOpcode) {
|
|
case WebAssemblyISD::CONVERT_LOW_S:
|
|
case WebAssemblyISD::CONVERT_LOW_U:
|
|
ExpectedSrcVT = MVT::v4i32;
|
|
break;
|
|
case WebAssemblyISD::PROMOTE_LOW:
|
|
ExpectedSrcVT = MVT::v4f32;
|
|
break;
|
|
}
|
|
if (LHSSrcVec.getValueType() != ExpectedSrcVT)
|
|
return SDValue();
|
|
|
|
auto Src = LHSSrcVec;
|
|
if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) {
|
|
// Shuffle the source vector so that the converted lanes are the low lanes.
|
|
Src = DAG.getVectorShuffle(
|
|
ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec,
|
|
{static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1});
|
|
}
|
|
return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src);
|
|
}
|
|
|
|
SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
if (auto ConvertLow = LowerConvertLow(Op, DAG))
|
|
return ConvertLow;
|
|
|
|
SDLoc DL(Op);
|
|
const EVT VecT = Op.getValueType();
|
|
const EVT LaneT = Op.getOperand(0).getValueType();
|
|
const size_t Lanes = Op.getNumOperands();
|
|
bool CanSwizzle = VecT == MVT::v16i8;
|
|
|
|
// BUILD_VECTORs are lowered to the instruction that initializes the highest
|
|
// possible number of lanes at once followed by a sequence of replace_lane
|
|
// instructions to individually initialize any remaining lanes.
|
|
|
|
// TODO: Tune this. For example, lanewise swizzling is very expensive, so
|
|
// swizzled lanes should be given greater weight.
|
|
|
|
// TODO: Investigate looping rather than always extracting/replacing specific
|
|
// lanes to fill gaps.
|
|
|
|
auto IsConstant = [](const SDValue &V) {
|
|
return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
|
|
};
|
|
|
|
// Returns the source vector and index vector pair if they exist. Checks for:
|
|
// (extract_vector_elt
|
|
// $src,
|
|
// (sign_extend_inreg (extract_vector_elt $indices, $i))
|
|
// )
|
|
auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
|
|
auto Bail = std::make_pair(SDValue(), SDValue());
|
|
if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
|
|
return Bail;
|
|
const SDValue &SwizzleSrc = Lane->getOperand(0);
|
|
const SDValue &IndexExt = Lane->getOperand(1);
|
|
if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
|
|
return Bail;
|
|
const SDValue &Index = IndexExt->getOperand(0);
|
|
if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
|
|
return Bail;
|
|
const SDValue &SwizzleIndices = Index->getOperand(0);
|
|
if (SwizzleSrc.getValueType() != MVT::v16i8 ||
|
|
SwizzleIndices.getValueType() != MVT::v16i8 ||
|
|
Index->getOperand(1)->getOpcode() != ISD::Constant ||
|
|
Index->getConstantOperandVal(1) != I)
|
|
return Bail;
|
|
return std::make_pair(SwizzleSrc, SwizzleIndices);
|
|
};
|
|
|
|
// If the lane is extracted from another vector at a constant index, return
|
|
// that vector. The source vector must not have more lanes than the dest
|
|
// because the shufflevector indices are in terms of the destination lanes and
|
|
// would not be able to address the smaller individual source lanes.
|
|
auto GetShuffleSrc = [&](const SDValue &Lane) {
|
|
if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
|
|
return SDValue();
|
|
if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode()))
|
|
return SDValue();
|
|
if (Lane->getOperand(0).getValueType().getVectorNumElements() >
|
|
VecT.getVectorNumElements())
|
|
return SDValue();
|
|
return Lane->getOperand(0);
|
|
};
|
|
|
|
using ValueEntry = std::pair<SDValue, size_t>;
|
|
SmallVector<ValueEntry, 16> SplatValueCounts;
|
|
|
|
using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
|
|
SmallVector<SwizzleEntry, 16> SwizzleCounts;
|
|
|
|
using ShuffleEntry = std::pair<SDValue, size_t>;
|
|
SmallVector<ShuffleEntry, 16> ShuffleCounts;
|
|
|
|
auto AddCount = [](auto &Counts, const auto &Val) {
|
|
auto CountIt =
|
|
llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; });
|
|
if (CountIt == Counts.end()) {
|
|
Counts.emplace_back(Val, 1);
|
|
} else {
|
|
CountIt->second++;
|
|
}
|
|
};
|
|
|
|
auto GetMostCommon = [](auto &Counts) {
|
|
auto CommonIt =
|
|
std::max_element(Counts.begin(), Counts.end(), llvm::less_second());
|
|
assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
|
|
return *CommonIt;
|
|
};
|
|
|
|
size_t NumConstantLanes = 0;
|
|
|
|
// Count eligible lanes for each type of vector creation op
|
|
for (size_t I = 0; I < Lanes; ++I) {
|
|
const SDValue &Lane = Op->getOperand(I);
|
|
if (Lane.isUndef())
|
|
continue;
|
|
|
|
AddCount(SplatValueCounts, Lane);
|
|
|
|
if (IsConstant(Lane))
|
|
NumConstantLanes++;
|
|
if (auto ShuffleSrc = GetShuffleSrc(Lane))
|
|
AddCount(ShuffleCounts, ShuffleSrc);
|
|
if (CanSwizzle) {
|
|
auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
|
|
if (SwizzleSrcs.first)
|
|
AddCount(SwizzleCounts, SwizzleSrcs);
|
|
}
|
|
}
|
|
|
|
SDValue SplatValue;
|
|
size_t NumSplatLanes;
|
|
std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
|
|
|
|
SDValue SwizzleSrc;
|
|
SDValue SwizzleIndices;
|
|
size_t NumSwizzleLanes = 0;
|
|
if (SwizzleCounts.size())
|
|
std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
|
|
NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
|
|
|
|
// Shuffles can draw from up to two vectors, so find the two most common
|
|
// sources.
|
|
SDValue ShuffleSrc1, ShuffleSrc2;
|
|
size_t NumShuffleLanes = 0;
|
|
if (ShuffleCounts.size()) {
|
|
std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts);
|
|
llvm::erase_if(ShuffleCounts,
|
|
[&](const auto &Pair) { return Pair.first == ShuffleSrc1; });
|
|
}
|
|
if (ShuffleCounts.size()) {
|
|
size_t AdditionalShuffleLanes;
|
|
std::tie(ShuffleSrc2, AdditionalShuffleLanes) =
|
|
GetMostCommon(ShuffleCounts);
|
|
NumShuffleLanes += AdditionalShuffleLanes;
|
|
}
|
|
|
|
// Predicate returning true if the lane is properly initialized by the
|
|
// original instruction
|
|
std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
|
|
SDValue Result;
|
|
// Prefer swizzles over shuffles over vector consts over splats
|
|
if (NumSwizzleLanes >= NumShuffleLanes &&
|
|
NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) {
|
|
Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
|
|
SwizzleIndices);
|
|
auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
|
|
IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
|
|
return Swizzled == GetSwizzleSrcs(I, Lane);
|
|
};
|
|
} else if (NumShuffleLanes >= NumConstantLanes &&
|
|
NumShuffleLanes >= NumSplatLanes) {
|
|
size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8;
|
|
size_t DestLaneCount = VecT.getVectorNumElements();
|
|
size_t Scale1 = 1;
|
|
size_t Scale2 = 1;
|
|
SDValue Src1 = ShuffleSrc1;
|
|
SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT);
|
|
if (Src1.getValueType() != VecT) {
|
|
size_t LaneSize =
|
|
Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
|
|
assert(LaneSize > DestLaneSize);
|
|
Scale1 = LaneSize / DestLaneSize;
|
|
Src1 = DAG.getBitcast(VecT, Src1);
|
|
}
|
|
if (Src2.getValueType() != VecT) {
|
|
size_t LaneSize =
|
|
Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
|
|
assert(LaneSize > DestLaneSize);
|
|
Scale2 = LaneSize / DestLaneSize;
|
|
Src2 = DAG.getBitcast(VecT, Src2);
|
|
}
|
|
|
|
int Mask[16];
|
|
assert(DestLaneCount <= 16);
|
|
for (size_t I = 0; I < DestLaneCount; ++I) {
|
|
const SDValue &Lane = Op->getOperand(I);
|
|
SDValue Src = GetShuffleSrc(Lane);
|
|
if (Src == ShuffleSrc1) {
|
|
Mask[I] = Lane->getConstantOperandVal(1) * Scale1;
|
|
} else if (Src && Src == ShuffleSrc2) {
|
|
Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2;
|
|
} else {
|
|
Mask[I] = -1;
|
|
}
|
|
}
|
|
ArrayRef<int> MaskRef(Mask, DestLaneCount);
|
|
Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef);
|
|
IsLaneConstructed = [&](size_t, const SDValue &Lane) {
|
|
auto Src = GetShuffleSrc(Lane);
|
|
return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2);
|
|
};
|
|
} else if (NumConstantLanes >= NumSplatLanes) {
|
|
SmallVector<SDValue, 16> ConstLanes;
|
|
for (const SDValue &Lane : Op->op_values()) {
|
|
if (IsConstant(Lane)) {
|
|
// Values may need to be fixed so that they will sign extend to be
|
|
// within the expected range during ISel. Check whether the value is in
|
|
// bounds based on the lane bit width and if it is out of bounds, lop
|
|
// off the extra bits and subtract 2^n to reflect giving the high bit
|
|
// value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it
|
|
// cannot possibly be out of range.
|
|
auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode());
|
|
int64_t Val = Const ? Const->getSExtValue() : 0;
|
|
uint64_t LaneBits = 128 / Lanes;
|
|
assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) &&
|
|
"Unexpected out of bounds negative value");
|
|
if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) {
|
|
auto NewVal = ((uint64_t)Val % (1ll << LaneBits)) - (1ll << LaneBits);
|
|
ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT));
|
|
} else {
|
|
ConstLanes.push_back(Lane);
|
|
}
|
|
} else if (LaneT.isFloatingPoint()) {
|
|
ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
|
|
} else {
|
|
ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
|
|
}
|
|
}
|
|
Result = DAG.getBuildVector(VecT, DL, ConstLanes);
|
|
IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
|
|
return IsConstant(Lane);
|
|
};
|
|
} else {
|
|
// Use a splat, but possibly a load_splat
|
|
LoadSDNode *SplattedLoad;
|
|
if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) &&
|
|
SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) {
|
|
Result = DAG.getMemIntrinsicNode(
|
|
WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT),
|
|
{SplattedLoad->getChain(), SplattedLoad->getBasePtr(),
|
|
SplattedLoad->getOffset()},
|
|
SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand());
|
|
} else {
|
|
Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
|
|
}
|
|
IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) {
|
|
return Lane == SplatValue;
|
|
};
|
|
}
|
|
|
|
assert(Result);
|
|
assert(IsLaneConstructed);
|
|
|
|
// Add replace_lane instructions for any unhandled values
|
|
for (size_t I = 0; I < Lanes; ++I) {
|
|
const SDValue &Lane = Op->getOperand(I);
|
|
if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
|
|
Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
|
|
DAG.getConstant(I, DL, MVT::i32));
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
SDValue
|
|
WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
|
|
MVT VecType = Op.getOperand(0).getSimpleValueType();
|
|
assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
|
|
size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
|
|
|
|
// Space for two vector args and sixteen mask indices
|
|
SDValue Ops[18];
|
|
size_t OpIdx = 0;
|
|
Ops[OpIdx++] = Op.getOperand(0);
|
|
Ops[OpIdx++] = Op.getOperand(1);
|
|
|
|
// Expand mask indices to byte indices and materialize them as operands
|
|
for (int M : Mask) {
|
|
for (size_t J = 0; J < LaneBytes; ++J) {
|
|
// Lower undefs (represented by -1 in mask) to {0..J}, which use a
|
|
// whole lane of vector input, to allow further reduction at VM. E.g.
|
|
// match an 8x16 byte shuffle to an equivalent cheaper 32x4 shuffle.
|
|
uint64_t ByteIndex = M == -1 ? J : (uint64_t)M * LaneBytes + J;
|
|
Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
|
|
}
|
|
}
|
|
|
|
return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
|
|
}
|
|
|
|
SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
// The legalizer does not know how to expand the unsupported comparison modes
|
|
// of i64x2 vectors, so we manually unroll them here.
|
|
assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
|
|
SmallVector<SDValue, 2> LHS, RHS;
|
|
DAG.ExtractVectorElements(Op->getOperand(0), LHS);
|
|
DAG.ExtractVectorElements(Op->getOperand(1), RHS);
|
|
const SDValue &CC = Op->getOperand(2);
|
|
auto MakeLane = [&](unsigned I) {
|
|
return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
|
|
DAG.getConstant(uint64_t(-1), DL, MVT::i64),
|
|
DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
|
|
};
|
|
return DAG.getBuildVector(Op->getValueType(0), DL,
|
|
{MakeLane(0), MakeLane(1)});
|
|
}
|
|
|
|
SDValue
|
|
WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// Allow constant lane indices, expand variable lane indices
|
|
SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
|
|
if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
|
|
return Op;
|
|
else
|
|
// Perform default expansion
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
|
|
EVT LaneT = Op.getSimpleValueType().getVectorElementType();
|
|
// 32-bit and 64-bit unrolled shifts will have proper semantics
|
|
if (LaneT.bitsGE(MVT::i32))
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
// Otherwise mask the shift value to get proper semantics from 32-bit shift
|
|
SDLoc DL(Op);
|
|
size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
|
|
SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
|
|
unsigned ShiftOpcode = Op.getOpcode();
|
|
SmallVector<SDValue, 16> ShiftedElements;
|
|
DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
|
|
SmallVector<SDValue, 16> ShiftElements;
|
|
DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
|
|
SmallVector<SDValue, 16> UnrolledOps;
|
|
for (size_t i = 0; i < NumLanes; ++i) {
|
|
SDValue MaskedShiftValue =
|
|
DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
|
|
SDValue ShiftedValue = ShiftedElements[i];
|
|
if (ShiftOpcode == ISD::SRA)
|
|
ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
|
|
ShiftedValue, DAG.getValueType(LaneT));
|
|
UnrolledOps.push_back(
|
|
DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
|
|
}
|
|
return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
|
|
}
|
|
|
|
SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
|
|
// Only manually lower vector shifts
|
|
assert(Op.getSimpleValueType().isVector());
|
|
|
|
auto ShiftVal = DAG.getSplatValue(Op.getOperand(1));
|
|
if (!ShiftVal)
|
|
return unrollVectorShift(Op, DAG);
|
|
|
|
// Use anyext because none of the high bits can affect the shift
|
|
ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);
|
|
|
|
unsigned Opcode;
|
|
switch (Op.getOpcode()) {
|
|
case ISD::SHL:
|
|
Opcode = WebAssemblyISD::VEC_SHL;
|
|
break;
|
|
case ISD::SRA:
|
|
Opcode = WebAssemblyISD::VEC_SHR_S;
|
|
break;
|
|
case ISD::SRL:
|
|
Opcode = WebAssemblyISD::VEC_SHR_U;
|
|
break;
|
|
default:
|
|
llvm_unreachable("unexpected opcode");
|
|
}
|
|
|
|
return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
|
|
}
|
|
|
|
SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
EVT ResT = Op.getValueType();
|
|
EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
|
|
|
|
if ((ResT == MVT::i32 || ResT == MVT::i64) &&
|
|
(SatVT == MVT::i32 || SatVT == MVT::i64))
|
|
return Op;
|
|
|
|
if (ResT == MVT::v4i32 && SatVT == MVT::i32)
|
|
return Op;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Custom DAG combine hooks
|
|
//===----------------------------------------------------------------------===//
|
|
static SDValue
|
|
performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
|
|
auto &DAG = DCI.DAG;
|
|
auto Shuffle = cast<ShuffleVectorSDNode>(N);
|
|
|
|
// Hoist vector bitcasts that don't change the number of lanes out of unary
|
|
// shuffles, where they are less likely to get in the way of other combines.
|
|
// (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
|
|
// (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
|
|
SDValue Bitcast = N->getOperand(0);
|
|
if (Bitcast.getOpcode() != ISD::BITCAST)
|
|
return SDValue();
|
|
if (!N->getOperand(1).isUndef())
|
|
return SDValue();
|
|
SDValue CastOp = Bitcast.getOperand(0);
|
|
MVT SrcType = CastOp.getSimpleValueType();
|
|
MVT DstType = Bitcast.getSimpleValueType();
|
|
if (!SrcType.is128BitVector() ||
|
|
SrcType.getVectorNumElements() != DstType.getVectorNumElements())
|
|
return SDValue();
|
|
SDValue NewShuffle = DAG.getVectorShuffle(
|
|
SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
|
|
return DAG.getBitcast(DstType, NewShuffle);
|
|
}
|
|
|
|
static SDValue
|
|
performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
|
|
auto &DAG = DCI.DAG;
|
|
assert(N->getOpcode() == ISD::SIGN_EXTEND ||
|
|
N->getOpcode() == ISD::ZERO_EXTEND);
|
|
|
|
// Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if
|
|
// possible before the extract_subvector can be expanded.
|
|
auto Extract = N->getOperand(0);
|
|
if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
|
|
return SDValue();
|
|
auto Source = Extract.getOperand(0);
|
|
auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
|
|
if (IndexNode == nullptr)
|
|
return SDValue();
|
|
auto Index = IndexNode->getZExtValue();
|
|
|
|
// Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the
|
|
// extracted subvector is the low or high half of its source.
|
|
EVT ResVT = N->getValueType(0);
|
|
if (ResVT == MVT::v8i16) {
|
|
if (Extract.getValueType() != MVT::v8i8 ||
|
|
Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
|
|
return SDValue();
|
|
} else if (ResVT == MVT::v4i32) {
|
|
if (Extract.getValueType() != MVT::v4i16 ||
|
|
Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
|
|
return SDValue();
|
|
} else if (ResVT == MVT::v2i64) {
|
|
if (Extract.getValueType() != MVT::v2i32 ||
|
|
Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2))
|
|
return SDValue();
|
|
} else {
|
|
return SDValue();
|
|
}
|
|
|
|
bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND;
|
|
bool IsLow = Index == 0;
|
|
|
|
unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S
|
|
: WebAssemblyISD::EXTEND_HIGH_S)
|
|
: (IsLow ? WebAssemblyISD::EXTEND_LOW_U
|
|
: WebAssemblyISD::EXTEND_HIGH_U);
|
|
|
|
return DAG.getNode(Op, SDLoc(N), ResVT, Source);
|
|
}
|
|
|
|
static SDValue
|
|
performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
|
|
auto &DAG = DCI.DAG;
|
|
|
|
auto GetWasmConversionOp = [](unsigned Op) {
|
|
switch (Op) {
|
|
case ISD::FP_TO_SINT_SAT:
|
|
return WebAssemblyISD::TRUNC_SAT_ZERO_S;
|
|
case ISD::FP_TO_UINT_SAT:
|
|
return WebAssemblyISD::TRUNC_SAT_ZERO_U;
|
|
case ISD::FP_ROUND:
|
|
return WebAssemblyISD::DEMOTE_ZERO;
|
|
}
|
|
llvm_unreachable("unexpected op");
|
|
};
|
|
|
|
auto IsZeroSplat = [](SDValue SplatVal) {
|
|
auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode());
|
|
APInt SplatValue, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
return Splat &&
|
|
Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
|
|
HasAnyUndefs) &&
|
|
SplatValue == 0;
|
|
};
|
|
|
|
if (N->getOpcode() == ISD::CONCAT_VECTORS) {
|
|
// Combine this:
|
|
//
|
|
// (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0)))
|
|
//
|
|
// into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
|
|
//
|
|
// Or this:
|
|
//
|
|
// (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0)))
|
|
//
|
|
// into (f32x4.demote_zero_f64x2 $x).
|
|
EVT ResVT;
|
|
EVT ExpectedConversionType;
|
|
auto Conversion = N->getOperand(0);
|
|
auto ConversionOp = Conversion.getOpcode();
|
|
switch (ConversionOp) {
|
|
case ISD::FP_TO_SINT_SAT:
|
|
case ISD::FP_TO_UINT_SAT:
|
|
ResVT = MVT::v4i32;
|
|
ExpectedConversionType = MVT::v2i32;
|
|
break;
|
|
case ISD::FP_ROUND:
|
|
ResVT = MVT::v4f32;
|
|
ExpectedConversionType = MVT::v2f32;
|
|
break;
|
|
default:
|
|
return SDValue();
|
|
}
|
|
|
|
if (N->getValueType(0) != ResVT)
|
|
return SDValue();
|
|
|
|
if (Conversion.getValueType() != ExpectedConversionType)
|
|
return SDValue();
|
|
|
|
auto Source = Conversion.getOperand(0);
|
|
if (Source.getValueType() != MVT::v2f64)
|
|
return SDValue();
|
|
|
|
if (!IsZeroSplat(N->getOperand(1)) ||
|
|
N->getOperand(1).getValueType() != ExpectedConversionType)
|
|
return SDValue();
|
|
|
|
unsigned Op = GetWasmConversionOp(ConversionOp);
|
|
return DAG.getNode(Op, SDLoc(N), ResVT, Source);
|
|
}
|
|
|
|
// Combine this:
|
|
//
|
|
// (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32)
|
|
//
|
|
// into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
|
|
//
|
|
// Or this:
|
|
//
|
|
// (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0)))))
|
|
//
|
|
// into (f32x4.demote_zero_f64x2 $x).
|
|
EVT ResVT;
|
|
auto ConversionOp = N->getOpcode();
|
|
switch (ConversionOp) {
|
|
case ISD::FP_TO_SINT_SAT:
|
|
case ISD::FP_TO_UINT_SAT:
|
|
ResVT = MVT::v4i32;
|
|
break;
|
|
case ISD::FP_ROUND:
|
|
ResVT = MVT::v4f32;
|
|
break;
|
|
default:
|
|
llvm_unreachable("unexpected op");
|
|
}
|
|
|
|
if (N->getValueType(0) != ResVT)
|
|
return SDValue();
|
|
|
|
auto Concat = N->getOperand(0);
|
|
if (Concat.getValueType() != MVT::v4f64)
|
|
return SDValue();
|
|
|
|
auto Source = Concat.getOperand(0);
|
|
if (Source.getValueType() != MVT::v2f64)
|
|
return SDValue();
|
|
|
|
if (!IsZeroSplat(Concat.getOperand(1)) ||
|
|
Concat.getOperand(1).getValueType() != MVT::v2f64)
|
|
return SDValue();
|
|
|
|
unsigned Op = GetWasmConversionOp(ConversionOp);
|
|
return DAG.getNode(Op, SDLoc(N), ResVT, Source);
|
|
}
|
|
|
|
// Helper to extract VectorWidth bits from Vec, starting from IdxVal.
|
|
static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG,
|
|
const SDLoc &DL, unsigned VectorWidth) {
|
|
EVT VT = Vec.getValueType();
|
|
EVT ElVT = VT.getVectorElementType();
|
|
unsigned Factor = VT.getSizeInBits() / VectorWidth;
|
|
EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
|
|
VT.getVectorNumElements() / Factor);
|
|
|
|
// Extract the relevant VectorWidth bits. Generate an EXTRACT_SUBVECTOR
|
|
unsigned ElemsPerChunk = VectorWidth / ElVT.getSizeInBits();
|
|
assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
|
|
|
|
// This is the index of the first element of the VectorWidth-bit chunk
|
|
// we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
|
|
IdxVal &= ~(ElemsPerChunk - 1);
|
|
|
|
// If the input is a buildvector just emit a smaller one.
|
|
if (Vec.getOpcode() == ISD::BUILD_VECTOR)
|
|
return DAG.getBuildVector(ResultVT, DL,
|
|
Vec->ops().slice(IdxVal, ElemsPerChunk));
|
|
|
|
SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, DL);
|
|
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, VecIdx);
|
|
}
|
|
|
|
// Helper to recursively truncate vector elements in half with NARROW_U. DstVT
|
|
// is the expected destination value type after recursion. In is the initial
|
|
// input. Note that the input should have enough leading zero bits to prevent
|
|
// NARROW_U from saturating results.
|
|
static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL,
|
|
SelectionDAG &DAG) {
|
|
EVT SrcVT = In.getValueType();
|
|
|
|
// No truncation required, we might get here due to recursive calls.
|
|
if (SrcVT == DstVT)
|
|
return In;
|
|
|
|
unsigned SrcSizeInBits = SrcVT.getSizeInBits();
|
|
unsigned NumElems = SrcVT.getVectorNumElements();
|
|
if (!isPowerOf2_32(NumElems))
|
|
return SDValue();
|
|
assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation");
|
|
assert(SrcSizeInBits > DstVT.getSizeInBits() && "Illegal truncation");
|
|
|
|
LLVMContext &Ctx = *DAG.getContext();
|
|
EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2);
|
|
|
|
// Narrow to the largest type possible:
|
|
// vXi64/vXi32 -> i16x8.narrow_i32x4_u and vXi16 -> i8x16.narrow_i16x8_u.
|
|
EVT InVT = MVT::i16, OutVT = MVT::i8;
|
|
if (SrcVT.getScalarSizeInBits() > 16) {
|
|
InVT = MVT::i32;
|
|
OutVT = MVT::i16;
|
|
}
|
|
unsigned SubSizeInBits = SrcSizeInBits / 2;
|
|
InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits());
|
|
OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits());
|
|
|
|
// Split lower/upper subvectors.
|
|
SDValue Lo = extractSubVector(In, 0, DAG, DL, SubSizeInBits);
|
|
SDValue Hi = extractSubVector(In, NumElems / 2, DAG, DL, SubSizeInBits);
|
|
|
|
// 256bit -> 128bit truncate - Narrow lower/upper 128-bit subvectors.
|
|
if (SrcVT.is256BitVector() && DstVT.is128BitVector()) {
|
|
Lo = DAG.getBitcast(InVT, Lo);
|
|
Hi = DAG.getBitcast(InVT, Hi);
|
|
SDValue Res = DAG.getNode(WebAssemblyISD::NARROW_U, DL, OutVT, Lo, Hi);
|
|
return DAG.getBitcast(DstVT, Res);
|
|
}
|
|
|
|
// Recursively narrow lower/upper subvectors, concat result and narrow again.
|
|
EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems / 2);
|
|
Lo = truncateVectorWithNARROW(PackedVT, Lo, DL, DAG);
|
|
Hi = truncateVectorWithNARROW(PackedVT, Hi, DL, DAG);
|
|
|
|
PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems);
|
|
SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi);
|
|
return truncateVectorWithNARROW(DstVT, Res, DL, DAG);
|
|
}
|
|
|
|
static SDValue performTruncateCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
auto &DAG = DCI.DAG;
|
|
|
|
SDValue In = N->getOperand(0);
|
|
EVT InVT = In.getValueType();
|
|
if (!InVT.isSimple())
|
|
return SDValue();
|
|
|
|
EVT OutVT = N->getValueType(0);
|
|
if (!OutVT.isVector())
|
|
return SDValue();
|
|
|
|
EVT OutSVT = OutVT.getVectorElementType();
|
|
EVT InSVT = InVT.getVectorElementType();
|
|
// Currently only cover truncate to v16i8 or v8i16.
|
|
if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) &&
|
|
(OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.is128BitVector()))
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(),
|
|
OutVT.getScalarSizeInBits());
|
|
In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT));
|
|
return truncateVectorWithNARROW(OutVT, In, DL, DAG);
|
|
}
|
|
|
|
SDValue
|
|
WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
return SDValue();
|
|
case ISD::VECTOR_SHUFFLE:
|
|
return performVECTOR_SHUFFLECombine(N, DCI);
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
return performVectorExtendCombine(N, DCI);
|
|
case ISD::FP_TO_SINT_SAT:
|
|
case ISD::FP_TO_UINT_SAT:
|
|
case ISD::FP_ROUND:
|
|
case ISD::CONCAT_VECTORS:
|
|
return performVectorTruncZeroCombine(N, DCI);
|
|
case ISD::TRUNCATE:
|
|
return performTruncateCombine(N, DCI);
|
|
}
|
|
}
|