2028 lines
73 KiB
C++
2028 lines
73 KiB
C++
//===- ArithmeticOps.cpp - MLIR Arithmetic dialect ops implementation -----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include <utility>
|
|
|
|
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
|
#include "mlir/Dialect/CommonFolders.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/OpImplementation.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
|
|
#include "llvm/ADT/APSInt.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::arith;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pattern helpers
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static IntegerAttr addIntegerAttrs(PatternRewriter &builder, Value res,
|
|
Attribute lhs, Attribute rhs) {
|
|
return builder.getIntegerAttr(res.getType(),
|
|
lhs.cast<IntegerAttr>().getInt() +
|
|
rhs.cast<IntegerAttr>().getInt());
|
|
}
|
|
|
|
static IntegerAttr subIntegerAttrs(PatternRewriter &builder, Value res,
|
|
Attribute lhs, Attribute rhs) {
|
|
return builder.getIntegerAttr(res.getType(),
|
|
lhs.cast<IntegerAttr>().getInt() -
|
|
rhs.cast<IntegerAttr>().getInt());
|
|
}
|
|
|
|
/// Invert an integer comparison predicate.
|
|
arith::CmpIPredicate arith::invertPredicate(arith::CmpIPredicate pred) {
|
|
switch (pred) {
|
|
case arith::CmpIPredicate::eq:
|
|
return arith::CmpIPredicate::ne;
|
|
case arith::CmpIPredicate::ne:
|
|
return arith::CmpIPredicate::eq;
|
|
case arith::CmpIPredicate::slt:
|
|
return arith::CmpIPredicate::sge;
|
|
case arith::CmpIPredicate::sle:
|
|
return arith::CmpIPredicate::sgt;
|
|
case arith::CmpIPredicate::sgt:
|
|
return arith::CmpIPredicate::sle;
|
|
case arith::CmpIPredicate::sge:
|
|
return arith::CmpIPredicate::slt;
|
|
case arith::CmpIPredicate::ult:
|
|
return arith::CmpIPredicate::uge;
|
|
case arith::CmpIPredicate::ule:
|
|
return arith::CmpIPredicate::ugt;
|
|
case arith::CmpIPredicate::ugt:
|
|
return arith::CmpIPredicate::ule;
|
|
case arith::CmpIPredicate::uge:
|
|
return arith::CmpIPredicate::ult;
|
|
}
|
|
llvm_unreachable("unknown cmpi predicate kind");
|
|
}
|
|
|
|
static arith::CmpIPredicateAttr invertPredicate(arith::CmpIPredicateAttr pred) {
|
|
return arith::CmpIPredicateAttr::get(pred.getContext(),
|
|
invertPredicate(pred.getValue()));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TableGen'd canonicalization patterns
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
#include "ArithmeticCanonicalization.inc"
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConstantOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void arith::ConstantOp::getAsmResultNames(
|
|
function_ref<void(Value, StringRef)> setNameFn) {
|
|
auto type = getType();
|
|
if (auto intCst = getValue().dyn_cast<IntegerAttr>()) {
|
|
auto intType = type.dyn_cast<IntegerType>();
|
|
|
|
// Sugar i1 constants with 'true' and 'false'.
|
|
if (intType && intType.getWidth() == 1)
|
|
return setNameFn(getResult(), (intCst.getInt() ? "true" : "false"));
|
|
|
|
// Otherwise, build a compex name with the value and type.
|
|
SmallString<32> specialNameBuffer;
|
|
llvm::raw_svector_ostream specialName(specialNameBuffer);
|
|
specialName << 'c' << intCst.getInt();
|
|
if (intType)
|
|
specialName << '_' << type;
|
|
setNameFn(getResult(), specialName.str());
|
|
} else {
|
|
setNameFn(getResult(), "cst");
|
|
}
|
|
}
|
|
|
|
/// TODO: disallow arith.constant to return anything other than signless integer
|
|
/// or float like.
|
|
LogicalResult arith::ConstantOp::verify() {
|
|
auto type = getType();
|
|
// The value's type must match the return type.
|
|
if (getValue().getType() != type) {
|
|
return emitOpError() << "value type " << getValue().getType()
|
|
<< " must match return type: " << type;
|
|
}
|
|
// Integer values must be signless.
|
|
if (type.isa<IntegerType>() && !type.cast<IntegerType>().isSignless())
|
|
return emitOpError("integer return type must be signless");
|
|
// Any float or elements attribute are acceptable.
|
|
if (!getValue().isa<IntegerAttr, FloatAttr, ElementsAttr>()) {
|
|
return emitOpError(
|
|
"value must be an integer, float, or elements attribute");
|
|
}
|
|
return success();
|
|
}
|
|
|
|
bool arith::ConstantOp::isBuildableWith(Attribute value, Type type) {
|
|
// The value's type must be the same as the provided type.
|
|
if (value.getType() != type)
|
|
return false;
|
|
// Integer values must be signless.
|
|
if (type.isa<IntegerType>() && !type.cast<IntegerType>().isSignless())
|
|
return false;
|
|
// Integer, float, and element attributes are buildable.
|
|
return value.isa<IntegerAttr, FloatAttr, ElementsAttr>();
|
|
}
|
|
|
|
OpFoldResult arith::ConstantOp::fold(ArrayRef<Attribute> operands) {
|
|
return getValue();
|
|
}
|
|
|
|
void arith::ConstantIntOp::build(OpBuilder &builder, OperationState &result,
|
|
int64_t value, unsigned width) {
|
|
auto type = builder.getIntegerType(width);
|
|
arith::ConstantOp::build(builder, result, type,
|
|
builder.getIntegerAttr(type, value));
|
|
}
|
|
|
|
void arith::ConstantIntOp::build(OpBuilder &builder, OperationState &result,
|
|
int64_t value, Type type) {
|
|
assert(type.isSignlessInteger() &&
|
|
"ConstantIntOp can only have signless integer type values");
|
|
arith::ConstantOp::build(builder, result, type,
|
|
builder.getIntegerAttr(type, value));
|
|
}
|
|
|
|
bool arith::ConstantIntOp::classof(Operation *op) {
|
|
if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op))
|
|
return constOp.getType().isSignlessInteger();
|
|
return false;
|
|
}
|
|
|
|
void arith::ConstantFloatOp::build(OpBuilder &builder, OperationState &result,
|
|
const APFloat &value, FloatType type) {
|
|
arith::ConstantOp::build(builder, result, type,
|
|
builder.getFloatAttr(type, value));
|
|
}
|
|
|
|
bool arith::ConstantFloatOp::classof(Operation *op) {
|
|
if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op))
|
|
return constOp.getType().isa<FloatType>();
|
|
return false;
|
|
}
|
|
|
|
void arith::ConstantIndexOp::build(OpBuilder &builder, OperationState &result,
|
|
int64_t value) {
|
|
arith::ConstantOp::build(builder, result, builder.getIndexType(),
|
|
builder.getIndexAttr(value));
|
|
}
|
|
|
|
bool arith::ConstantIndexOp::classof(Operation *op) {
|
|
if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op))
|
|
return constOp.getType().isIndex();
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AddIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::AddIOp::fold(ArrayRef<Attribute> operands) {
|
|
// addi(x, 0) -> x
|
|
if (matchPattern(getRhs(), m_Zero()))
|
|
return getLhs();
|
|
|
|
// addi(subi(a, b), b) -> a
|
|
if (auto sub = getLhs().getDefiningOp<SubIOp>())
|
|
if (getRhs() == sub.getRhs())
|
|
return sub.getLhs();
|
|
|
|
// addi(b, subi(a, b)) -> a
|
|
if (auto sub = getRhs().getDefiningOp<SubIOp>())
|
|
if (getLhs() == sub.getRhs())
|
|
return sub.getLhs();
|
|
|
|
return constFoldBinaryOp<IntegerAttr>(
|
|
operands, [](APInt a, const APInt &b) { return std::move(a) + b; });
|
|
}
|
|
|
|
void arith::AddIOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add<AddIAddConstant, AddISubConstantRHS, AddISubConstantLHS>(
|
|
context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SubIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::SubIOp::fold(ArrayRef<Attribute> operands) {
|
|
// subi(x,x) -> 0
|
|
if (getOperand(0) == getOperand(1))
|
|
return Builder(getContext()).getZeroAttr(getType());
|
|
// subi(x,0) -> x
|
|
if (matchPattern(getRhs(), m_Zero()))
|
|
return getLhs();
|
|
|
|
return constFoldBinaryOp<IntegerAttr>(
|
|
operands, [](APInt a, const APInt &b) { return std::move(a) - b; });
|
|
}
|
|
|
|
void arith::SubIOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns
|
|
.add<SubIRHSAddConstant, SubILHSAddConstant, SubIRHSSubConstantRHS,
|
|
SubIRHSSubConstantLHS, SubILHSSubConstantRHS, SubILHSSubConstantLHS>(
|
|
context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MulIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::MulIOp::fold(ArrayRef<Attribute> operands) {
|
|
// muli(x, 0) -> 0
|
|
if (matchPattern(getRhs(), m_Zero()))
|
|
return getRhs();
|
|
// muli(x, 1) -> x
|
|
if (matchPattern(getRhs(), m_One()))
|
|
return getOperand(0);
|
|
// TODO: Handle the overflow case.
|
|
|
|
// default folder
|
|
return constFoldBinaryOp<IntegerAttr>(
|
|
operands, [](const APInt &a, const APInt &b) { return a * b; });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DivUIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::DivUIOp::fold(ArrayRef<Attribute> operands) {
|
|
// divui (x, 1) -> x.
|
|
if (matchPattern(getRhs(), m_One()))
|
|
return getLhs();
|
|
|
|
// Don't fold if it would require a division by zero.
|
|
bool div0 = false;
|
|
auto result =
|
|
constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) {
|
|
if (div0 || !b) {
|
|
div0 = true;
|
|
return a;
|
|
}
|
|
return a.udiv(b);
|
|
});
|
|
|
|
return div0 ? Attribute() : result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DivSIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::DivSIOp::fold(ArrayRef<Attribute> operands) {
|
|
// divsi (x, 1) -> x.
|
|
if (matchPattern(getRhs(), m_One()))
|
|
return getLhs();
|
|
|
|
// Don't fold if it would overflow or if it requires a division by zero.
|
|
bool overflowOrDiv0 = false;
|
|
auto result =
|
|
constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) {
|
|
if (overflowOrDiv0 || !b) {
|
|
overflowOrDiv0 = true;
|
|
return a;
|
|
}
|
|
return a.sdiv_ov(b, overflowOrDiv0);
|
|
});
|
|
|
|
return overflowOrDiv0 ? Attribute() : result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Ceil and floor division folding helpers
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static APInt signedCeilNonnegInputs(const APInt &a, const APInt &b,
|
|
bool &overflow) {
|
|
// Returns (a-1)/b + 1
|
|
APInt one(a.getBitWidth(), 1, true); // Signed value 1.
|
|
APInt val = a.ssub_ov(one, overflow).sdiv_ov(b, overflow);
|
|
return val.sadd_ov(one, overflow);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CeilDivUIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::CeilDivUIOp::fold(ArrayRef<Attribute> operands) {
|
|
// ceildivui (x, 1) -> x.
|
|
if (matchPattern(getRhs(), m_One()))
|
|
return getLhs();
|
|
|
|
bool overflowOrDiv0 = false;
|
|
auto result =
|
|
constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) {
|
|
if (overflowOrDiv0 || !b) {
|
|
overflowOrDiv0 = true;
|
|
return a;
|
|
}
|
|
APInt quotient = a.udiv(b);
|
|
if (!a.urem(b))
|
|
return quotient;
|
|
APInt one(a.getBitWidth(), 1, true);
|
|
return quotient.uadd_ov(one, overflowOrDiv0);
|
|
});
|
|
|
|
return overflowOrDiv0 ? Attribute() : result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CeilDivSIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::CeilDivSIOp::fold(ArrayRef<Attribute> operands) {
|
|
// ceildivsi (x, 1) -> x.
|
|
if (matchPattern(getRhs(), m_One()))
|
|
return getLhs();
|
|
|
|
// Don't fold if it would overflow or if it requires a division by zero.
|
|
bool overflowOrDiv0 = false;
|
|
auto result =
|
|
constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) {
|
|
if (overflowOrDiv0 || !b) {
|
|
overflowOrDiv0 = true;
|
|
return a;
|
|
}
|
|
if (!a)
|
|
return a;
|
|
// After this point we know that neither a or b are zero.
|
|
unsigned bits = a.getBitWidth();
|
|
APInt zero = APInt::getZero(bits);
|
|
bool aGtZero = a.sgt(zero);
|
|
bool bGtZero = b.sgt(zero);
|
|
if (aGtZero && bGtZero) {
|
|
// Both positive, return ceil(a, b).
|
|
return signedCeilNonnegInputs(a, b, overflowOrDiv0);
|
|
}
|
|
if (!aGtZero && !bGtZero) {
|
|
// Both negative, return ceil(-a, -b).
|
|
APInt posA = zero.ssub_ov(a, overflowOrDiv0);
|
|
APInt posB = zero.ssub_ov(b, overflowOrDiv0);
|
|
return signedCeilNonnegInputs(posA, posB, overflowOrDiv0);
|
|
}
|
|
if (!aGtZero && bGtZero) {
|
|
// A is negative, b is positive, return - ( -a / b).
|
|
APInt posA = zero.ssub_ov(a, overflowOrDiv0);
|
|
APInt div = posA.sdiv_ov(b, overflowOrDiv0);
|
|
return zero.ssub_ov(div, overflowOrDiv0);
|
|
}
|
|
// A is positive, b is negative, return - (a / -b).
|
|
APInt posB = zero.ssub_ov(b, overflowOrDiv0);
|
|
APInt div = a.sdiv_ov(posB, overflowOrDiv0);
|
|
return zero.ssub_ov(div, overflowOrDiv0);
|
|
});
|
|
|
|
return overflowOrDiv0 ? Attribute() : result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FloorDivSIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::FloorDivSIOp::fold(ArrayRef<Attribute> operands) {
|
|
// floordivsi (x, 1) -> x.
|
|
if (matchPattern(getRhs(), m_One()))
|
|
return getLhs();
|
|
|
|
// Don't fold if it would overflow or if it requires a division by zero.
|
|
bool overflowOrDiv0 = false;
|
|
auto result =
|
|
constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) {
|
|
if (overflowOrDiv0 || !b) {
|
|
overflowOrDiv0 = true;
|
|
return a;
|
|
}
|
|
if (!a)
|
|
return a;
|
|
// After this point we know that neither a or b are zero.
|
|
unsigned bits = a.getBitWidth();
|
|
APInt zero = APInt::getZero(bits);
|
|
bool aGtZero = a.sgt(zero);
|
|
bool bGtZero = b.sgt(zero);
|
|
if (aGtZero && bGtZero) {
|
|
// Both positive, return a / b.
|
|
return a.sdiv_ov(b, overflowOrDiv0);
|
|
}
|
|
if (!aGtZero && !bGtZero) {
|
|
// Both negative, return -a / -b.
|
|
APInt posA = zero.ssub_ov(a, overflowOrDiv0);
|
|
APInt posB = zero.ssub_ov(b, overflowOrDiv0);
|
|
return posA.sdiv_ov(posB, overflowOrDiv0);
|
|
}
|
|
if (!aGtZero && bGtZero) {
|
|
// A is negative, b is positive, return - ceil(-a, b).
|
|
APInt posA = zero.ssub_ov(a, overflowOrDiv0);
|
|
APInt ceil = signedCeilNonnegInputs(posA, b, overflowOrDiv0);
|
|
return zero.ssub_ov(ceil, overflowOrDiv0);
|
|
}
|
|
// A is positive, b is negative, return - ceil(a, -b).
|
|
APInt posB = zero.ssub_ov(b, overflowOrDiv0);
|
|
APInt ceil = signedCeilNonnegInputs(a, posB, overflowOrDiv0);
|
|
return zero.ssub_ov(ceil, overflowOrDiv0);
|
|
});
|
|
|
|
return overflowOrDiv0 ? Attribute() : result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RemUIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::RemUIOp::fold(ArrayRef<Attribute> operands) {
|
|
// remui (x, 1) -> 0.
|
|
if (matchPattern(getRhs(), m_One()))
|
|
return Builder(getContext()).getZeroAttr(getType());
|
|
|
|
// Don't fold if it would require a division by zero.
|
|
bool div0 = false;
|
|
auto result =
|
|
constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) {
|
|
if (div0 || b.isNullValue()) {
|
|
div0 = true;
|
|
return a;
|
|
}
|
|
return a.urem(b);
|
|
});
|
|
|
|
return div0 ? Attribute() : result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RemSIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::RemSIOp::fold(ArrayRef<Attribute> operands) {
|
|
// remsi (x, 1) -> 0.
|
|
if (matchPattern(getRhs(), m_One()))
|
|
return Builder(getContext()).getZeroAttr(getType());
|
|
|
|
// Don't fold if it would require a division by zero.
|
|
bool div0 = false;
|
|
auto result =
|
|
constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) {
|
|
if (div0 || b.isNullValue()) {
|
|
div0 = true;
|
|
return a;
|
|
}
|
|
return a.srem(b);
|
|
});
|
|
|
|
return div0 ? Attribute() : result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AndIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::AndIOp::fold(ArrayRef<Attribute> operands) {
|
|
/// and(x, 0) -> 0
|
|
if (matchPattern(getRhs(), m_Zero()))
|
|
return getRhs();
|
|
/// and(x, allOnes) -> x
|
|
APInt intValue;
|
|
if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isAllOnes())
|
|
return getLhs();
|
|
|
|
return constFoldBinaryOp<IntegerAttr>(
|
|
operands, [](APInt a, const APInt &b) { return std::move(a) & b; });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OrIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::OrIOp::fold(ArrayRef<Attribute> operands) {
|
|
/// or(x, 0) -> x
|
|
if (matchPattern(getRhs(), m_Zero()))
|
|
return getLhs();
|
|
/// or(x, <all ones>) -> <all ones>
|
|
if (auto rhsAttr = operands[1].dyn_cast_or_null<IntegerAttr>())
|
|
if (rhsAttr.getValue().isAllOnes())
|
|
return rhsAttr;
|
|
|
|
return constFoldBinaryOp<IntegerAttr>(
|
|
operands, [](APInt a, const APInt &b) { return std::move(a) | b; });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// XOrIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::XOrIOp::fold(ArrayRef<Attribute> operands) {
|
|
/// xor(x, 0) -> x
|
|
if (matchPattern(getRhs(), m_Zero()))
|
|
return getLhs();
|
|
/// xor(x, x) -> 0
|
|
if (getLhs() == getRhs())
|
|
return Builder(getContext()).getZeroAttr(getType());
|
|
/// xor(xor(x, a), a) -> x
|
|
if (arith::XOrIOp prev = getLhs().getDefiningOp<arith::XOrIOp>())
|
|
if (prev.getRhs() == getRhs())
|
|
return prev.getLhs();
|
|
|
|
return constFoldBinaryOp<IntegerAttr>(
|
|
operands, [](APInt a, const APInt &b) { return std::move(a) ^ b; });
|
|
}
|
|
|
|
void arith::XOrIOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add<XOrINotCmpI>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// NegFOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::NegFOp::fold(ArrayRef<Attribute> operands) {
|
|
/// negf(negf(x)) -> x
|
|
if (auto op = this->getOperand().getDefiningOp<arith::NegFOp>())
|
|
return op.getOperand();
|
|
return constFoldUnaryOp<FloatAttr>(operands,
|
|
[](const APFloat &a) { return -a; });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AddFOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::AddFOp::fold(ArrayRef<Attribute> operands) {
|
|
// addf(x, -0) -> x
|
|
if (matchPattern(getRhs(), m_NegZeroFloat()))
|
|
return getLhs();
|
|
|
|
return constFoldBinaryOp<FloatAttr>(
|
|
operands, [](const APFloat &a, const APFloat &b) { return a + b; });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SubFOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::SubFOp::fold(ArrayRef<Attribute> operands) {
|
|
// subf(x, +0) -> x
|
|
if (matchPattern(getRhs(), m_PosZeroFloat()))
|
|
return getLhs();
|
|
|
|
return constFoldBinaryOp<FloatAttr>(
|
|
operands, [](const APFloat &a, const APFloat &b) { return a - b; });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MaxFOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::MaxFOp::fold(ArrayRef<Attribute> operands) {
|
|
assert(operands.size() == 2 && "maxf takes two operands");
|
|
|
|
// maxf(x,x) -> x
|
|
if (getLhs() == getRhs())
|
|
return getRhs();
|
|
|
|
// maxf(x, -inf) -> x
|
|
if (matchPattern(getRhs(), m_NegInfFloat()))
|
|
return getLhs();
|
|
|
|
return constFoldBinaryOp<FloatAttr>(
|
|
operands,
|
|
[](const APFloat &a, const APFloat &b) { return llvm::maximum(a, b); });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MaxSIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult MaxSIOp::fold(ArrayRef<Attribute> operands) {
|
|
assert(operands.size() == 2 && "binary operation takes two operands");
|
|
|
|
// maxsi(x,x) -> x
|
|
if (getLhs() == getRhs())
|
|
return getRhs();
|
|
|
|
APInt intValue;
|
|
// maxsi(x,MAX_INT) -> MAX_INT
|
|
if (matchPattern(getRhs(), m_ConstantInt(&intValue)) &&
|
|
intValue.isMaxSignedValue())
|
|
return getRhs();
|
|
|
|
// maxsi(x, MIN_INT) -> x
|
|
if (matchPattern(getRhs(), m_ConstantInt(&intValue)) &&
|
|
intValue.isMinSignedValue())
|
|
return getLhs();
|
|
|
|
return constFoldBinaryOp<IntegerAttr>(operands,
|
|
[](const APInt &a, const APInt &b) {
|
|
return llvm::APIntOps::smax(a, b);
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MaxUIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult MaxUIOp::fold(ArrayRef<Attribute> operands) {
|
|
assert(operands.size() == 2 && "binary operation takes two operands");
|
|
|
|
// maxui(x,x) -> x
|
|
if (getLhs() == getRhs())
|
|
return getRhs();
|
|
|
|
APInt intValue;
|
|
// maxui(x,MAX_INT) -> MAX_INT
|
|
if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMaxValue())
|
|
return getRhs();
|
|
|
|
// maxui(x, MIN_INT) -> x
|
|
if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMinValue())
|
|
return getLhs();
|
|
|
|
return constFoldBinaryOp<IntegerAttr>(operands,
|
|
[](const APInt &a, const APInt &b) {
|
|
return llvm::APIntOps::umax(a, b);
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MinFOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::MinFOp::fold(ArrayRef<Attribute> operands) {
|
|
assert(operands.size() == 2 && "minf takes two operands");
|
|
|
|
// minf(x,x) -> x
|
|
if (getLhs() == getRhs())
|
|
return getRhs();
|
|
|
|
// minf(x, +inf) -> x
|
|
if (matchPattern(getRhs(), m_PosInfFloat()))
|
|
return getLhs();
|
|
|
|
return constFoldBinaryOp<FloatAttr>(
|
|
operands,
|
|
[](const APFloat &a, const APFloat &b) { return llvm::minimum(a, b); });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MinSIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult MinSIOp::fold(ArrayRef<Attribute> operands) {
|
|
assert(operands.size() == 2 && "binary operation takes two operands");
|
|
|
|
// minsi(x,x) -> x
|
|
if (getLhs() == getRhs())
|
|
return getRhs();
|
|
|
|
APInt intValue;
|
|
// minsi(x,MIN_INT) -> MIN_INT
|
|
if (matchPattern(getRhs(), m_ConstantInt(&intValue)) &&
|
|
intValue.isMinSignedValue())
|
|
return getRhs();
|
|
|
|
// minsi(x, MAX_INT) -> x
|
|
if (matchPattern(getRhs(), m_ConstantInt(&intValue)) &&
|
|
intValue.isMaxSignedValue())
|
|
return getLhs();
|
|
|
|
return constFoldBinaryOp<IntegerAttr>(operands,
|
|
[](const APInt &a, const APInt &b) {
|
|
return llvm::APIntOps::smin(a, b);
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MinUIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult MinUIOp::fold(ArrayRef<Attribute> operands) {
|
|
assert(operands.size() == 2 && "binary operation takes two operands");
|
|
|
|
// minui(x,x) -> x
|
|
if (getLhs() == getRhs())
|
|
return getRhs();
|
|
|
|
APInt intValue;
|
|
// minui(x,MIN_INT) -> MIN_INT
|
|
if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMinValue())
|
|
return getRhs();
|
|
|
|
// minui(x, MAX_INT) -> x
|
|
if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMaxValue())
|
|
return getLhs();
|
|
|
|
return constFoldBinaryOp<IntegerAttr>(operands,
|
|
[](const APInt &a, const APInt &b) {
|
|
return llvm::APIntOps::umin(a, b);
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MulFOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::MulFOp::fold(ArrayRef<Attribute> operands) {
|
|
// mulf(x, 1) -> x
|
|
if (matchPattern(getRhs(), m_OneFloat()))
|
|
return getLhs();
|
|
|
|
return constFoldBinaryOp<FloatAttr>(
|
|
operands, [](const APFloat &a, const APFloat &b) { return a * b; });
|
|
}
|
|
|
|
void arith::MulFOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add<MulFOfNegF>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DivFOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::DivFOp::fold(ArrayRef<Attribute> operands) {
|
|
// divf(x, 1) -> x
|
|
if (matchPattern(getRhs(), m_OneFloat()))
|
|
return getLhs();
|
|
|
|
return constFoldBinaryOp<FloatAttr>(
|
|
operands, [](const APFloat &a, const APFloat &b) { return a / b; });
|
|
}
|
|
|
|
void arith::DivFOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add<DivFOfNegF>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RemFOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::RemFOp::fold(ArrayRef<Attribute> operands) {
|
|
return constFoldBinaryOp<FloatAttr>(operands,
|
|
[](const APFloat &a, const APFloat &b) {
|
|
APFloat result(a);
|
|
(void)result.remainder(b);
|
|
return result;
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility functions for verifying cast ops
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename... Types>
|
|
using type_list = std::tuple<Types...> *;
|
|
|
|
/// Returns a non-null type only if the provided type is one of the allowed
|
|
/// types or one of the allowed shaped types of the allowed types. Returns the
|
|
/// element type if a valid shaped type is provided.
|
|
template <typename... ShapedTypes, typename... ElementTypes>
|
|
static Type getUnderlyingType(Type type, type_list<ShapedTypes...>,
|
|
type_list<ElementTypes...>) {
|
|
if (type.isa<ShapedType>() && !type.isa<ShapedTypes...>())
|
|
return {};
|
|
|
|
auto underlyingType = getElementTypeOrSelf(type);
|
|
if (!underlyingType.isa<ElementTypes...>())
|
|
return {};
|
|
|
|
return underlyingType;
|
|
}
|
|
|
|
/// Get allowed underlying types for vectors and tensors.
|
|
template <typename... ElementTypes>
|
|
static Type getTypeIfLike(Type type) {
|
|
return getUnderlyingType(type, type_list<VectorType, TensorType>(),
|
|
type_list<ElementTypes...>());
|
|
}
|
|
|
|
/// Get allowed underlying types for vectors, tensors, and memrefs.
|
|
template <typename... ElementTypes>
|
|
static Type getTypeIfLikeOrMemRef(Type type) {
|
|
return getUnderlyingType(type,
|
|
type_list<VectorType, TensorType, MemRefType>(),
|
|
type_list<ElementTypes...>());
|
|
}
|
|
|
|
static bool areValidCastInputsAndOutputs(TypeRange inputs, TypeRange outputs) {
|
|
return inputs.size() == 1 && outputs.size() == 1 &&
|
|
succeeded(verifyCompatibleShapes(inputs.front(), outputs.front()));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Verifiers for integer and floating point extension/truncation ops
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Extend ops can only extend to a wider type.
|
|
template <typename ValType, typename Op>
|
|
static LogicalResult verifyExtOp(Op op) {
|
|
Type srcType = getElementTypeOrSelf(op.getIn().getType());
|
|
Type dstType = getElementTypeOrSelf(op.getType());
|
|
|
|
if (srcType.cast<ValType>().getWidth() >= dstType.cast<ValType>().getWidth())
|
|
return op.emitError("result type ")
|
|
<< dstType << " must be wider than operand type " << srcType;
|
|
|
|
return success();
|
|
}
|
|
|
|
// Truncate ops can only truncate to a shorter type.
|
|
template <typename ValType, typename Op>
|
|
static LogicalResult verifyTruncateOp(Op op) {
|
|
Type srcType = getElementTypeOrSelf(op.getIn().getType());
|
|
Type dstType = getElementTypeOrSelf(op.getType());
|
|
|
|
if (srcType.cast<ValType>().getWidth() <= dstType.cast<ValType>().getWidth())
|
|
return op.emitError("result type ")
|
|
<< dstType << " must be shorter than operand type " << srcType;
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Validate a cast that changes the width of a type.
|
|
template <template <typename> class WidthComparator, typename... ElementTypes>
|
|
static bool checkWidthChangeCast(TypeRange inputs, TypeRange outputs) {
|
|
if (!areValidCastInputsAndOutputs(inputs, outputs))
|
|
return false;
|
|
|
|
auto srcType = getTypeIfLike<ElementTypes...>(inputs.front());
|
|
auto dstType = getTypeIfLike<ElementTypes...>(outputs.front());
|
|
if (!srcType || !dstType)
|
|
return false;
|
|
|
|
return WidthComparator<unsigned>()(dstType.getIntOrFloatBitWidth(),
|
|
srcType.getIntOrFloatBitWidth());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ExtUIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::ExtUIOp::fold(ArrayRef<Attribute> operands) {
|
|
if (auto lhs = getIn().getDefiningOp<ExtUIOp>()) {
|
|
getInMutable().assign(lhs.getIn());
|
|
return getResult();
|
|
}
|
|
Type resType = getType();
|
|
unsigned bitWidth;
|
|
if (auto shapedType = resType.dyn_cast<ShapedType>())
|
|
bitWidth = shapedType.getElementTypeBitWidth();
|
|
else
|
|
bitWidth = resType.getIntOrFloatBitWidth();
|
|
return constFoldCastOp<IntegerAttr, IntegerAttr>(
|
|
operands, getType(), [bitWidth](const APInt &a, bool &castStatus) {
|
|
return a.zext(bitWidth);
|
|
});
|
|
}
|
|
|
|
bool arith::ExtUIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
|
|
return checkWidthChangeCast<std::greater, IntegerType>(inputs, outputs);
|
|
}
|
|
|
|
LogicalResult arith::ExtUIOp::verify() {
|
|
return verifyExtOp<IntegerType>(*this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ExtSIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::ExtSIOp::fold(ArrayRef<Attribute> operands) {
|
|
if (auto lhs = getIn().getDefiningOp<ExtSIOp>()) {
|
|
getInMutable().assign(lhs.getIn());
|
|
return getResult();
|
|
}
|
|
Type resType = getType();
|
|
unsigned bitWidth;
|
|
if (auto shapedType = resType.dyn_cast<ShapedType>())
|
|
bitWidth = shapedType.getElementTypeBitWidth();
|
|
else
|
|
bitWidth = resType.getIntOrFloatBitWidth();
|
|
return constFoldCastOp<IntegerAttr, IntegerAttr>(
|
|
operands, getType(), [bitWidth](const APInt &a, bool &castStatus) {
|
|
return a.sext(bitWidth);
|
|
});
|
|
}
|
|
|
|
bool arith::ExtSIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
|
|
return checkWidthChangeCast<std::greater, IntegerType>(inputs, outputs);
|
|
}
|
|
|
|
void arith::ExtSIOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add<ExtSIOfExtUI>(context);
|
|
}
|
|
|
|
LogicalResult arith::ExtSIOp::verify() {
|
|
return verifyExtOp<IntegerType>(*this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ExtFOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool arith::ExtFOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
|
|
return checkWidthChangeCast<std::greater, FloatType>(inputs, outputs);
|
|
}
|
|
|
|
LogicalResult arith::ExtFOp::verify() { return verifyExtOp<FloatType>(*this); }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TruncIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::TruncIOp::fold(ArrayRef<Attribute> operands) {
|
|
assert(operands.size() == 1 && "unary operation takes one operand");
|
|
|
|
// trunci(zexti(a)) -> a
|
|
// trunci(sexti(a)) -> a
|
|
if (matchPattern(getOperand(), m_Op<arith::ExtUIOp>()) ||
|
|
matchPattern(getOperand(), m_Op<arith::ExtSIOp>()))
|
|
return getOperand().getDefiningOp()->getOperand(0);
|
|
|
|
// trunci(trunci(a)) -> trunci(a))
|
|
if (matchPattern(getOperand(), m_Op<arith::TruncIOp>())) {
|
|
setOperand(getOperand().getDefiningOp()->getOperand(0));
|
|
return getResult();
|
|
}
|
|
|
|
Type resType = getType();
|
|
unsigned bitWidth;
|
|
if (auto shapedType = resType.dyn_cast<ShapedType>())
|
|
bitWidth = shapedType.getElementTypeBitWidth();
|
|
else
|
|
bitWidth = resType.getIntOrFloatBitWidth();
|
|
|
|
return constFoldCastOp<IntegerAttr, IntegerAttr>(
|
|
operands, getType(), [bitWidth](const APInt &a, bool &castStatus) {
|
|
return a.trunc(bitWidth);
|
|
});
|
|
}
|
|
|
|
bool arith::TruncIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
|
|
return checkWidthChangeCast<std::less, IntegerType>(inputs, outputs);
|
|
}
|
|
|
|
LogicalResult arith::TruncIOp::verify() {
|
|
return verifyTruncateOp<IntegerType>(*this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TruncFOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Perform safe const propagation for truncf, i.e. only propagate if FP value
|
|
/// can be represented without precision loss or rounding.
|
|
OpFoldResult arith::TruncFOp::fold(ArrayRef<Attribute> operands) {
|
|
assert(operands.size() == 1 && "unary operation takes one operand");
|
|
|
|
auto constOperand = operands.front();
|
|
if (!constOperand || !constOperand.isa<FloatAttr>())
|
|
return {};
|
|
|
|
// Convert to target type via 'double'.
|
|
double sourceValue =
|
|
constOperand.dyn_cast<FloatAttr>().getValue().convertToDouble();
|
|
auto targetAttr = FloatAttr::get(getType(), sourceValue);
|
|
|
|
// Propagate if constant's value does not change after truncation.
|
|
if (sourceValue == targetAttr.getValue().convertToDouble())
|
|
return targetAttr;
|
|
|
|
return {};
|
|
}
|
|
|
|
bool arith::TruncFOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
|
|
return checkWidthChangeCast<std::less, FloatType>(inputs, outputs);
|
|
}
|
|
|
|
LogicalResult arith::TruncFOp::verify() {
|
|
return verifyTruncateOp<FloatType>(*this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AndIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void arith::AndIOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add<AndOfExtUI, AndOfExtSI>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OrIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void arith::OrIOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add<OrOfExtUI, OrOfExtSI>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Verifiers for casts between integers and floats.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename From, typename To>
|
|
static bool checkIntFloatCast(TypeRange inputs, TypeRange outputs) {
|
|
if (!areValidCastInputsAndOutputs(inputs, outputs))
|
|
return false;
|
|
|
|
auto srcType = getTypeIfLike<From>(inputs.front());
|
|
auto dstType = getTypeIfLike<To>(outputs.back());
|
|
|
|
return srcType && dstType;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// UIToFPOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool arith::UIToFPOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
|
|
return checkIntFloatCast<IntegerType, FloatType>(inputs, outputs);
|
|
}
|
|
|
|
OpFoldResult arith::UIToFPOp::fold(ArrayRef<Attribute> operands) {
|
|
Type resType = getType();
|
|
Type resEleType;
|
|
if (auto shapedType = resType.dyn_cast<ShapedType>())
|
|
resEleType = shapedType.getElementType();
|
|
else
|
|
resEleType = resType;
|
|
return constFoldCastOp<IntegerAttr, FloatAttr>(
|
|
operands, getType(), [&resEleType](const APInt &a, bool &castStatus) {
|
|
FloatType floatTy = resEleType.cast<FloatType>();
|
|
APFloat apf(floatTy.getFloatSemantics(),
|
|
APInt::getZero(floatTy.getWidth()));
|
|
apf.convertFromAPInt(a, /*IsSigned=*/false,
|
|
APFloat::rmNearestTiesToEven);
|
|
return apf;
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SIToFPOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool arith::SIToFPOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
|
|
return checkIntFloatCast<IntegerType, FloatType>(inputs, outputs);
|
|
}
|
|
|
|
OpFoldResult arith::SIToFPOp::fold(ArrayRef<Attribute> operands) {
|
|
Type resType = getType();
|
|
Type resEleType;
|
|
if (auto shapedType = resType.dyn_cast<ShapedType>())
|
|
resEleType = shapedType.getElementType();
|
|
else
|
|
resEleType = resType;
|
|
return constFoldCastOp<IntegerAttr, FloatAttr>(
|
|
operands, getType(), [&resEleType](const APInt &a, bool &castStatus) {
|
|
FloatType floatTy = resEleType.cast<FloatType>();
|
|
APFloat apf(floatTy.getFloatSemantics(),
|
|
APInt::getZero(floatTy.getWidth()));
|
|
apf.convertFromAPInt(a, /*IsSigned=*/true,
|
|
APFloat::rmNearestTiesToEven);
|
|
return apf;
|
|
});
|
|
}
|
|
//===----------------------------------------------------------------------===//
|
|
// FPToUIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool arith::FPToUIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
|
|
return checkIntFloatCast<FloatType, IntegerType>(inputs, outputs);
|
|
}
|
|
|
|
OpFoldResult arith::FPToUIOp::fold(ArrayRef<Attribute> operands) {
|
|
Type resType = getType();
|
|
Type resEleType;
|
|
if (auto shapedType = resType.dyn_cast<ShapedType>())
|
|
resEleType = shapedType.getElementType();
|
|
else
|
|
resEleType = resType;
|
|
return constFoldCastOp<FloatAttr, IntegerAttr>(
|
|
operands, getType(), [&resEleType](const APFloat &a, bool &castStatus) {
|
|
IntegerType intTy = resEleType.cast<IntegerType>();
|
|
bool ignored;
|
|
APSInt api(intTy.getWidth(), /*isUnsigned=*/true);
|
|
castStatus = APFloat::opInvalidOp !=
|
|
a.convertToInteger(api, APFloat::rmTowardZero, &ignored);
|
|
return api;
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FPToSIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool arith::FPToSIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
|
|
return checkIntFloatCast<FloatType, IntegerType>(inputs, outputs);
|
|
}
|
|
|
|
OpFoldResult arith::FPToSIOp::fold(ArrayRef<Attribute> operands) {
|
|
Type resType = getType();
|
|
Type resEleType;
|
|
if (auto shapedType = resType.dyn_cast<ShapedType>())
|
|
resEleType = shapedType.getElementType();
|
|
else
|
|
resEleType = resType;
|
|
return constFoldCastOp<FloatAttr, IntegerAttr>(
|
|
operands, getType(), [&resEleType](const APFloat &a, bool &castStatus) {
|
|
IntegerType intTy = resEleType.cast<IntegerType>();
|
|
bool ignored;
|
|
APSInt api(intTy.getWidth(), /*isUnsigned=*/false);
|
|
castStatus = APFloat::opInvalidOp !=
|
|
a.convertToInteger(api, APFloat::rmTowardZero, &ignored);
|
|
return api;
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IndexCastOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool arith::IndexCastOp::areCastCompatible(TypeRange inputs,
|
|
TypeRange outputs) {
|
|
if (!areValidCastInputsAndOutputs(inputs, outputs))
|
|
return false;
|
|
|
|
auto srcType = getTypeIfLikeOrMemRef<IntegerType, IndexType>(inputs.front());
|
|
auto dstType = getTypeIfLikeOrMemRef<IntegerType, IndexType>(outputs.front());
|
|
if (!srcType || !dstType)
|
|
return false;
|
|
|
|
return (srcType.isIndex() && dstType.isSignlessInteger()) ||
|
|
(srcType.isSignlessInteger() && dstType.isIndex());
|
|
}
|
|
|
|
OpFoldResult arith::IndexCastOp::fold(ArrayRef<Attribute> operands) {
|
|
// index_cast(constant) -> constant
|
|
// A little hack because we go through int. Otherwise, the size of the
|
|
// constant might need to change.
|
|
if (auto value = operands[0].dyn_cast_or_null<IntegerAttr>())
|
|
return IntegerAttr::get(getType(), value.getInt());
|
|
|
|
return {};
|
|
}
|
|
|
|
void arith::IndexCastOp::getCanonicalizationPatterns(
|
|
RewritePatternSet &patterns, MLIRContext *context) {
|
|
patterns.add<IndexCastOfIndexCast, IndexCastOfExtSI>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BitcastOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool arith::BitcastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
|
|
if (!areValidCastInputsAndOutputs(inputs, outputs))
|
|
return false;
|
|
|
|
auto srcType =
|
|
getTypeIfLikeOrMemRef<IntegerType, IndexType, FloatType>(inputs.front());
|
|
auto dstType =
|
|
getTypeIfLikeOrMemRef<IntegerType, IndexType, FloatType>(outputs.front());
|
|
if (!srcType || !dstType)
|
|
return false;
|
|
|
|
return srcType.getIntOrFloatBitWidth() == dstType.getIntOrFloatBitWidth();
|
|
}
|
|
|
|
OpFoldResult arith::BitcastOp::fold(ArrayRef<Attribute> operands) {
|
|
assert(operands.size() == 1 && "bitcast op expects 1 operand");
|
|
|
|
auto resType = getType();
|
|
auto operand = operands[0];
|
|
if (!operand)
|
|
return {};
|
|
|
|
/// Bitcast dense elements.
|
|
if (auto denseAttr = operand.dyn_cast_or_null<DenseElementsAttr>())
|
|
return denseAttr.bitcast(resType.cast<ShapedType>().getElementType());
|
|
/// Other shaped types unhandled.
|
|
if (resType.isa<ShapedType>())
|
|
return {};
|
|
|
|
/// Bitcast integer or float to integer or float.
|
|
APInt bits = operand.isa<FloatAttr>()
|
|
? operand.cast<FloatAttr>().getValue().bitcastToAPInt()
|
|
: operand.cast<IntegerAttr>().getValue();
|
|
|
|
if (auto resFloatType = resType.dyn_cast<FloatType>())
|
|
return FloatAttr::get(resType,
|
|
APFloat(resFloatType.getFloatSemantics(), bits));
|
|
return IntegerAttr::get(resType, bits);
|
|
}
|
|
|
|
void arith::BitcastOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add<BitcastOfBitcast>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helpers for compare ops
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Return the type of the same shape (scalar, vector or tensor) containing i1.
|
|
static Type getI1SameShape(Type type) {
|
|
auto i1Type = IntegerType::get(type.getContext(), 1);
|
|
if (auto tensorType = type.dyn_cast<RankedTensorType>())
|
|
return RankedTensorType::get(tensorType.getShape(), i1Type);
|
|
if (type.isa<UnrankedTensorType>())
|
|
return UnrankedTensorType::get(i1Type);
|
|
if (auto vectorType = type.dyn_cast<VectorType>())
|
|
return VectorType::get(vectorType.getShape(), i1Type,
|
|
vectorType.getNumScalableDims());
|
|
return i1Type;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CmpIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Compute `lhs` `pred` `rhs`, where `pred` is one of the known integer
|
|
/// comparison predicates.
|
|
bool mlir::arith::applyCmpPredicate(arith::CmpIPredicate predicate,
|
|
const APInt &lhs, const APInt &rhs) {
|
|
switch (predicate) {
|
|
case arith::CmpIPredicate::eq:
|
|
return lhs.eq(rhs);
|
|
case arith::CmpIPredicate::ne:
|
|
return lhs.ne(rhs);
|
|
case arith::CmpIPredicate::slt:
|
|
return lhs.slt(rhs);
|
|
case arith::CmpIPredicate::sle:
|
|
return lhs.sle(rhs);
|
|
case arith::CmpIPredicate::sgt:
|
|
return lhs.sgt(rhs);
|
|
case arith::CmpIPredicate::sge:
|
|
return lhs.sge(rhs);
|
|
case arith::CmpIPredicate::ult:
|
|
return lhs.ult(rhs);
|
|
case arith::CmpIPredicate::ule:
|
|
return lhs.ule(rhs);
|
|
case arith::CmpIPredicate::ugt:
|
|
return lhs.ugt(rhs);
|
|
case arith::CmpIPredicate::uge:
|
|
return lhs.uge(rhs);
|
|
}
|
|
llvm_unreachable("unknown cmpi predicate kind");
|
|
}
|
|
|
|
/// Returns true if the predicate is true for two equal operands.
|
|
static bool applyCmpPredicateToEqualOperands(arith::CmpIPredicate predicate) {
|
|
switch (predicate) {
|
|
case arith::CmpIPredicate::eq:
|
|
case arith::CmpIPredicate::sle:
|
|
case arith::CmpIPredicate::sge:
|
|
case arith::CmpIPredicate::ule:
|
|
case arith::CmpIPredicate::uge:
|
|
return true;
|
|
case arith::CmpIPredicate::ne:
|
|
case arith::CmpIPredicate::slt:
|
|
case arith::CmpIPredicate::sgt:
|
|
case arith::CmpIPredicate::ult:
|
|
case arith::CmpIPredicate::ugt:
|
|
return false;
|
|
}
|
|
llvm_unreachable("unknown cmpi predicate kind");
|
|
}
|
|
|
|
static Attribute getBoolAttribute(Type type, MLIRContext *ctx, bool value) {
|
|
auto boolAttr = BoolAttr::get(ctx, value);
|
|
ShapedType shapedType = type.dyn_cast_or_null<ShapedType>();
|
|
if (!shapedType)
|
|
return boolAttr;
|
|
return DenseElementsAttr::get(shapedType, boolAttr);
|
|
}
|
|
|
|
OpFoldResult arith::CmpIOp::fold(ArrayRef<Attribute> operands) {
|
|
assert(operands.size() == 2 && "cmpi takes two operands");
|
|
|
|
// cmpi(pred, x, x)
|
|
if (getLhs() == getRhs()) {
|
|
auto val = applyCmpPredicateToEqualOperands(getPredicate());
|
|
return getBoolAttribute(getType(), getContext(), val);
|
|
}
|
|
|
|
if (matchPattern(getRhs(), m_Zero())) {
|
|
if (auto extOp = getLhs().getDefiningOp<ExtSIOp>()) {
|
|
// extsi(%x : i1 -> iN) != 0 -> %x
|
|
if (extOp.getOperand().getType().cast<IntegerType>().getWidth() == 1 &&
|
|
getPredicate() == arith::CmpIPredicate::ne)
|
|
return extOp.getOperand();
|
|
}
|
|
if (auto extOp = getLhs().getDefiningOp<ExtUIOp>()) {
|
|
// extui(%x : i1 -> iN) != 0 -> %x
|
|
if (extOp.getOperand().getType().cast<IntegerType>().getWidth() == 1 &&
|
|
getPredicate() == arith::CmpIPredicate::ne)
|
|
return extOp.getOperand();
|
|
}
|
|
}
|
|
|
|
auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
|
|
auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
|
|
if (!lhs || !rhs)
|
|
return {};
|
|
|
|
auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue());
|
|
return BoolAttr::get(getContext(), val);
|
|
}
|
|
|
|
void arith::CmpIOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.insert<CmpIExtSI, CmpIExtUI>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CmpFOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Compute `lhs` `pred` `rhs`, where `pred` is one of the known floating point
|
|
/// comparison predicates.
|
|
bool mlir::arith::applyCmpPredicate(arith::CmpFPredicate predicate,
|
|
const APFloat &lhs, const APFloat &rhs) {
|
|
auto cmpResult = lhs.compare(rhs);
|
|
switch (predicate) {
|
|
case arith::CmpFPredicate::AlwaysFalse:
|
|
return false;
|
|
case arith::CmpFPredicate::OEQ:
|
|
return cmpResult == APFloat::cmpEqual;
|
|
case arith::CmpFPredicate::OGT:
|
|
return cmpResult == APFloat::cmpGreaterThan;
|
|
case arith::CmpFPredicate::OGE:
|
|
return cmpResult == APFloat::cmpGreaterThan ||
|
|
cmpResult == APFloat::cmpEqual;
|
|
case arith::CmpFPredicate::OLT:
|
|
return cmpResult == APFloat::cmpLessThan;
|
|
case arith::CmpFPredicate::OLE:
|
|
return cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual;
|
|
case arith::CmpFPredicate::ONE:
|
|
return cmpResult != APFloat::cmpUnordered && cmpResult != APFloat::cmpEqual;
|
|
case arith::CmpFPredicate::ORD:
|
|
return cmpResult != APFloat::cmpUnordered;
|
|
case arith::CmpFPredicate::UEQ:
|
|
return cmpResult == APFloat::cmpUnordered || cmpResult == APFloat::cmpEqual;
|
|
case arith::CmpFPredicate::UGT:
|
|
return cmpResult == APFloat::cmpUnordered ||
|
|
cmpResult == APFloat::cmpGreaterThan;
|
|
case arith::CmpFPredicate::UGE:
|
|
return cmpResult == APFloat::cmpUnordered ||
|
|
cmpResult == APFloat::cmpGreaterThan ||
|
|
cmpResult == APFloat::cmpEqual;
|
|
case arith::CmpFPredicate::ULT:
|
|
return cmpResult == APFloat::cmpUnordered ||
|
|
cmpResult == APFloat::cmpLessThan;
|
|
case arith::CmpFPredicate::ULE:
|
|
return cmpResult == APFloat::cmpUnordered ||
|
|
cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual;
|
|
case arith::CmpFPredicate::UNE:
|
|
return cmpResult != APFloat::cmpEqual;
|
|
case arith::CmpFPredicate::UNO:
|
|
return cmpResult == APFloat::cmpUnordered;
|
|
case arith::CmpFPredicate::AlwaysTrue:
|
|
return true;
|
|
}
|
|
llvm_unreachable("unknown cmpf predicate kind");
|
|
}
|
|
|
|
OpFoldResult arith::CmpFOp::fold(ArrayRef<Attribute> operands) {
|
|
assert(operands.size() == 2 && "cmpf takes two operands");
|
|
|
|
auto lhs = operands.front().dyn_cast_or_null<FloatAttr>();
|
|
auto rhs = operands.back().dyn_cast_or_null<FloatAttr>();
|
|
|
|
// If one operand is NaN, making them both NaN does not change the result.
|
|
if (lhs && lhs.getValue().isNaN())
|
|
rhs = lhs;
|
|
if (rhs && rhs.getValue().isNaN())
|
|
lhs = rhs;
|
|
|
|
if (!lhs || !rhs)
|
|
return {};
|
|
|
|
auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue());
|
|
return BoolAttr::get(getContext(), val);
|
|
}
|
|
|
|
class CmpFIntToFPConst final : public OpRewritePattern<CmpFOp> {
|
|
public:
|
|
using OpRewritePattern<CmpFOp>::OpRewritePattern;
|
|
|
|
static CmpIPredicate convertToIntegerPredicate(CmpFPredicate pred,
|
|
bool isUnsigned) {
|
|
using namespace arith;
|
|
switch (pred) {
|
|
case CmpFPredicate::UEQ:
|
|
case CmpFPredicate::OEQ:
|
|
return CmpIPredicate::eq;
|
|
case CmpFPredicate::UGT:
|
|
case CmpFPredicate::OGT:
|
|
return isUnsigned ? CmpIPredicate::ugt : CmpIPredicate::sgt;
|
|
case CmpFPredicate::UGE:
|
|
case CmpFPredicate::OGE:
|
|
return isUnsigned ? CmpIPredicate::uge : CmpIPredicate::sge;
|
|
case CmpFPredicate::ULT:
|
|
case CmpFPredicate::OLT:
|
|
return isUnsigned ? CmpIPredicate::ult : CmpIPredicate::slt;
|
|
case CmpFPredicate::ULE:
|
|
case CmpFPredicate::OLE:
|
|
return isUnsigned ? CmpIPredicate::ule : CmpIPredicate::sle;
|
|
case CmpFPredicate::UNE:
|
|
case CmpFPredicate::ONE:
|
|
return CmpIPredicate::ne;
|
|
default:
|
|
llvm_unreachable("Unexpected predicate!");
|
|
}
|
|
}
|
|
|
|
LogicalResult matchAndRewrite(CmpFOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
FloatAttr flt;
|
|
if (!matchPattern(op.getRhs(), m_Constant(&flt)))
|
|
return failure();
|
|
|
|
const APFloat &rhs = flt.getValue();
|
|
|
|
// Don't attempt to fold a nan.
|
|
if (rhs.isNaN())
|
|
return failure();
|
|
|
|
// Get the width of the mantissa. We don't want to hack on conversions that
|
|
// might lose information from the integer, e.g. "i64 -> float"
|
|
FloatType floatTy = op.getRhs().getType().cast<FloatType>();
|
|
int mantissaWidth = floatTy.getFPMantissaWidth();
|
|
if (mantissaWidth <= 0)
|
|
return failure();
|
|
|
|
bool isUnsigned;
|
|
Value intVal;
|
|
|
|
if (auto si = op.getLhs().getDefiningOp<SIToFPOp>()) {
|
|
isUnsigned = false;
|
|
intVal = si.getIn();
|
|
} else if (auto ui = op.getLhs().getDefiningOp<UIToFPOp>()) {
|
|
isUnsigned = true;
|
|
intVal = ui.getIn();
|
|
} else {
|
|
return failure();
|
|
}
|
|
|
|
// Check to see that the input is converted from an integer type that is
|
|
// small enough that preserves all bits.
|
|
auto intTy = intVal.getType().cast<IntegerType>();
|
|
auto intWidth = intTy.getWidth();
|
|
|
|
// Number of bits representing values, as opposed to the sign
|
|
auto valueBits = isUnsigned ? intWidth : (intWidth - 1);
|
|
|
|
// Following test does NOT adjust intWidth downwards for signed inputs,
|
|
// because the most negative value still requires all the mantissa bits
|
|
// to distinguish it from one less than that value.
|
|
if ((int)intWidth > mantissaWidth) {
|
|
// Conversion would lose accuracy. Check if loss can impact comparison.
|
|
int exponent = ilogb(rhs);
|
|
if (exponent == APFloat::IEK_Inf) {
|
|
int maxExponent = ilogb(APFloat::getLargest(rhs.getSemantics()));
|
|
if (maxExponent < (int)valueBits) {
|
|
// Conversion could create infinity.
|
|
return failure();
|
|
}
|
|
} else {
|
|
// Note that if rhs is zero or NaN, then Exp is negative
|
|
// and first condition is trivially false.
|
|
if (mantissaWidth <= exponent && exponent <= (int)valueBits) {
|
|
// Conversion could affect comparison.
|
|
return failure();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Convert to equivalent cmpi predicate
|
|
CmpIPredicate pred;
|
|
switch (op.getPredicate()) {
|
|
case CmpFPredicate::ORD:
|
|
// Int to fp conversion doesn't create a nan (ord checks neither is a nan)
|
|
rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true,
|
|
/*width=*/1);
|
|
return success();
|
|
case CmpFPredicate::UNO:
|
|
// Int to fp conversion doesn't create a nan (uno checks either is a nan)
|
|
rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false,
|
|
/*width=*/1);
|
|
return success();
|
|
default:
|
|
pred = convertToIntegerPredicate(op.getPredicate(), isUnsigned);
|
|
break;
|
|
}
|
|
|
|
if (!isUnsigned) {
|
|
// If the rhs value is > SignedMax, fold the comparison. This handles
|
|
// +INF and large values.
|
|
APFloat signedMax(rhs.getSemantics());
|
|
signedMax.convertFromAPInt(APInt::getSignedMaxValue(intWidth), true,
|
|
APFloat::rmNearestTiesToEven);
|
|
if (signedMax < rhs) { // smax < 13123.0
|
|
if (pred == CmpIPredicate::ne || pred == CmpIPredicate::slt ||
|
|
pred == CmpIPredicate::sle)
|
|
rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true,
|
|
/*width=*/1);
|
|
else
|
|
rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false,
|
|
/*width=*/1);
|
|
return success();
|
|
}
|
|
} else {
|
|
// If the rhs value is > UnsignedMax, fold the comparison. This handles
|
|
// +INF and large values.
|
|
APFloat unsignedMax(rhs.getSemantics());
|
|
unsignedMax.convertFromAPInt(APInt::getMaxValue(intWidth), false,
|
|
APFloat::rmNearestTiesToEven);
|
|
if (unsignedMax < rhs) { // umax < 13123.0
|
|
if (pred == CmpIPredicate::ne || pred == CmpIPredicate::ult ||
|
|
pred == CmpIPredicate::ule)
|
|
rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true,
|
|
/*width=*/1);
|
|
else
|
|
rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false,
|
|
/*width=*/1);
|
|
return success();
|
|
}
|
|
}
|
|
|
|
if (!isUnsigned) {
|
|
// See if the rhs value is < SignedMin.
|
|
APFloat signedMin(rhs.getSemantics());
|
|
signedMin.convertFromAPInt(APInt::getSignedMinValue(intWidth), true,
|
|
APFloat::rmNearestTiesToEven);
|
|
if (signedMin > rhs) { // smin > 12312.0
|
|
if (pred == CmpIPredicate::ne || pred == CmpIPredicate::sgt ||
|
|
pred == CmpIPredicate::sge)
|
|
rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true,
|
|
/*width=*/1);
|
|
else
|
|
rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false,
|
|
/*width=*/1);
|
|
return success();
|
|
}
|
|
} else {
|
|
// See if the rhs value is < UnsignedMin.
|
|
APFloat unsignedMin(rhs.getSemantics());
|
|
unsignedMin.convertFromAPInt(APInt::getMinValue(intWidth), false,
|
|
APFloat::rmNearestTiesToEven);
|
|
if (unsignedMin > rhs) { // umin > 12312.0
|
|
if (pred == CmpIPredicate::ne || pred == CmpIPredicate::ugt ||
|
|
pred == CmpIPredicate::uge)
|
|
rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true,
|
|
/*width=*/1);
|
|
else
|
|
rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false,
|
|
/*width=*/1);
|
|
return success();
|
|
}
|
|
}
|
|
|
|
// Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
|
|
// [0, UMAX], but it may still be fractional. See if it is fractional by
|
|
// casting the FP value to the integer value and back, checking for
|
|
// equality. Don't do this for zero, because -0.0 is not fractional.
|
|
bool ignored;
|
|
APSInt rhsInt(intWidth, isUnsigned);
|
|
if (APFloat::opInvalidOp ==
|
|
rhs.convertToInteger(rhsInt, APFloat::rmTowardZero, &ignored)) {
|
|
// Undefined behavior invoked - the destination type can't represent
|
|
// the input constant.
|
|
return failure();
|
|
}
|
|
|
|
if (!rhs.isZero()) {
|
|
APFloat apf(floatTy.getFloatSemantics(),
|
|
APInt::getZero(floatTy.getWidth()));
|
|
apf.convertFromAPInt(rhsInt, !isUnsigned, APFloat::rmNearestTiesToEven);
|
|
|
|
bool equal = apf == rhs;
|
|
if (!equal) {
|
|
// If we had a comparison against a fractional value, we have to adjust
|
|
// the compare predicate and sometimes the value. rhsInt is rounded
|
|
// towards zero at this point.
|
|
switch (pred) {
|
|
case CmpIPredicate::ne: // (float)int != 4.4 --> true
|
|
rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true,
|
|
/*width=*/1);
|
|
return success();
|
|
case CmpIPredicate::eq: // (float)int == 4.4 --> false
|
|
rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false,
|
|
/*width=*/1);
|
|
return success();
|
|
case CmpIPredicate::ule:
|
|
// (float)int <= 4.4 --> int <= 4
|
|
// (float)int <= -4.4 --> false
|
|
if (rhs.isNegative()) {
|
|
rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false,
|
|
/*width=*/1);
|
|
return success();
|
|
}
|
|
break;
|
|
case CmpIPredicate::sle:
|
|
// (float)int <= 4.4 --> int <= 4
|
|
// (float)int <= -4.4 --> int < -4
|
|
if (rhs.isNegative())
|
|
pred = CmpIPredicate::slt;
|
|
break;
|
|
case CmpIPredicate::ult:
|
|
// (float)int < -4.4 --> false
|
|
// (float)int < 4.4 --> int <= 4
|
|
if (rhs.isNegative()) {
|
|
rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false,
|
|
/*width=*/1);
|
|
return success();
|
|
}
|
|
pred = CmpIPredicate::ule;
|
|
break;
|
|
case CmpIPredicate::slt:
|
|
// (float)int < -4.4 --> int < -4
|
|
// (float)int < 4.4 --> int <= 4
|
|
if (!rhs.isNegative())
|
|
pred = CmpIPredicate::sle;
|
|
break;
|
|
case CmpIPredicate::ugt:
|
|
// (float)int > 4.4 --> int > 4
|
|
// (float)int > -4.4 --> true
|
|
if (rhs.isNegative()) {
|
|
rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true,
|
|
/*width=*/1);
|
|
return success();
|
|
}
|
|
break;
|
|
case CmpIPredicate::sgt:
|
|
// (float)int > 4.4 --> int > 4
|
|
// (float)int > -4.4 --> int >= -4
|
|
if (rhs.isNegative())
|
|
pred = CmpIPredicate::sge;
|
|
break;
|
|
case CmpIPredicate::uge:
|
|
// (float)int >= -4.4 --> true
|
|
// (float)int >= 4.4 --> int > 4
|
|
if (rhs.isNegative()) {
|
|
rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true,
|
|
/*width=*/1);
|
|
return success();
|
|
}
|
|
pred = CmpIPredicate::ugt;
|
|
break;
|
|
case CmpIPredicate::sge:
|
|
// (float)int >= -4.4 --> int >= -4
|
|
// (float)int >= 4.4 --> int > 4
|
|
if (!rhs.isNegative())
|
|
pred = CmpIPredicate::sgt;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Lower this FP comparison into an appropriate integer version of the
|
|
// comparison.
|
|
rewriter.replaceOpWithNewOp<CmpIOp>(
|
|
op, pred, intVal,
|
|
rewriter.create<ConstantOp>(
|
|
op.getLoc(), intVal.getType(),
|
|
rewriter.getIntegerAttr(intVal.getType(), rhsInt)));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
void arith::CmpFOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.insert<CmpFIntToFPConst>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SelectOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Transforms a select of a boolean to arithmetic operations
|
|
//
|
|
// arith.select %arg, %x, %y : i1
|
|
//
|
|
// becomes
|
|
//
|
|
// and(%arg, %x) or and(!%arg, %y)
|
|
struct SelectI1Simplify : public OpRewritePattern<arith::SelectOp> {
|
|
using OpRewritePattern<arith::SelectOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(arith::SelectOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
if (!op.getType().isInteger(1))
|
|
return failure();
|
|
|
|
Value falseConstant =
|
|
rewriter.create<arith::ConstantIntOp>(op.getLoc(), true, 1);
|
|
Value notCondition = rewriter.create<arith::XOrIOp>(
|
|
op.getLoc(), op.getCondition(), falseConstant);
|
|
|
|
Value trueVal = rewriter.create<arith::AndIOp>(
|
|
op.getLoc(), op.getCondition(), op.getTrueValue());
|
|
Value falseVal = rewriter.create<arith::AndIOp>(op.getLoc(), notCondition,
|
|
op.getFalseValue());
|
|
rewriter.replaceOpWithNewOp<arith::OrIOp>(op, trueVal, falseVal);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// select %arg, %c1, %c0 => extui %arg
|
|
struct SelectToExtUI : public OpRewritePattern<arith::SelectOp> {
|
|
using OpRewritePattern<arith::SelectOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(arith::SelectOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
// Cannot extui i1 to i1, or i1 to f32
|
|
if (!op.getType().isa<IntegerType>() || op.getType().isInteger(1))
|
|
return failure();
|
|
|
|
// select %x, c1, %c0 => extui %arg
|
|
if (matchPattern(op.getTrueValue(), m_One()) &&
|
|
matchPattern(op.getFalseValue(), m_Zero())) {
|
|
rewriter.replaceOpWithNewOp<arith::ExtUIOp>(op, op.getType(),
|
|
op.getCondition());
|
|
return success();
|
|
}
|
|
|
|
// select %x, c0, %c1 => extui (xor %arg, true)
|
|
if (matchPattern(op.getTrueValue(), m_Zero()) &&
|
|
matchPattern(op.getFalseValue(), m_One())) {
|
|
rewriter.replaceOpWithNewOp<arith::ExtUIOp>(
|
|
op, op.getType(),
|
|
rewriter.create<arith::XOrIOp>(
|
|
op.getLoc(), op.getCondition(),
|
|
rewriter.create<arith::ConstantIntOp>(
|
|
op.getLoc(), 1, op.getCondition().getType())));
|
|
return success();
|
|
}
|
|
|
|
return failure();
|
|
}
|
|
};
|
|
|
|
void arith::SelectOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<SelectI1Simplify, SelectToExtUI>(context);
|
|
}
|
|
|
|
OpFoldResult arith::SelectOp::fold(ArrayRef<Attribute> operands) {
|
|
Value trueVal = getTrueValue();
|
|
Value falseVal = getFalseValue();
|
|
if (trueVal == falseVal)
|
|
return trueVal;
|
|
|
|
Value condition = getCondition();
|
|
|
|
// select true, %0, %1 => %0
|
|
if (matchPattern(condition, m_One()))
|
|
return trueVal;
|
|
|
|
// select false, %0, %1 => %1
|
|
if (matchPattern(condition, m_Zero()))
|
|
return falseVal;
|
|
|
|
// select %x, true, false => %x
|
|
if (getType().isInteger(1) && matchPattern(getTrueValue(), m_One()) &&
|
|
matchPattern(getFalseValue(), m_Zero()))
|
|
return condition;
|
|
|
|
if (auto cmp = dyn_cast_or_null<arith::CmpIOp>(condition.getDefiningOp())) {
|
|
auto pred = cmp.getPredicate();
|
|
if (pred == arith::CmpIPredicate::eq || pred == arith::CmpIPredicate::ne) {
|
|
auto cmpLhs = cmp.getLhs();
|
|
auto cmpRhs = cmp.getRhs();
|
|
|
|
// %0 = arith.cmpi eq, %arg0, %arg1
|
|
// %1 = arith.select %0, %arg0, %arg1 => %arg1
|
|
|
|
// %0 = arith.cmpi ne, %arg0, %arg1
|
|
// %1 = arith.select %0, %arg0, %arg1 => %arg0
|
|
|
|
if ((cmpLhs == trueVal && cmpRhs == falseVal) ||
|
|
(cmpRhs == trueVal && cmpLhs == falseVal))
|
|
return pred == arith::CmpIPredicate::ne ? trueVal : falseVal;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
ParseResult SelectOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
Type conditionType, resultType;
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 3> operands;
|
|
if (parser.parseOperandList(operands, /*requiredOperandCount=*/3) ||
|
|
parser.parseOptionalAttrDict(result.attributes) ||
|
|
parser.parseColonType(resultType))
|
|
return failure();
|
|
|
|
// Check for the explicit condition type if this is a masked tensor or vector.
|
|
if (succeeded(parser.parseOptionalComma())) {
|
|
conditionType = resultType;
|
|
if (parser.parseType(resultType))
|
|
return failure();
|
|
} else {
|
|
conditionType = parser.getBuilder().getI1Type();
|
|
}
|
|
|
|
result.addTypes(resultType);
|
|
return parser.resolveOperands(operands,
|
|
{conditionType, resultType, resultType},
|
|
parser.getNameLoc(), result.operands);
|
|
}
|
|
|
|
void arith::SelectOp::print(OpAsmPrinter &p) {
|
|
p << " " << getOperands();
|
|
p.printOptionalAttrDict((*this)->getAttrs());
|
|
p << " : ";
|
|
if (ShapedType condType = getCondition().getType().dyn_cast<ShapedType>())
|
|
p << condType << ", ";
|
|
p << getType();
|
|
}
|
|
|
|
LogicalResult arith::SelectOp::verify() {
|
|
Type conditionType = getCondition().getType();
|
|
if (conditionType.isSignlessInteger(1))
|
|
return success();
|
|
|
|
// If the result type is a vector or tensor, the type can be a mask with the
|
|
// same elements.
|
|
Type resultType = getType();
|
|
if (!resultType.isa<TensorType, VectorType>())
|
|
return emitOpError() << "expected condition to be a signless i1, but got "
|
|
<< conditionType;
|
|
Type shapedConditionType = getI1SameShape(resultType);
|
|
if (conditionType != shapedConditionType) {
|
|
return emitOpError() << "expected condition type to have the same shape "
|
|
"as the result type, expected "
|
|
<< shapedConditionType << ", but got "
|
|
<< conditionType;
|
|
}
|
|
return success();
|
|
}
|
|
//===----------------------------------------------------------------------===//
|
|
// ShLIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::ShLIOp::fold(ArrayRef<Attribute> operands) {
|
|
// Don't fold if shifting more than the bit width.
|
|
bool bounded = false;
|
|
auto result = constFoldBinaryOp<IntegerAttr>(
|
|
operands, [&](const APInt &a, const APInt &b) {
|
|
bounded = b.ule(b.getBitWidth());
|
|
return a.shl(b);
|
|
});
|
|
return bounded ? result : Attribute();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ShRUIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::ShRUIOp::fold(ArrayRef<Attribute> operands) {
|
|
// Don't fold if shifting more than the bit width.
|
|
bool bounded = false;
|
|
auto result = constFoldBinaryOp<IntegerAttr>(
|
|
operands, [&](const APInt &a, const APInt &b) {
|
|
bounded = b.ule(b.getBitWidth());
|
|
return a.lshr(b);
|
|
});
|
|
return bounded ? result : Attribute();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ShRSIOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult arith::ShRSIOp::fold(ArrayRef<Attribute> operands) {
|
|
// Don't fold if shifting more than the bit width.
|
|
bool bounded = false;
|
|
auto result = constFoldBinaryOp<IntegerAttr>(
|
|
operands, [&](const APInt &a, const APInt &b) {
|
|
bounded = b.ule(b.getBitWidth());
|
|
return a.ashr(b);
|
|
});
|
|
return bounded ? result : Attribute();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Atomic Enum
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns the identity value attribute associated with an AtomicRMWKind op.
|
|
Attribute mlir::arith::getIdentityValueAttr(AtomicRMWKind kind, Type resultType,
|
|
OpBuilder &builder, Location loc) {
|
|
switch (kind) {
|
|
case AtomicRMWKind::maxf:
|
|
return builder.getFloatAttr(
|
|
resultType,
|
|
APFloat::getInf(resultType.cast<FloatType>().getFloatSemantics(),
|
|
/*Negative=*/true));
|
|
case AtomicRMWKind::addf:
|
|
case AtomicRMWKind::addi:
|
|
case AtomicRMWKind::maxu:
|
|
case AtomicRMWKind::ori:
|
|
return builder.getZeroAttr(resultType);
|
|
case AtomicRMWKind::andi:
|
|
return builder.getIntegerAttr(
|
|
resultType,
|
|
APInt::getAllOnes(resultType.cast<IntegerType>().getWidth()));
|
|
case AtomicRMWKind::maxs:
|
|
return builder.getIntegerAttr(
|
|
resultType,
|
|
APInt::getSignedMinValue(resultType.cast<IntegerType>().getWidth()));
|
|
case AtomicRMWKind::minf:
|
|
return builder.getFloatAttr(
|
|
resultType,
|
|
APFloat::getInf(resultType.cast<FloatType>().getFloatSemantics(),
|
|
/*Negative=*/false));
|
|
case AtomicRMWKind::mins:
|
|
return builder.getIntegerAttr(
|
|
resultType,
|
|
APInt::getSignedMaxValue(resultType.cast<IntegerType>().getWidth()));
|
|
case AtomicRMWKind::minu:
|
|
return builder.getIntegerAttr(
|
|
resultType,
|
|
APInt::getMaxValue(resultType.cast<IntegerType>().getWidth()));
|
|
case AtomicRMWKind::muli:
|
|
return builder.getIntegerAttr(resultType, 1);
|
|
case AtomicRMWKind::mulf:
|
|
return builder.getFloatAttr(resultType, 1);
|
|
// TODO: Add remaining reduction operations.
|
|
default:
|
|
(void)emitOptionalError(loc, "Reduction operation type not supported");
|
|
break;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Returns the identity value associated with an AtomicRMWKind op.
|
|
Value mlir::arith::getIdentityValue(AtomicRMWKind op, Type resultType,
|
|
OpBuilder &builder, Location loc) {
|
|
Attribute attr = getIdentityValueAttr(op, resultType, builder, loc);
|
|
return builder.create<arith::ConstantOp>(loc, attr);
|
|
}
|
|
|
|
/// Return the value obtained by applying the reduction operation kind
|
|
/// associated with a binary AtomicRMWKind op to `lhs` and `rhs`.
|
|
Value mlir::arith::getReductionOp(AtomicRMWKind op, OpBuilder &builder,
|
|
Location loc, Value lhs, Value rhs) {
|
|
switch (op) {
|
|
case AtomicRMWKind::addf:
|
|
return builder.create<arith::AddFOp>(loc, lhs, rhs);
|
|
case AtomicRMWKind::addi:
|
|
return builder.create<arith::AddIOp>(loc, lhs, rhs);
|
|
case AtomicRMWKind::mulf:
|
|
return builder.create<arith::MulFOp>(loc, lhs, rhs);
|
|
case AtomicRMWKind::muli:
|
|
return builder.create<arith::MulIOp>(loc, lhs, rhs);
|
|
case AtomicRMWKind::maxf:
|
|
return builder.create<arith::MaxFOp>(loc, lhs, rhs);
|
|
case AtomicRMWKind::minf:
|
|
return builder.create<arith::MinFOp>(loc, lhs, rhs);
|
|
case AtomicRMWKind::maxs:
|
|
return builder.create<arith::MaxSIOp>(loc, lhs, rhs);
|
|
case AtomicRMWKind::mins:
|
|
return builder.create<arith::MinSIOp>(loc, lhs, rhs);
|
|
case AtomicRMWKind::maxu:
|
|
return builder.create<arith::MaxUIOp>(loc, lhs, rhs);
|
|
case AtomicRMWKind::minu:
|
|
return builder.create<arith::MinUIOp>(loc, lhs, rhs);
|
|
case AtomicRMWKind::ori:
|
|
return builder.create<arith::OrIOp>(loc, lhs, rhs);
|
|
case AtomicRMWKind::andi:
|
|
return builder.create<arith::AndIOp>(loc, lhs, rhs);
|
|
// TODO: Add remaining reduction operations.
|
|
default:
|
|
(void)emitOptionalError(loc, "Reduction operation type not supported");
|
|
break;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TableGen'd op method definitions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define GET_OP_CLASSES
|
|
#include "mlir/Dialect/Arithmetic/IR/ArithmeticOps.cpp.inc"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TableGen'd enum attribute definitions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Arithmetic/IR/ArithmeticOpsEnums.cpp.inc"
|