llvm-project/mlir/lib/Analysis/Verifier.cpp

519 lines
18 KiB
C++

//===- Verifier.cpp - MLIR Verifier Implementation ------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements the verify() methods on the various IR types, performing
// (potentially expensive) checks on the holistic structure of the code. This
// can be used for detecting bugs in compiler transformations and hand written
// .mlir files.
//
// The checks in this file are only for things that can occur as part of IR
// transformations: e.g. violation of dominance information, malformed operation
// attributes, etc. MLIR supports transformations moving IR through locally
// invalid states (e.g. unlinking an instruction from an instruction before
// re-inserting it in a new place), but each transformation must complete with
// the IR in a valid form.
//
// This should not check for things that are always wrong by construction (e.g.
// affine maps or other immutable structures that are incorrect), because those
// are not mutable and can be checked at time of construction.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Dominance.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/CFGFunction.h"
#include "mlir/IR/MLFunction.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/OperationSet.h"
#include "mlir/IR/Statements.h"
#include "mlir/IR/StmtVisitor.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
namespace {
/// Base class for the verifiers in this file. It is a pervasive truth that
/// this file treats "true" as an error that needs to be recovered from, and
/// "false" as success.
///
class Verifier {
public:
bool failure(const Twine &message, const Operation &value) {
value.emitError(message);
return true;
}
bool failure(const Twine &message, const Function &fn) {
fn.emitError(message);
return true;
}
bool failure(const Twine &message, const Instruction &inst) {
inst.emitError(message);
return true;
}
bool failure(const Twine &message, const BasicBlock &bb) {
// Take the location information for the first instruction in the block.
if (!bb.empty())
return failure(message, static_cast<const Instruction &>(bb.front()));
// If the code is properly formed, there will be a terminator. Use its
// location.
if (auto *termInst = bb.getTerminator())
return failure(message, *termInst);
// Worst case, fall back to using the function's location.
return failure(message, fn);
}
bool verifyOperation(const Operation &op);
bool verifyAttribute(Attribute *attr, const Operation &op);
protected:
explicit Verifier(const Function &fn)
: fn(fn), operationSet(OperationSet::get(fn.getContext())) {}
private:
/// The function being checked.
const Function &fn;
/// The operation set installed in the current MLIR context.
OperationSet &operationSet;
};
} // end anonymous namespace
// Check that function attributes are all well formed.
bool Verifier::verifyAttribute(Attribute *attr, const Operation &op) {
if (!attr->isOrContainsFunction())
return false;
// If we have a function attribute, check that it is non-null and in the
// same module as the operation that refers to it.
if (auto *fnAttr = dyn_cast<FunctionAttr>(attr)) {
if (!fnAttr->getValue())
return failure("attribute refers to deallocated function!", op);
if (fnAttr->getValue()->getModule() != fn.getModule())
return failure("attribute refers to function '" +
Twine(fnAttr->getValue()->getName()) +
"' defined in another module!",
op);
return false;
}
// Otherwise, we must have an array attribute, remap the elements.
for (auto *elt : cast<ArrayAttr>(attr)->getValue()) {
if (verifyAttribute(elt, op))
return true;
}
return false;
}
/// Check the invariants of the specified operation instruction or statement.
bool Verifier::verifyOperation(const Operation &op) {
if (op.getOperationFunction() != &fn)
return failure("operation in the wrong function", op);
// Check that operands are non-nil and structurally ok.
for (const auto *operand : op.getOperands()) {
if (!operand)
return failure("null operand found", op);
if (operand->getFunction() != &fn)
return failure("reference to operand defined in another function", op);
}
// Verify all attributes are ok. We need to check Function attributes, since
// they are actually mutable (the function they refer to can be deleted), and
// we have to check array attributes that can refer to them.
for (auto attr : op.getAttrs()) {
if (verifyAttribute(attr.second, op))
return true;
}
// If we can get operation info for this, check the custom hook.
if (auto *opInfo = op.getAbstractOperation()) {
if (opInfo->verifyInvariants(&op))
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// CFG Functions
//===----------------------------------------------------------------------===//
namespace {
struct CFGFuncVerifier : public Verifier {
const CFGFunction &fn;
DominanceInfo domInfo;
CFGFuncVerifier(const CFGFunction &fn)
: Verifier(fn), fn(fn), domInfo(const_cast<CFGFunction *>(&fn)) {}
bool verify();
bool verifyBlock(const BasicBlock &block);
bool verifyTerminator(const TerminatorInst &term);
bool verifyInstOperands(const Instruction &inst);
bool verifyBBArguments(ArrayRef<InstOperand> operands,
const BasicBlock *destBB, const TerminatorInst &term);
bool verifyReturn(const ReturnInst &inst);
bool verifyBranch(const BranchInst &inst);
bool verifyCondBranch(const CondBranchInst &inst);
};
} // end anonymous namespace
bool CFGFuncVerifier::verify() {
llvm::PrettyStackTraceFormat fmt("MLIR Verifier: cfgfunc @%s",
fn.getName().c_str());
// TODO: Lots to be done here, including verifying dominance information when
// we have uses and defs.
// TODO: Verify the first block has no predecessors.
if (fn.empty())
return failure("cfgfunc must have at least one basic block", fn);
// Verify that the argument list of the function and the arg list of the first
// block line up.
auto *firstBB = &fn.front();
auto fnInputTypes = fn.getType()->getInputs();
if (fnInputTypes.size() != firstBB->getNumArguments())
return failure("first block of cfgfunc must have " +
Twine(fnInputTypes.size()) +
" arguments to match function signature",
fn);
for (unsigned i = 0, e = firstBB->getNumArguments(); i != e; ++i)
if (fnInputTypes[i] != firstBB->getArgument(i)->getType())
return failure(
"type of argument #" + Twine(i) +
" must match corresponding argument in function signature",
fn);
for (auto &block : fn) {
if (verifyBlock(block))
return true;
}
return false;
}
bool CFGFuncVerifier::verifyInstOperands(const Instruction &inst) {
// Check that operands properly dominate this use.
for (unsigned operandNo = 0, e = inst.getNumOperands(); operandNo != e;
++operandNo) {
auto *op = inst.getOperand(operandNo);
if (domInfo.properlyDominates(op, &inst))
continue;
inst.emitError("operand #" + Twine(operandNo) +
" does not dominate this use");
if (auto *useInst = op->getDefiningInst())
useInst->emitNote("operand defined here");
return true;
}
return false;
}
bool CFGFuncVerifier::verifyBlock(const BasicBlock &block) {
if (!block.getTerminator())
return failure("basic block with no terminator", block);
if (verifyTerminator(*block.getTerminator()))
return true;
for (auto *arg : block.getArguments()) {
if (arg->getOwner() != &block)
return failure("basic block argument not owned by block", block);
}
for (auto &inst : block) {
if (verifyOperation(inst) || verifyInstOperands(inst))
return true;
}
return false;
}
bool CFGFuncVerifier::verifyTerminator(const TerminatorInst &term) {
if (term.getFunction() != &fn)
return failure("terminator in the wrong function", term);
// Check that operands are non-nil and structurally ok.
for (const auto *operand : term.getOperands()) {
if (!operand)
return failure("null operand found", term);
if (operand->getFunction() != &fn)
return failure("reference to operand defined in another function", term);
}
// Verify dominance of values.
verifyInstOperands(term);
// Check that successors are in the right function.
for (auto *succ : term.getBlock()->getSuccessors()) {
if (succ->getFunction() != &fn)
return failure("reference to block defined in another function", term);
}
if (auto *ret = dyn_cast<ReturnInst>(&term))
return verifyReturn(*ret);
if (auto *br = dyn_cast<BranchInst>(&term))
return verifyBranch(*br);
if (auto *br = dyn_cast<CondBranchInst>(&term))
return verifyCondBranch(*br);
return false;
}
/// Check a set of basic block arguments against the expected list in in the
/// destination basic block.
bool CFGFuncVerifier::verifyBBArguments(ArrayRef<InstOperand> operands,
const BasicBlock *destBB,
const TerminatorInst &term) {
if (operands.size() != destBB->getNumArguments())
return failure("branch has " + Twine(operands.size()) +
" operands, but target block has " +
Twine(destBB->getNumArguments()),
term);
for (unsigned i = 0, e = operands.size(); i != e; ++i)
if (operands[i].get()->getType() != destBB->getArgument(i)->getType())
return failure("type mismatch in bb argument #" + Twine(i), term);
return false;
}
bool CFGFuncVerifier::verifyReturn(const ReturnInst &inst) {
// Verify that the return operands match the results of the function.
auto results = fn.getType()->getResults();
if (inst.getNumOperands() != results.size())
return failure("return has " + Twine(inst.getNumOperands()) +
" operands, but enclosing function returns " +
Twine(results.size()),
inst);
for (unsigned i = 0, e = results.size(); i != e; ++i)
if (inst.getOperand(i)->getType() != results[i])
return failure("type of return operand " + Twine(i) +
" doesn't match function result type",
inst);
return false;
}
bool CFGFuncVerifier::verifyBranch(const BranchInst &inst) {
// Verify that the number of operands lines up with the number of BB arguments
// in the successor.
if (verifyBBArguments(inst.getInstOperands(), inst.getDest(), inst))
return true;
return false;
}
bool CFGFuncVerifier::verifyCondBranch(const CondBranchInst &inst) {
// Verify that the number of operands lines up with the number of BB arguments
// in the true successor.
if (verifyBBArguments(inst.getTrueInstOperands(), inst.getTrueDest(), inst))
return true;
// And the false successor.
if (verifyBBArguments(inst.getFalseInstOperands(), inst.getFalseDest(), inst))
return true;
if (inst.getCondition()->getType() != Type::getInteger(1, fn.getContext()))
return failure("type of condition is not boolean (i1)", inst);
return false;
}
//===----------------------------------------------------------------------===//
// ML Functions
//===----------------------------------------------------------------------===//
namespace {
struct MLFuncVerifier : public Verifier, public StmtWalker<MLFuncVerifier> {
const MLFunction &fn;
bool hadError = false;
MLFuncVerifier(const MLFunction &fn) : Verifier(fn), fn(fn) {}
void visitOperationStmt(OperationStmt *opStmt) {
hadError |= verifyOperation(*opStmt);
}
bool verify() {
llvm::PrettyStackTraceFormat fmt("MLIR Verifier: mlfunc @%s",
fn.getName().c_str());
// Check basic structural properties.
walk(const_cast<MLFunction *>(&fn));
if (hadError)
return true;
// TODO: check that operation is not a return statement unless it's
// the last one in the function.
// TODO: check that loop bounds and if conditions are properly formed.
if (verifyReturn())
return true;
return verifyDominance();
}
/// Walk all of the code in this MLFunc and verify that the operands of any
/// operations are properly dominated by their definitions.
bool verifyDominance();
/// Verify that function has a return statement that matches its signature.
bool verifyReturn();
};
} // end anonymous namespace
/// Walk all of the code in this MLFunc and verify that the operands of any
/// operations are properly dominated by their definitions.
bool MLFuncVerifier::verifyDominance() {
using HashTable = llvm::ScopedHashTable<const SSAValue *, bool>;
HashTable liveValues;
HashTable::ScopeTy topScope(liveValues);
// All of the arguments to the function are live for the whole function.
for (auto *arg : fn.getArguments())
liveValues.insert(arg, true);
// This recursive function walks the statement list pushing scopes onto the
// stack as it goes, and popping them to remove them from the table.
std::function<bool(const StmtBlock &block)> walkBlock;
walkBlock = [&](const StmtBlock &block) -> bool {
HashTable::ScopeTy blockScope(liveValues);
// The induction variable of a for statement is live within its body.
if (auto *forStmt = dyn_cast<ForStmt>(&block))
liveValues.insert(forStmt, true);
for (auto &stmt : block) {
// Verify that each of the operands are live.
unsigned operandNo = 0;
for (auto *opValue : stmt.getOperands()) {
if (!liveValues.count(opValue)) {
stmt.emitError("operand #" + Twine(operandNo) +
" does not dominate this use");
if (auto *useStmt = opValue->getDefiningStmt())
useStmt->emitNote("operand defined here");
return true;
}
++operandNo;
}
if (auto *opStmt = dyn_cast<OperationStmt>(&stmt)) {
// Operations define values, add them to the hash table.
for (auto *result : opStmt->getResults())
liveValues.insert(result, true);
continue;
}
// If this is an if or for, recursively walk the block they contain.
if (auto *ifStmt = dyn_cast<IfStmt>(&stmt)) {
if (walkBlock(*ifStmt->getThen()))
return true;
if (auto *elseClause = ifStmt->getElse())
if (walkBlock(*elseClause))
return true;
}
if (auto *forStmt = dyn_cast<ForStmt>(&stmt))
if (walkBlock(*forStmt))
return true;
}
return false;
};
// Check the whole function out.
return walkBlock(fn);
}
bool MLFuncVerifier::verifyReturn() {
// TODO: fold return verification in the pass that verifies all statements.
const char missingReturnMsg[] = "ML function must end with return statement";
if (fn.getStatements().empty())
return failure(missingReturnMsg, fn);
const auto &stmt = fn.getStatements().back();
if (const auto *op = dyn_cast<OperationStmt>(&stmt)) {
if (!op->isReturn())
return failure(missingReturnMsg, fn);
// The operand number and types must match the function signature.
// TODO: move this verification in ReturnOp::verify() if printing
// of the error messages below can be made to work there.
const auto &results = fn.getType()->getResults();
if (op->getNumOperands() != results.size())
return failure("return has " + Twine(op->getNumOperands()) +
" operands, but enclosing function returns " +
Twine(results.size()),
*op);
for (unsigned i = 0, e = results.size(); i != e; ++i)
if (op->getOperand(i)->getType() != results[i])
return failure("type of return operand " + Twine(i) +
" doesn't match function result type",
*op);
return false;
}
return failure(missingReturnMsg, fn);
}
//===----------------------------------------------------------------------===//
// Entrypoints
//===----------------------------------------------------------------------===//
/// Perform (potentially expensive) checks of invariants, used to detect
/// compiler bugs. On error, this reports the error through the MLIRContext and
/// returns true.
bool Function::verify() const {
switch (getKind()) {
case Kind::ExtFunc:
// No body, nothing can be wrong here.
return false;
case Kind::CFGFunc:
return CFGFuncVerifier(*cast<CFGFunction>(this)).verify();
case Kind::MLFunc:
return MLFuncVerifier(*cast<MLFunction>(this)).verify();
}
}
/// Perform (potentially expensive) checks of invariants, used to detect
/// compiler bugs. On error, this reports the error through the MLIRContext and
/// returns true.
bool Module::verify() const {
/// Check that each function is correct.
for (auto &fn : *this) {
if (fn.verify())
return true;
}
return false;
}