498 lines
18 KiB
C++
498 lines
18 KiB
C++
//===- Bufferize.cpp - Bufferization utilities ----------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
|
|
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/Passes.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/TensorCopyInsertion.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/IR/Operation.h"
|
|
#include "mlir/Pass/PassManager.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::bufferization;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BufferizeTypeConverter
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static Value materializeToTensor(OpBuilder &builder, TensorType type,
|
|
ValueRange inputs, Location loc) {
|
|
assert(inputs.size() == 1);
|
|
assert(inputs[0].getType().isa<BaseMemRefType>());
|
|
return builder.create<bufferization::ToTensorOp>(loc, type, inputs[0]);
|
|
}
|
|
|
|
/// Registers conversions into BufferizeTypeConverter
|
|
BufferizeTypeConverter::BufferizeTypeConverter() {
|
|
// Keep all types unchanged.
|
|
addConversion([](Type type) { return type; });
|
|
// Convert RankedTensorType to MemRefType.
|
|
addConversion([](RankedTensorType type) -> Type {
|
|
return MemRefType::get(type.getShape(), type.getElementType());
|
|
});
|
|
// Convert UnrankedTensorType to UnrankedMemRefType.
|
|
addConversion([](UnrankedTensorType type) -> Type {
|
|
return UnrankedMemRefType::get(type.getElementType(), 0);
|
|
});
|
|
addArgumentMaterialization(materializeToTensor);
|
|
addSourceMaterialization(materializeToTensor);
|
|
addTargetMaterialization([](OpBuilder &builder, BaseMemRefType type,
|
|
ValueRange inputs, Location loc) -> Value {
|
|
assert(inputs.size() == 1 && "expected exactly one input");
|
|
|
|
if (auto inputType = inputs[0].getType().dyn_cast<MemRefType>()) {
|
|
// MemRef to MemRef cast.
|
|
assert(inputType != type && "expected different types");
|
|
// Unranked to ranked and ranked to unranked casts must be explicit.
|
|
auto rankedDestType = type.dyn_cast<MemRefType>();
|
|
if (!rankedDestType)
|
|
return nullptr;
|
|
FailureOr<Value> replacement =
|
|
castOrReallocMemRefValue(builder, inputs[0], rankedDestType);
|
|
if (failed(replacement))
|
|
return nullptr;
|
|
return *replacement;
|
|
}
|
|
|
|
if (inputs[0].getType().isa<TensorType>()) {
|
|
// Tensor to MemRef cast.
|
|
return builder.create<bufferization::ToMemrefOp>(loc, type, inputs[0]);
|
|
}
|
|
|
|
llvm_unreachable("only tensor/memref input types supported");
|
|
});
|
|
}
|
|
|
|
void mlir::bufferization::populateBufferizeMaterializationLegality(
|
|
ConversionTarget &target) {
|
|
target.addLegalOp<bufferization::ToTensorOp, bufferization::ToMemrefOp>();
|
|
}
|
|
|
|
namespace {
|
|
// In a finalizing bufferize conversion, we know that all tensors have been
|
|
// converted to memrefs, thus, this op becomes an identity.
|
|
class BufferizeToTensorOp
|
|
: public OpConversionPattern<bufferization::ToTensorOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(bufferization::ToTensorOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
rewriter.replaceOp(op, adaptor.getMemref());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// In a finalizing bufferize conversion, we know that all tensors have been
|
|
// converted to memrefs, thus, this op becomes an identity.
|
|
class BufferizeToMemrefOp
|
|
: public OpConversionPattern<bufferization::ToMemrefOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(bufferization::ToMemrefOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
rewriter.replaceOp(op, adaptor.getTensor());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void mlir::bufferization::populateEliminateBufferizeMaterializationsPatterns(
|
|
BufferizeTypeConverter &typeConverter, RewritePatternSet &patterns) {
|
|
patterns.add<BufferizeToTensorOp, BufferizeToMemrefOp>(typeConverter,
|
|
patterns.getContext());
|
|
}
|
|
|
|
namespace {
|
|
struct FinalizingBufferizePass
|
|
: public FinalizingBufferizeBase<FinalizingBufferizePass> {
|
|
using FinalizingBufferizeBase<
|
|
FinalizingBufferizePass>::FinalizingBufferizeBase;
|
|
|
|
void runOnOperation() override {
|
|
auto func = getOperation();
|
|
auto *context = &getContext();
|
|
|
|
BufferizeTypeConverter typeConverter;
|
|
RewritePatternSet patterns(context);
|
|
ConversionTarget target(*context);
|
|
|
|
populateEliminateBufferizeMaterializationsPatterns(typeConverter, patterns);
|
|
|
|
// If all result types are legal, and all block arguments are legal (ensured
|
|
// by func conversion above), then all types in the program are legal.
|
|
//
|
|
// We also check that the operand types are legal to avoid creating invalid
|
|
// IR. For example, this prevents
|
|
// populateEliminateBufferizeMaterializationsPatterns from updating the
|
|
// types of the operands to a return op without updating the enclosing
|
|
// function.
|
|
target.markUnknownOpDynamicallyLegal(
|
|
[&](Operation *op) { return typeConverter.isLegal(op); });
|
|
|
|
if (failed(applyFullConversion(func, target, std::move(patterns))))
|
|
signalPassFailure();
|
|
}
|
|
};
|
|
|
|
static BufferizationOptions::LayoutMapOption
|
|
parseLayoutMapOption(const std::string &s) {
|
|
if (s == "fully-dynamic-layout-map")
|
|
return BufferizationOptions::LayoutMapOption::FullyDynamicLayoutMap;
|
|
if (s == "identity-layout-map")
|
|
return BufferizationOptions::LayoutMapOption::IdentityLayoutMap;
|
|
if (s == "infer-layout-map")
|
|
return BufferizationOptions::LayoutMapOption::InferLayoutMap;
|
|
llvm_unreachable("invalid layout map option");
|
|
}
|
|
|
|
struct OneShotBufferizePass
|
|
: public OneShotBufferizeBase<OneShotBufferizePass> {
|
|
OneShotBufferizePass() : OneShotBufferizeBase<OneShotBufferizePass>() {}
|
|
|
|
explicit OneShotBufferizePass(const OneShotBufferizationOptions &options)
|
|
: options(options) {}
|
|
|
|
void getDependentDialects(DialectRegistry ®istry) const override {
|
|
registry
|
|
.insert<bufferization::BufferizationDialect, memref::MemRefDialect>();
|
|
registerAllocationOpInterfaceExternalModels(registry);
|
|
}
|
|
|
|
void runOnOperation() override {
|
|
OneShotBufferizationOptions opt;
|
|
if (!options) {
|
|
// Make new bufferization options if none were provided when creating the
|
|
// pass.
|
|
opt.allowReturnAllocs = allowReturnAllocs;
|
|
opt.allowUnknownOps = allowUnknownOps;
|
|
opt.analysisFuzzerSeed = analysisFuzzerSeed;
|
|
opt.createDeallocs = createDeallocs;
|
|
opt.functionBoundaryTypeConversion =
|
|
parseLayoutMapOption(functionBoundaryTypeConversion);
|
|
if (mustInferMemorySpace)
|
|
opt.defaultMemorySpace = None;
|
|
opt.printConflicts = printConflicts;
|
|
opt.testAnalysisOnly = testAnalysisOnly;
|
|
opt.bufferizeFunctionBoundaries = bufferizeFunctionBoundaries;
|
|
|
|
// Configure type converter.
|
|
BufferizationOptions::LayoutMapOption unknownTypeConversionOption =
|
|
parseLayoutMapOption(unknownTypeConversion);
|
|
opt.unknownTypeConverterFn = [=](Value value, unsigned memorySpace,
|
|
const BufferizationOptions &options) {
|
|
auto tensorType = value.getType().cast<TensorType>();
|
|
if (unknownTypeConversionOption ==
|
|
BufferizationOptions::LayoutMapOption::IdentityLayoutMap)
|
|
return bufferization::getMemRefTypeWithStaticIdentityLayout(
|
|
tensorType, memorySpace);
|
|
assert(
|
|
unknownTypeConversionOption ==
|
|
BufferizationOptions::LayoutMapOption::FullyDynamicLayoutMap &&
|
|
"invalid layout map option");
|
|
return bufferization::getMemRefTypeWithFullyDynamicLayout(tensorType,
|
|
memorySpace);
|
|
};
|
|
|
|
// Configure op filter.
|
|
OpFilter::Entry::FilterFn filterFn = [&](Operation *op) {
|
|
// Filter may be specified via options.
|
|
if (this->dialectFilter.hasValue())
|
|
return llvm::is_contained(this->dialectFilter,
|
|
op->getDialect()->getNamespace());
|
|
// No filter specified: All other ops are allowed.
|
|
return true;
|
|
};
|
|
opt.opFilter.allowOperation(filterFn);
|
|
} else {
|
|
opt = *options;
|
|
}
|
|
|
|
ModuleOp moduleOp = getOperation();
|
|
if (opt.bufferizeFunctionBoundaries) {
|
|
if (failed(runOneShotModuleBufferize(moduleOp, opt))) {
|
|
signalPassFailure();
|
|
return;
|
|
}
|
|
} else {
|
|
if (failed(runOneShotBufferize(moduleOp, opt))) {
|
|
signalPassFailure();
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (opt.testAnalysisOnly)
|
|
return;
|
|
|
|
OpPassManager cleanupPipeline("builtin.module");
|
|
cleanupPipeline.addPass(createCanonicalizerPass());
|
|
cleanupPipeline.addPass(createCSEPass());
|
|
cleanupPipeline.addPass(createLoopInvariantCodeMotionPass());
|
|
(void)runPipeline(cleanupPipeline, moduleOp);
|
|
}
|
|
|
|
private:
|
|
llvm::Optional<OneShotBufferizationOptions> options;
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
struct BufferizationBufferizePass
|
|
: public BufferizationBufferizeBase<BufferizationBufferizePass> {
|
|
void runOnOperation() override {
|
|
BufferizationOptions options = getPartialBufferizationOptions();
|
|
options.opFilter.allowDialect<BufferizationDialect>();
|
|
|
|
if (failed(bufferizeOp(getOperation(), options)))
|
|
signalPassFailure();
|
|
}
|
|
|
|
void getDependentDialects(DialectRegistry ®istry) const override {
|
|
registry
|
|
.insert<bufferization::BufferizationDialect, memref::MemRefDialect>();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<Pass> mlir::bufferization::createBufferizationBufferizePass() {
|
|
return std::make_unique<BufferizationBufferizePass>();
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::bufferization::createOneShotBufferizePass() {
|
|
return std::make_unique<OneShotBufferizePass>();
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::bufferization::createOneShotBufferizePass(
|
|
const OneShotBufferizationOptions &options) {
|
|
return std::make_unique<OneShotBufferizePass>(options);
|
|
}
|
|
|
|
std::unique_ptr<OperationPass<func::FuncOp>>
|
|
mlir::bufferization::createFinalizingBufferizePass() {
|
|
return std::make_unique<FinalizingBufferizePass>();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BufferizableOpInterface-based Bufferization
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool isaTensor(Type t) { return t.isa<TensorType>(); }
|
|
|
|
/// Return true if the given op has a tensor result or a tensor operand.
|
|
static bool hasTensorSemantics(Operation *op) {
|
|
if (auto funcOp = dyn_cast<FunctionOpInterface>(op)) {
|
|
bool hasTensorArg = any_of(funcOp.getArgumentTypes(), isaTensor);
|
|
bool hasTensorResult = any_of(funcOp.getResultTypes(), isaTensor);
|
|
return hasTensorArg || hasTensorResult;
|
|
}
|
|
|
|
bool hasTensorResult = any_of(op->getResultTypes(), isaTensor);
|
|
bool hasTensorOperand = any_of(op->getOperandTypes(), isaTensor);
|
|
return hasTensorResult || hasTensorOperand;
|
|
}
|
|
|
|
namespace {
|
|
/// A rewriter that keeps track of extra information during bufferization.
|
|
class BufferizationRewriter : public IRRewriter {
|
|
public:
|
|
BufferizationRewriter(MLIRContext *ctx, DenseSet<Operation *> &erasedOps,
|
|
DenseSet<Operation *> &toMemrefOps,
|
|
SmallVector<Operation *> &worklist,
|
|
const BufferizationOptions &options,
|
|
const OpFilter *opFilter)
|
|
: IRRewriter(ctx), erasedOps(erasedOps), toMemrefOps(toMemrefOps),
|
|
worklist(worklist), analysisState(options), opFilter(opFilter) {}
|
|
|
|
protected:
|
|
void notifyOperationRemoved(Operation *op) override {
|
|
IRRewriter::notifyOperationRemoved(op);
|
|
erasedOps.insert(op);
|
|
// Erase if present.
|
|
toMemrefOps.erase(op);
|
|
}
|
|
|
|
void notifyOperationInserted(Operation *op) override {
|
|
IRRewriter::notifyOperationInserted(op);
|
|
erasedOps.erase(op);
|
|
|
|
// Keep track of to_memref ops.
|
|
if (isa<ToMemrefOp>(op)) {
|
|
toMemrefOps.insert(op);
|
|
return;
|
|
}
|
|
|
|
// Skip to_tensor ops.
|
|
if (isa<ToTensorOp>(op))
|
|
return;
|
|
|
|
// Skip non-tensor ops.
|
|
if (!hasTensorSemantics(op))
|
|
return;
|
|
|
|
// Skip ops that are not allowed to be bufferized.
|
|
auto const &options = analysisState.getOptions();
|
|
if (!options.isOpAllowed(op) || (opFilter && !opFilter->isOpAllowed(op)))
|
|
return;
|
|
|
|
#ifndef NDEBUG
|
|
// Read-only tensor ops may be created during bufferization. Ops that are
|
|
// writing should not be created because such ops were never analyzed.
|
|
// Bufferizing such ops could introduce a RaW conflict.
|
|
for (OpOperand &operand : op->getOpOperands())
|
|
if (operand.get().getType().isa<TensorType>())
|
|
assert(!analysisState.bufferizesToMemoryWrite(operand) &&
|
|
"creating tensor ops that bufferize to a memory write is not "
|
|
"allowed during bufferization");
|
|
#endif // NDEBUG
|
|
|
|
// Add op to worklist.
|
|
worklist.push_back(op);
|
|
}
|
|
|
|
private:
|
|
/// A set of all erased ops.
|
|
DenseSet<Operation *> &erasedOps;
|
|
|
|
/// A set of all to_memref ops.
|
|
DenseSet<Operation *> &toMemrefOps;
|
|
|
|
/// The worklist of ops to be bufferized.
|
|
SmallVector<Operation *> &worklist;
|
|
|
|
/// The analysis state. Used for debug assertions and access to the
|
|
/// bufferization options.
|
|
const AnalysisState analysisState;
|
|
|
|
/// An extra op filter for bufferization.
|
|
const OpFilter *opFilter;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult bufferization::bufferizeOp(Operation *op,
|
|
const BufferizationOptions &options,
|
|
bool copyBeforeWrite,
|
|
const OpFilter *opFilter) {
|
|
if (copyBeforeWrite) {
|
|
AnalysisState state(options);
|
|
if (failed(insertTensorCopies(op, state)))
|
|
return failure();
|
|
}
|
|
|
|
// Keep track of to_memref ops.
|
|
DenseSet<Operation *> toMemrefOps;
|
|
op->walk([&](ToMemrefOp toMemrefOp) { toMemrefOps.insert(toMemrefOp); });
|
|
|
|
// Gather all bufferizable ops in top-to-bottom order.
|
|
//
|
|
// We should ideally know the exact memref type of all operands when
|
|
// bufferizing an op. (This is the case when bufferizing top-to-bottom.)
|
|
// Otherwise, we have to use a memref type with a fully dynamic layout map to
|
|
// avoid copies. We are currently missing patterns for layout maps to
|
|
// canonicalize away (or canonicalize to more precise layouts).
|
|
//
|
|
// FuncOps must be bufferized before their bodies, so add them to the worklist
|
|
// first.
|
|
SmallVector<Operation *> worklist;
|
|
op->walk([&](func::FuncOp funcOp) {
|
|
if (hasTensorSemantics(funcOp))
|
|
worklist.push_back(funcOp);
|
|
});
|
|
op->walk<WalkOrder::PostOrder>([&](Operation *op) {
|
|
if (hasTensorSemantics(op) && !isa<func::FuncOp>(op))
|
|
worklist.push_back(op);
|
|
});
|
|
|
|
// Keep track of all erased ops.
|
|
DenseSet<Operation *> erasedOps;
|
|
|
|
// Bufferize all ops.
|
|
BufferizationRewriter rewriter(op->getContext(), erasedOps, toMemrefOps,
|
|
worklist, options, opFilter);
|
|
for (unsigned i = 0; i < worklist.size(); ++i) {
|
|
Operation *op = worklist[i];
|
|
// Skip ops that were erased.
|
|
if (erasedOps.contains(op))
|
|
continue;
|
|
// Skip ops that are not bufferizable or not allowed.
|
|
auto bufferizableOp = options.dynCastBufferizableOp(op);
|
|
if (!bufferizableOp)
|
|
continue;
|
|
if (opFilter && !opFilter->isOpAllowed(op))
|
|
continue;
|
|
// Skip ops that no longer have tensor semantics.
|
|
if (!hasTensorSemantics(op))
|
|
continue;
|
|
// Bufferize the op.
|
|
rewriter.setInsertionPoint(op);
|
|
if (failed(bufferizableOp.bufferize(rewriter, options)))
|
|
return op->emitError("failed to bufferize op");
|
|
}
|
|
|
|
// Fold all to_memref(to_tensor(x)) pairs.
|
|
for (Operation *op : toMemrefOps) {
|
|
rewriter.setInsertionPoint(op);
|
|
(void)bufferization::foldToMemrefToTensorPair(rewriter,
|
|
cast<ToMemrefOp>(op));
|
|
}
|
|
|
|
/// Check the result of bufferization. Return an error if an op was not
|
|
/// bufferized, unless partial bufferization is allowed.
|
|
if (options.allowUnknownOps)
|
|
return success();
|
|
|
|
for (Operation *op : worklist) {
|
|
// Skip ops that are entirely gone.
|
|
if (erasedOps.contains(op))
|
|
continue;
|
|
// Ops that no longer have tensor semantics (because they were updated
|
|
// in-place) are allowed.
|
|
if (!hasTensorSemantics(op))
|
|
continue;
|
|
// Continue ops that are not allowed.
|
|
if (!options.isOpAllowed(op))
|
|
continue;
|
|
if (opFilter && !opFilter->isOpAllowed(op))
|
|
continue;
|
|
// Ops without any uses and no side effects will fold away.
|
|
if (op->getUses().empty() && MemoryEffectOpInterface::hasNoEffect(op))
|
|
continue;
|
|
// ToTensorOps/ToMemrefOps are allowed in the output.
|
|
if (isa<ToTensorOp, ToMemrefOp>(op))
|
|
continue;
|
|
return op->emitError("op was not bufferized");
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
BufferizationOptions bufferization::getPartialBufferizationOptions() {
|
|
BufferizationOptions options;
|
|
options.allowUnknownOps = true;
|
|
options.createDeallocs = false;
|
|
options.enforceAliasingInvariants = false;
|
|
options.unknownTypeConverterFn = [](Value value, unsigned memorySpace,
|
|
const BufferizationOptions &options) {
|
|
return getMemRefTypeWithStaticIdentityLayout(
|
|
value.getType().cast<TensorType>(), memorySpace);
|
|
};
|
|
options.opFilter.allowDialect<BufferizationDialect>();
|
|
return options;
|
|
}
|