4012 lines
160 KiB
C++
4012 lines
160 KiB
C++
//===- AffineOps.cpp - MLIR Affine Operations -----------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/IR/AffineExprVisitor.h"
|
|
#include "mlir/IR/BlockAndValueMapping.h"
|
|
#include "mlir/IR/IntegerSet.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/OpDefinition.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Transforms/InliningUtils.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace mlir;
|
|
|
|
#define DEBUG_TYPE "affine-analysis"
|
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOpsDialect.cpp.inc"
|
|
|
|
/// A utility function to check if a value is defined at the top level of
|
|
/// `region` or is an argument of `region`. A value of index type defined at the
|
|
/// top level of a `AffineScope` region is always a valid symbol for all
|
|
/// uses in that region.
|
|
bool mlir::isTopLevelValue(Value value, Region *region) {
|
|
if (auto arg = value.dyn_cast<BlockArgument>())
|
|
return arg.getParentRegion() == region;
|
|
return value.getDefiningOp()->getParentRegion() == region;
|
|
}
|
|
|
|
/// Checks if `value` known to be a legal affine dimension or symbol in `src`
|
|
/// region remains legal if the operation that uses it is inlined into `dest`
|
|
/// with the given value mapping. `legalityCheck` is either `isValidDim` or
|
|
/// `isValidSymbol`, depending on the value being required to remain a valid
|
|
/// dimension or symbol.
|
|
static bool
|
|
remainsLegalAfterInline(Value value, Region *src, Region *dest,
|
|
const BlockAndValueMapping &mapping,
|
|
function_ref<bool(Value, Region *)> legalityCheck) {
|
|
// If the value is a valid dimension for any other reason than being
|
|
// a top-level value, it will remain valid: constants get inlined
|
|
// with the function, transitive affine applies also get inlined and
|
|
// will be checked themselves, etc.
|
|
if (!isTopLevelValue(value, src))
|
|
return true;
|
|
|
|
// If it's a top-level value because it's a block operand, i.e. a
|
|
// function argument, check whether the value replacing it after
|
|
// inlining is a valid dimension in the new region.
|
|
if (value.isa<BlockArgument>())
|
|
return legalityCheck(mapping.lookup(value), dest);
|
|
|
|
// If it's a top-level value because it's defined in the region,
|
|
// it can only be inlined if the defining op is a constant or a
|
|
// `dim`, which can appear anywhere and be valid, since the defining
|
|
// op won't be top-level anymore after inlining.
|
|
Attribute operandCst;
|
|
return matchPattern(value.getDefiningOp(), m_Constant(&operandCst)) ||
|
|
value.getDefiningOp<memref::DimOp>() ||
|
|
value.getDefiningOp<tensor::DimOp>();
|
|
}
|
|
|
|
/// Checks if all values known to be legal affine dimensions or symbols in `src`
|
|
/// remain so if their respective users are inlined into `dest`.
|
|
static bool
|
|
remainsLegalAfterInline(ValueRange values, Region *src, Region *dest,
|
|
const BlockAndValueMapping &mapping,
|
|
function_ref<bool(Value, Region *)> legalityCheck) {
|
|
return llvm::all_of(values, [&](Value v) {
|
|
return remainsLegalAfterInline(v, src, dest, mapping, legalityCheck);
|
|
});
|
|
}
|
|
|
|
/// Checks if an affine read or write operation remains legal after inlining
|
|
/// from `src` to `dest`.
|
|
template <typename OpTy>
|
|
static bool remainsLegalAfterInline(OpTy op, Region *src, Region *dest,
|
|
const BlockAndValueMapping &mapping) {
|
|
static_assert(llvm::is_one_of<OpTy, AffineReadOpInterface,
|
|
AffineWriteOpInterface>::value,
|
|
"only ops with affine read/write interface are supported");
|
|
|
|
AffineMap map = op.getAffineMap();
|
|
ValueRange dimOperands = op.getMapOperands().take_front(map.getNumDims());
|
|
ValueRange symbolOperands =
|
|
op.getMapOperands().take_back(map.getNumSymbols());
|
|
if (!remainsLegalAfterInline(
|
|
dimOperands, src, dest, mapping,
|
|
static_cast<bool (*)(Value, Region *)>(isValidDim)))
|
|
return false;
|
|
if (!remainsLegalAfterInline(
|
|
symbolOperands, src, dest, mapping,
|
|
static_cast<bool (*)(Value, Region *)>(isValidSymbol)))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Checks if an affine apply operation remains legal after inlining from `src`
|
|
/// to `dest`.
|
|
// Use "unused attribute" marker to silence clang-tidy warning stemming from
|
|
// the inability to see through "llvm::TypeSwitch".
|
|
template <>
|
|
bool LLVM_ATTRIBUTE_UNUSED
|
|
remainsLegalAfterInline(AffineApplyOp op, Region *src, Region *dest,
|
|
const BlockAndValueMapping &mapping) {
|
|
// If it's a valid dimension, we need to check that it remains so.
|
|
if (isValidDim(op.getResult(), src))
|
|
return remainsLegalAfterInline(
|
|
op.getMapOperands(), src, dest, mapping,
|
|
static_cast<bool (*)(Value, Region *)>(isValidDim));
|
|
|
|
// Otherwise it must be a valid symbol, check that it remains so.
|
|
return remainsLegalAfterInline(
|
|
op.getMapOperands(), src, dest, mapping,
|
|
static_cast<bool (*)(Value, Region *)>(isValidSymbol));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffineDialect Interfaces
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// This class defines the interface for handling inlining with affine
|
|
/// operations.
|
|
struct AffineInlinerInterface : public DialectInlinerInterface {
|
|
using DialectInlinerInterface::DialectInlinerInterface;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Analysis Hooks
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Returns true if the given region 'src' can be inlined into the region
|
|
/// 'dest' that is attached to an operation registered to the current dialect.
|
|
/// 'wouldBeCloned' is set if the region is cloned into its new location
|
|
/// rather than moved, indicating there may be other users.
|
|
bool isLegalToInline(Region *dest, Region *src, bool wouldBeCloned,
|
|
BlockAndValueMapping &valueMapping) const final {
|
|
// We can inline into affine loops and conditionals if this doesn't break
|
|
// affine value categorization rules.
|
|
Operation *destOp = dest->getParentOp();
|
|
if (!isa<AffineParallelOp, AffineForOp, AffineIfOp>(destOp))
|
|
return false;
|
|
|
|
// Multi-block regions cannot be inlined into affine constructs, all of
|
|
// which require single-block regions.
|
|
if (!llvm::hasSingleElement(*src))
|
|
return false;
|
|
|
|
// Side-effecting operations that the affine dialect cannot understand
|
|
// should not be inlined.
|
|
Block &srcBlock = src->front();
|
|
for (Operation &op : srcBlock) {
|
|
// Ops with no side effects are fine,
|
|
if (auto iface = dyn_cast<MemoryEffectOpInterface>(op)) {
|
|
if (iface.hasNoEffect())
|
|
continue;
|
|
}
|
|
|
|
// Assuming the inlined region is valid, we only need to check if the
|
|
// inlining would change it.
|
|
bool remainsValid =
|
|
llvm::TypeSwitch<Operation *, bool>(&op)
|
|
.Case<AffineApplyOp, AffineReadOpInterface,
|
|
AffineWriteOpInterface>([&](auto op) {
|
|
return remainsLegalAfterInline(op, src, dest, valueMapping);
|
|
})
|
|
.Default([](Operation *) {
|
|
// Conservatively disallow inlining ops we cannot reason about.
|
|
return false;
|
|
});
|
|
|
|
if (!remainsValid)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if the given operation 'op', that is registered to this
|
|
/// dialect, can be inlined into the given region, false otherwise.
|
|
bool isLegalToInline(Operation *op, Region *region, bool wouldBeCloned,
|
|
BlockAndValueMapping &valueMapping) const final {
|
|
// Always allow inlining affine operations into a region that is marked as
|
|
// affine scope, or into affine loops and conditionals. There are some edge
|
|
// cases when inlining *into* affine structures, but that is handled in the
|
|
// other 'isLegalToInline' hook above.
|
|
Operation *parentOp = region->getParentOp();
|
|
return parentOp->hasTrait<OpTrait::AffineScope>() ||
|
|
isa<AffineForOp, AffineParallelOp, AffineIfOp>(parentOp);
|
|
}
|
|
|
|
/// Affine regions should be analyzed recursively.
|
|
bool shouldAnalyzeRecursively(Operation *op) const final { return true; }
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffineDialect
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void AffineDialect::initialize() {
|
|
addOperations<AffineDmaStartOp, AffineDmaWaitOp,
|
|
#define GET_OP_LIST
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.cpp.inc"
|
|
>();
|
|
addInterfaces<AffineInlinerInterface>();
|
|
}
|
|
|
|
/// Materialize a single constant operation from a given attribute value with
|
|
/// the desired resultant type.
|
|
Operation *AffineDialect::materializeConstant(OpBuilder &builder,
|
|
Attribute value, Type type,
|
|
Location loc) {
|
|
return builder.create<arith::ConstantOp>(loc, type, value);
|
|
}
|
|
|
|
/// A utility function to check if a value is defined at the top level of an
|
|
/// op with trait `AffineScope`. If the value is defined in an unlinked region,
|
|
/// conservatively assume it is not top-level. A value of index type defined at
|
|
/// the top level is always a valid symbol.
|
|
bool mlir::isTopLevelValue(Value value) {
|
|
if (auto arg = value.dyn_cast<BlockArgument>()) {
|
|
// The block owning the argument may be unlinked, e.g. when the surrounding
|
|
// region has not yet been attached to an Op, at which point the parent Op
|
|
// is null.
|
|
Operation *parentOp = arg.getOwner()->getParentOp();
|
|
return parentOp && parentOp->hasTrait<OpTrait::AffineScope>();
|
|
}
|
|
// The defining Op may live in an unlinked block so its parent Op may be null.
|
|
Operation *parentOp = value.getDefiningOp()->getParentOp();
|
|
return parentOp && parentOp->hasTrait<OpTrait::AffineScope>();
|
|
}
|
|
|
|
/// Returns the closest region enclosing `op` that is held by an operation with
|
|
/// trait `AffineScope`; `nullptr` if there is no such region.
|
|
Region *mlir::getAffineScope(Operation *op) {
|
|
auto *curOp = op;
|
|
while (auto *parentOp = curOp->getParentOp()) {
|
|
if (parentOp->hasTrait<OpTrait::AffineScope>())
|
|
return curOp->getParentRegion();
|
|
curOp = parentOp;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// A Value can be used as a dimension id iff it meets one of the following
|
|
// conditions:
|
|
// *) It is valid as a symbol.
|
|
// *) It is an induction variable.
|
|
// *) It is the result of affine apply operation with dimension id arguments.
|
|
bool mlir::isValidDim(Value value) {
|
|
// The value must be an index type.
|
|
if (!value.getType().isIndex())
|
|
return false;
|
|
|
|
if (auto *defOp = value.getDefiningOp())
|
|
return isValidDim(value, getAffineScope(defOp));
|
|
|
|
// This value has to be a block argument for an op that has the
|
|
// `AffineScope` trait or for an affine.for or affine.parallel.
|
|
auto *parentOp = value.cast<BlockArgument>().getOwner()->getParentOp();
|
|
return parentOp && (parentOp->hasTrait<OpTrait::AffineScope>() ||
|
|
isa<AffineForOp, AffineParallelOp>(parentOp));
|
|
}
|
|
|
|
// Value can be used as a dimension id iff it meets one of the following
|
|
// conditions:
|
|
// *) It is valid as a symbol.
|
|
// *) It is an induction variable.
|
|
// *) It is the result of an affine apply operation with dimension id operands.
|
|
bool mlir::isValidDim(Value value, Region *region) {
|
|
// The value must be an index type.
|
|
if (!value.getType().isIndex())
|
|
return false;
|
|
|
|
// All valid symbols are okay.
|
|
if (isValidSymbol(value, region))
|
|
return true;
|
|
|
|
auto *op = value.getDefiningOp();
|
|
if (!op) {
|
|
// This value has to be a block argument for an affine.for or an
|
|
// affine.parallel.
|
|
auto *parentOp = value.cast<BlockArgument>().getOwner()->getParentOp();
|
|
return isa<AffineForOp, AffineParallelOp>(parentOp);
|
|
}
|
|
|
|
// Affine apply operation is ok if all of its operands are ok.
|
|
if (auto applyOp = dyn_cast<AffineApplyOp>(op))
|
|
return applyOp.isValidDim(region);
|
|
// The dim op is okay if its operand memref/tensor is defined at the top
|
|
// level.
|
|
if (auto dimOp = dyn_cast<memref::DimOp>(op))
|
|
return isTopLevelValue(dimOp.getSource());
|
|
if (auto dimOp = dyn_cast<tensor::DimOp>(op))
|
|
return isTopLevelValue(dimOp.getSource());
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if the 'index' dimension of the `memref` defined by
|
|
/// `memrefDefOp` is a statically shaped one or defined using a valid symbol
|
|
/// for `region`.
|
|
template <typename AnyMemRefDefOp>
|
|
static bool isMemRefSizeValidSymbol(AnyMemRefDefOp memrefDefOp, unsigned index,
|
|
Region *region) {
|
|
auto memRefType = memrefDefOp.getType();
|
|
// Statically shaped.
|
|
if (!memRefType.isDynamicDim(index))
|
|
return true;
|
|
// Get the position of the dimension among dynamic dimensions;
|
|
unsigned dynamicDimPos = memRefType.getDynamicDimIndex(index);
|
|
return isValidSymbol(*(memrefDefOp.getDynamicSizes().begin() + dynamicDimPos),
|
|
region);
|
|
}
|
|
|
|
/// Returns true if the result of the dim op is a valid symbol for `region`.
|
|
template <typename OpTy>
|
|
static bool isDimOpValidSymbol(OpTy dimOp, Region *region) {
|
|
// The dim op is okay if its source is defined at the top level.
|
|
if (isTopLevelValue(dimOp.getSource()))
|
|
return true;
|
|
|
|
// Conservatively handle remaining BlockArguments as non-valid symbols.
|
|
// E.g. scf.for iterArgs.
|
|
if (dimOp.getSource().template isa<BlockArgument>())
|
|
return false;
|
|
|
|
// The dim op is also okay if its operand memref is a view/subview whose
|
|
// corresponding size is a valid symbol.
|
|
Optional<int64_t> index = dimOp.getConstantIndex();
|
|
assert(index.has_value() &&
|
|
"expect only `dim` operations with a constant index");
|
|
int64_t i = index.value();
|
|
return TypeSwitch<Operation *, bool>(dimOp.getSource().getDefiningOp())
|
|
.Case<memref::ViewOp, memref::SubViewOp, memref::AllocOp>(
|
|
[&](auto op) { return isMemRefSizeValidSymbol(op, i, region); })
|
|
.Default([](Operation *) { return false; });
|
|
}
|
|
|
|
// A value can be used as a symbol (at all its use sites) iff it meets one of
|
|
// the following conditions:
|
|
// *) It is a constant.
|
|
// *) Its defining op or block arg appearance is immediately enclosed by an op
|
|
// with `AffineScope` trait.
|
|
// *) It is the result of an affine.apply operation with symbol operands.
|
|
// *) It is a result of the dim op on a memref whose corresponding size is a
|
|
// valid symbol.
|
|
bool mlir::isValidSymbol(Value value) {
|
|
if (!value)
|
|
return false;
|
|
|
|
// The value must be an index type.
|
|
if (!value.getType().isIndex())
|
|
return false;
|
|
|
|
// Check that the value is a top level value.
|
|
if (isTopLevelValue(value))
|
|
return true;
|
|
|
|
if (auto *defOp = value.getDefiningOp())
|
|
return isValidSymbol(value, getAffineScope(defOp));
|
|
|
|
return false;
|
|
}
|
|
|
|
/// A value can be used as a symbol for `region` iff it meets one of the
|
|
/// following conditions:
|
|
/// *) It is a constant.
|
|
/// *) It is the result of an affine apply operation with symbol arguments.
|
|
/// *) It is a result of the dim op on a memref whose corresponding size is
|
|
/// a valid symbol.
|
|
/// *) It is defined at the top level of 'region' or is its argument.
|
|
/// *) It dominates `region`'s parent op.
|
|
/// If `region` is null, conservatively assume the symbol definition scope does
|
|
/// not exist and only accept the values that would be symbols regardless of
|
|
/// the surrounding region structure, i.e. the first three cases above.
|
|
bool mlir::isValidSymbol(Value value, Region *region) {
|
|
// The value must be an index type.
|
|
if (!value.getType().isIndex())
|
|
return false;
|
|
|
|
// A top-level value is a valid symbol.
|
|
if (region && ::isTopLevelValue(value, region))
|
|
return true;
|
|
|
|
auto *defOp = value.getDefiningOp();
|
|
if (!defOp) {
|
|
// A block argument that is not a top-level value is a valid symbol if it
|
|
// dominates region's parent op.
|
|
Operation *regionOp = region ? region->getParentOp() : nullptr;
|
|
if (regionOp && !regionOp->hasTrait<OpTrait::IsIsolatedFromAbove>())
|
|
if (auto *parentOpRegion = region->getParentOp()->getParentRegion())
|
|
return isValidSymbol(value, parentOpRegion);
|
|
return false;
|
|
}
|
|
|
|
// Constant operation is ok.
|
|
Attribute operandCst;
|
|
if (matchPattern(defOp, m_Constant(&operandCst)))
|
|
return true;
|
|
|
|
// Affine apply operation is ok if all of its operands are ok.
|
|
if (auto applyOp = dyn_cast<AffineApplyOp>(defOp))
|
|
return applyOp.isValidSymbol(region);
|
|
|
|
// Dim op results could be valid symbols at any level.
|
|
if (auto dimOp = dyn_cast<memref::DimOp>(defOp))
|
|
return isDimOpValidSymbol(dimOp, region);
|
|
if (auto dimOp = dyn_cast<tensor::DimOp>(defOp))
|
|
return isDimOpValidSymbol(dimOp, region);
|
|
|
|
// Check for values dominating `region`'s parent op.
|
|
Operation *regionOp = region ? region->getParentOp() : nullptr;
|
|
if (regionOp && !regionOp->hasTrait<OpTrait::IsIsolatedFromAbove>())
|
|
if (auto *parentRegion = region->getParentOp()->getParentRegion())
|
|
return isValidSymbol(value, parentRegion);
|
|
|
|
return false;
|
|
}
|
|
|
|
// Returns true if 'value' is a valid index to an affine operation (e.g.
|
|
// affine.load, affine.store, affine.dma_start, affine.dma_wait) where
|
|
// `region` provides the polyhedral symbol scope. Returns false otherwise.
|
|
static bool isValidAffineIndexOperand(Value value, Region *region) {
|
|
return isValidDim(value, region) || isValidSymbol(value, region);
|
|
}
|
|
|
|
/// Prints dimension and symbol list.
|
|
static void printDimAndSymbolList(Operation::operand_iterator begin,
|
|
Operation::operand_iterator end,
|
|
unsigned numDims, OpAsmPrinter &printer) {
|
|
OperandRange operands(begin, end);
|
|
printer << '(' << operands.take_front(numDims) << ')';
|
|
if (operands.size() > numDims)
|
|
printer << '[' << operands.drop_front(numDims) << ']';
|
|
}
|
|
|
|
/// Parses dimension and symbol list and returns true if parsing failed.
|
|
ParseResult mlir::parseDimAndSymbolList(OpAsmParser &parser,
|
|
SmallVectorImpl<Value> &operands,
|
|
unsigned &numDims) {
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 8> opInfos;
|
|
if (parser.parseOperandList(opInfos, OpAsmParser::Delimiter::Paren))
|
|
return failure();
|
|
// Store number of dimensions for validation by caller.
|
|
numDims = opInfos.size();
|
|
|
|
// Parse the optional symbol operands.
|
|
auto indexTy = parser.getBuilder().getIndexType();
|
|
return failure(parser.parseOperandList(
|
|
opInfos, OpAsmParser::Delimiter::OptionalSquare) ||
|
|
parser.resolveOperands(opInfos, indexTy, operands));
|
|
}
|
|
|
|
/// Utility function to verify that a set of operands are valid dimension and
|
|
/// symbol identifiers. The operands should be laid out such that the dimension
|
|
/// operands are before the symbol operands. This function returns failure if
|
|
/// there was an invalid operand. An operation is provided to emit any necessary
|
|
/// errors.
|
|
template <typename OpTy>
|
|
static LogicalResult
|
|
verifyDimAndSymbolIdentifiers(OpTy &op, Operation::operand_range operands,
|
|
unsigned numDims) {
|
|
unsigned opIt = 0;
|
|
for (auto operand : operands) {
|
|
if (opIt++ < numDims) {
|
|
if (!isValidDim(operand, getAffineScope(op)))
|
|
return op.emitOpError("operand cannot be used as a dimension id");
|
|
} else if (!isValidSymbol(operand, getAffineScope(op))) {
|
|
return op.emitOpError("operand cannot be used as a symbol");
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffineApplyOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
AffineValueMap AffineApplyOp::getAffineValueMap() {
|
|
return AffineValueMap(getAffineMap(), getOperands(), getResult());
|
|
}
|
|
|
|
ParseResult AffineApplyOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
auto &builder = parser.getBuilder();
|
|
auto indexTy = builder.getIndexType();
|
|
|
|
AffineMapAttr mapAttr;
|
|
unsigned numDims;
|
|
if (parser.parseAttribute(mapAttr, "map", result.attributes) ||
|
|
parseDimAndSymbolList(parser, result.operands, numDims) ||
|
|
parser.parseOptionalAttrDict(result.attributes))
|
|
return failure();
|
|
auto map = mapAttr.getValue();
|
|
|
|
if (map.getNumDims() != numDims ||
|
|
numDims + map.getNumSymbols() != result.operands.size()) {
|
|
return parser.emitError(parser.getNameLoc(),
|
|
"dimension or symbol index mismatch");
|
|
}
|
|
|
|
result.types.append(map.getNumResults(), indexTy);
|
|
return success();
|
|
}
|
|
|
|
void AffineApplyOp::print(OpAsmPrinter &p) {
|
|
p << " " << getMapAttr();
|
|
printDimAndSymbolList(operand_begin(), operand_end(),
|
|
getAffineMap().getNumDims(), p);
|
|
p.printOptionalAttrDict((*this)->getAttrs(), /*elidedAttrs=*/{"map"});
|
|
}
|
|
|
|
LogicalResult AffineApplyOp::verify() {
|
|
// Check input and output dimensions match.
|
|
AffineMap affineMap = getMap();
|
|
|
|
// Verify that operand count matches affine map dimension and symbol count.
|
|
if (getNumOperands() != affineMap.getNumDims() + affineMap.getNumSymbols())
|
|
return emitOpError(
|
|
"operand count and affine map dimension and symbol count must match");
|
|
|
|
// Verify that the map only produces one result.
|
|
if (affineMap.getNumResults() != 1)
|
|
return emitOpError("mapping must produce one value");
|
|
|
|
return success();
|
|
}
|
|
|
|
// The result of the affine apply operation can be used as a dimension id if all
|
|
// its operands are valid dimension ids.
|
|
bool AffineApplyOp::isValidDim() {
|
|
return llvm::all_of(getOperands(),
|
|
[](Value op) { return mlir::isValidDim(op); });
|
|
}
|
|
|
|
// The result of the affine apply operation can be used as a dimension id if all
|
|
// its operands are valid dimension ids with the parent operation of `region`
|
|
// defining the polyhedral scope for symbols.
|
|
bool AffineApplyOp::isValidDim(Region *region) {
|
|
return llvm::all_of(getOperands(),
|
|
[&](Value op) { return ::isValidDim(op, region); });
|
|
}
|
|
|
|
// The result of the affine apply operation can be used as a symbol if all its
|
|
// operands are symbols.
|
|
bool AffineApplyOp::isValidSymbol() {
|
|
return llvm::all_of(getOperands(),
|
|
[](Value op) { return mlir::isValidSymbol(op); });
|
|
}
|
|
|
|
// The result of the affine apply operation can be used as a symbol in `region`
|
|
// if all its operands are symbols in `region`.
|
|
bool AffineApplyOp::isValidSymbol(Region *region) {
|
|
return llvm::all_of(getOperands(), [&](Value operand) {
|
|
return mlir::isValidSymbol(operand, region);
|
|
});
|
|
}
|
|
|
|
OpFoldResult AffineApplyOp::fold(ArrayRef<Attribute> operands) {
|
|
auto map = getAffineMap();
|
|
|
|
// Fold dims and symbols to existing values.
|
|
auto expr = map.getResult(0);
|
|
if (auto dim = expr.dyn_cast<AffineDimExpr>())
|
|
return getOperand(dim.getPosition());
|
|
if (auto sym = expr.dyn_cast<AffineSymbolExpr>())
|
|
return getOperand(map.getNumDims() + sym.getPosition());
|
|
|
|
// Otherwise, default to folding the map.
|
|
SmallVector<Attribute, 1> result;
|
|
if (failed(map.constantFold(operands, result)))
|
|
return {};
|
|
return result[0];
|
|
}
|
|
|
|
/// Replace all occurrences of AffineExpr at position `pos` in `map` by the
|
|
/// defining AffineApplyOp expression and operands.
|
|
/// When `dimOrSymbolPosition < dims.size()`, AffineDimExpr@[pos] is replaced.
|
|
/// When `dimOrSymbolPosition >= dims.size()`,
|
|
/// AffineSymbolExpr@[pos - dims.size()] is replaced.
|
|
/// Mutate `map`,`dims` and `syms` in place as follows:
|
|
/// 1. `dims` and `syms` are only appended to.
|
|
/// 2. `map` dim and symbols are gradually shifted to higher positions.
|
|
/// 3. Old `dim` and `sym` entries are replaced by nullptr
|
|
/// This avoids the need for any bookkeeping.
|
|
static LogicalResult replaceDimOrSym(AffineMap *map,
|
|
unsigned dimOrSymbolPosition,
|
|
SmallVectorImpl<Value> &dims,
|
|
SmallVectorImpl<Value> &syms) {
|
|
bool isDimReplacement = (dimOrSymbolPosition < dims.size());
|
|
unsigned pos = isDimReplacement ? dimOrSymbolPosition
|
|
: dimOrSymbolPosition - dims.size();
|
|
Value &v = isDimReplacement ? dims[pos] : syms[pos];
|
|
if (!v)
|
|
return failure();
|
|
|
|
auto affineApply = v.getDefiningOp<AffineApplyOp>();
|
|
if (!affineApply)
|
|
return failure();
|
|
|
|
// At this point we will perform a replacement of `v`, set the entry in `dim`
|
|
// or `sym` to nullptr immediately.
|
|
v = nullptr;
|
|
|
|
// Compute the map, dims and symbols coming from the AffineApplyOp.
|
|
AffineMap composeMap = affineApply.getAffineMap();
|
|
assert(composeMap.getNumResults() == 1 && "affine.apply with >1 results");
|
|
AffineExpr composeExpr =
|
|
composeMap.shiftDims(dims.size()).shiftSymbols(syms.size()).getResult(0);
|
|
ValueRange composeDims =
|
|
affineApply.getMapOperands().take_front(composeMap.getNumDims());
|
|
ValueRange composeSyms =
|
|
affineApply.getMapOperands().take_back(composeMap.getNumSymbols());
|
|
|
|
// Append the dims and symbols where relevant and perform the replacement.
|
|
MLIRContext *ctx = map->getContext();
|
|
AffineExpr toReplace = isDimReplacement ? getAffineDimExpr(pos, ctx)
|
|
: getAffineSymbolExpr(pos, ctx);
|
|
dims.append(composeDims.begin(), composeDims.end());
|
|
syms.append(composeSyms.begin(), composeSyms.end());
|
|
*map = map->replace(toReplace, composeExpr, dims.size(), syms.size());
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Iterate over `operands` and fold away all those produced by an AffineApplyOp
|
|
/// iteratively. Perform canonicalization of map and operands as well as
|
|
/// AffineMap simplification. `map` and `operands` are mutated in place.
|
|
static void composeAffineMapAndOperands(AffineMap *map,
|
|
SmallVectorImpl<Value> *operands) {
|
|
if (map->getNumResults() == 0) {
|
|
canonicalizeMapAndOperands(map, operands);
|
|
*map = simplifyAffineMap(*map);
|
|
return;
|
|
}
|
|
|
|
MLIRContext *ctx = map->getContext();
|
|
SmallVector<Value, 4> dims(operands->begin(),
|
|
operands->begin() + map->getNumDims());
|
|
SmallVector<Value, 4> syms(operands->begin() + map->getNumDims(),
|
|
operands->end());
|
|
|
|
// Iterate over dims and symbols coming from AffineApplyOp and replace until
|
|
// exhaustion. This iteratively mutates `map`, `dims` and `syms`. Both `dims`
|
|
// and `syms` can only increase by construction.
|
|
// The implementation uses a `while` loop to support the case of symbols
|
|
// that may be constructed from dims ;this may be overkill.
|
|
while (true) {
|
|
bool changed = false;
|
|
for (unsigned pos = 0; pos != dims.size() + syms.size(); ++pos)
|
|
if ((changed |= succeeded(replaceDimOrSym(map, pos, dims, syms))))
|
|
break;
|
|
if (!changed)
|
|
break;
|
|
}
|
|
|
|
// Clear operands so we can fill them anew.
|
|
operands->clear();
|
|
|
|
// At this point we may have introduced null operands, prune them out before
|
|
// canonicalizing map and operands.
|
|
unsigned nDims = 0, nSyms = 0;
|
|
SmallVector<AffineExpr, 4> dimReplacements, symReplacements;
|
|
dimReplacements.reserve(dims.size());
|
|
symReplacements.reserve(syms.size());
|
|
for (auto *container : {&dims, &syms}) {
|
|
bool isDim = (container == &dims);
|
|
auto &repls = isDim ? dimReplacements : symReplacements;
|
|
for (const auto &en : llvm::enumerate(*container)) {
|
|
Value v = en.value();
|
|
if (!v) {
|
|
assert(isDim ? !map->isFunctionOfDim(en.index())
|
|
: !map->isFunctionOfSymbol(en.index()) &&
|
|
"map is function of unexpected expr@pos");
|
|
repls.push_back(getAffineConstantExpr(0, ctx));
|
|
continue;
|
|
}
|
|
repls.push_back(isDim ? getAffineDimExpr(nDims++, ctx)
|
|
: getAffineSymbolExpr(nSyms++, ctx));
|
|
operands->push_back(v);
|
|
}
|
|
}
|
|
*map = map->replaceDimsAndSymbols(dimReplacements, symReplacements, nDims,
|
|
nSyms);
|
|
|
|
// Canonicalize and simplify before returning.
|
|
canonicalizeMapAndOperands(map, operands);
|
|
*map = simplifyAffineMap(*map);
|
|
}
|
|
|
|
void mlir::fullyComposeAffineMapAndOperands(AffineMap *map,
|
|
SmallVectorImpl<Value> *operands) {
|
|
while (llvm::any_of(*operands, [](Value v) {
|
|
return isa_and_nonnull<AffineApplyOp>(v.getDefiningOp());
|
|
})) {
|
|
composeAffineMapAndOperands(map, operands);
|
|
}
|
|
}
|
|
|
|
/// Given a list of `OpFoldResult`, build the necessary operations to populate
|
|
/// `actualValues` with values produced by operations. In particular, for any
|
|
/// attribute-typed element in `values`, call the constant materializer
|
|
/// associated with the Affine dialect to produce an operation.
|
|
static void materializeConstants(OpBuilder &b, Location loc,
|
|
ArrayRef<OpFoldResult> values,
|
|
SmallVectorImpl<Operation *> &constants,
|
|
SmallVectorImpl<Value> &actualValues) {
|
|
actualValues.reserve(values.size());
|
|
auto *dialect = b.getContext()->getLoadedDialect<AffineDialect>();
|
|
for (OpFoldResult ofr : values) {
|
|
if (auto value = ofr.dyn_cast<Value>()) {
|
|
actualValues.push_back(value);
|
|
continue;
|
|
}
|
|
constants.push_back(dialect->materializeConstant(b, ofr.get<Attribute>(),
|
|
b.getIndexType(), loc));
|
|
actualValues.push_back(constants.back()->getResult(0));
|
|
}
|
|
}
|
|
|
|
/// Create an operation of the type provided as template argument and attempt to
|
|
/// fold it immediately. The operation is expected to have a builder taking
|
|
/// arbitrary `leadingArguments`, followed by a list of Value-typed `operands`.
|
|
/// The operation is also expected to always produce a single result. Return an
|
|
/// `OpFoldResult` containing the Attribute representing the folded constant if
|
|
/// complete folding was possible and a Value produced by the created operation
|
|
/// otherwise.
|
|
template <typename OpTy, typename... Args>
|
|
static std::enable_if_t<OpTy::template hasTrait<OpTrait::OneResult>(),
|
|
OpFoldResult>
|
|
createOrFold(RewriterBase &b, Location loc, ValueRange operands,
|
|
Args &&...leadingArguments) {
|
|
// Identify the constant operands and extract their values as attributes.
|
|
// Note that we cannot use the original values directly because the list of
|
|
// operands may have changed due to canonicalization and composition.
|
|
SmallVector<Attribute> constantOperands;
|
|
constantOperands.reserve(operands.size());
|
|
for (Value operand : operands) {
|
|
IntegerAttr attr;
|
|
if (matchPattern(operand, m_Constant(&attr)))
|
|
constantOperands.push_back(attr);
|
|
else
|
|
constantOperands.push_back(nullptr);
|
|
}
|
|
|
|
// Create the operation and immediately attempt to fold it. On success,
|
|
// delete the operation and prepare the (unmaterialized) value for being
|
|
// returned. On failure, return the operation result value.
|
|
// TODO: arguably, the main folder (createOrFold) API should support this use
|
|
// case instead of indiscriminately materializing constants.
|
|
OpTy op =
|
|
b.create<OpTy>(loc, std::forward<Args>(leadingArguments)..., operands);
|
|
SmallVector<OpFoldResult, 1> foldResults;
|
|
if (succeeded(op->fold(constantOperands, foldResults)) &&
|
|
!foldResults.empty()) {
|
|
b.eraseOp(op);
|
|
return foldResults.front();
|
|
}
|
|
return op->getResult(0);
|
|
}
|
|
|
|
AffineApplyOp mlir::makeComposedAffineApply(OpBuilder &b, Location loc,
|
|
AffineMap map,
|
|
ValueRange operands) {
|
|
AffineMap normalizedMap = map;
|
|
SmallVector<Value, 8> normalizedOperands(operands.begin(), operands.end());
|
|
composeAffineMapAndOperands(&normalizedMap, &normalizedOperands);
|
|
assert(normalizedMap);
|
|
return b.create<AffineApplyOp>(loc, normalizedMap, normalizedOperands);
|
|
}
|
|
|
|
AffineApplyOp mlir::makeComposedAffineApply(OpBuilder &b, Location loc,
|
|
AffineExpr e, ValueRange values) {
|
|
return makeComposedAffineApply(
|
|
b, loc, AffineMap::inferFromExprList(ArrayRef<AffineExpr>{e}).front(),
|
|
values);
|
|
}
|
|
|
|
OpFoldResult
|
|
mlir::makeComposedFoldedAffineApply(RewriterBase &b, Location loc,
|
|
AffineMap map,
|
|
ArrayRef<OpFoldResult> operands) {
|
|
assert(map.getNumResults() == 1 && "building affine.apply with !=1 result");
|
|
|
|
SmallVector<Operation *> constants;
|
|
SmallVector<Value> actualValues;
|
|
materializeConstants(b, loc, operands, constants, actualValues);
|
|
composeAffineMapAndOperands(&map, &actualValues);
|
|
OpFoldResult result = createOrFold<AffineApplyOp>(b, loc, actualValues, map);
|
|
if (result.is<Attribute>()) {
|
|
for (Operation *op : constants)
|
|
b.eraseOp(op);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
OpFoldResult
|
|
mlir::makeComposedFoldedAffineApply(RewriterBase &b, Location loc,
|
|
AffineExpr expr,
|
|
ArrayRef<OpFoldResult> operands) {
|
|
return makeComposedFoldedAffineApply(
|
|
b, loc, AffineMap::inferFromExprList(ArrayRef<AffineExpr>{expr}).front(),
|
|
operands);
|
|
}
|
|
|
|
/// Composes the given affine map with the given list of operands, pulling in
|
|
/// the maps from any affine.apply operations that supply the operands.
|
|
static void composeMultiResultAffineMap(AffineMap &map,
|
|
SmallVectorImpl<Value> &operands) {
|
|
// Compose and canonicalize each expression in the map individually because
|
|
// composition only applies to single-result maps, collecting potentially
|
|
// duplicate operands in a single list with shifted dimensions and symbols.
|
|
SmallVector<Value> dims, symbols;
|
|
SmallVector<AffineExpr> exprs;
|
|
for (unsigned i : llvm::seq<unsigned>(0, map.getNumResults())) {
|
|
SmallVector<Value> submapOperands(operands.begin(), operands.end());
|
|
AffineMap submap = map.getSubMap({i});
|
|
fullyComposeAffineMapAndOperands(&submap, &submapOperands);
|
|
canonicalizeMapAndOperands(&submap, &submapOperands);
|
|
unsigned numNewDims = submap.getNumDims();
|
|
submap = submap.shiftDims(dims.size()).shiftSymbols(symbols.size());
|
|
llvm::append_range(dims,
|
|
ArrayRef<Value>(submapOperands).take_front(numNewDims));
|
|
llvm::append_range(symbols,
|
|
ArrayRef<Value>(submapOperands).drop_front(numNewDims));
|
|
exprs.push_back(submap.getResult(0));
|
|
}
|
|
|
|
// Canonicalize the map created from composed expressions to deduplicate the
|
|
// dimension and symbol operands.
|
|
operands = llvm::to_vector(llvm::concat<Value>(dims, symbols));
|
|
map = AffineMap::get(dims.size(), symbols.size(), exprs, map.getContext());
|
|
canonicalizeMapAndOperands(&map, &operands);
|
|
}
|
|
|
|
Value mlir::makeComposedAffineMin(OpBuilder &b, Location loc, AffineMap map,
|
|
ValueRange operands) {
|
|
SmallVector<Value> allOperands = llvm::to_vector(operands);
|
|
composeMultiResultAffineMap(map, allOperands);
|
|
return b.createOrFold<AffineMinOp>(loc, b.getIndexType(), map, allOperands);
|
|
}
|
|
|
|
OpFoldResult
|
|
mlir::makeComposedFoldedAffineMin(RewriterBase &b, Location loc, AffineMap map,
|
|
ArrayRef<OpFoldResult> operands) {
|
|
SmallVector<Operation *> constants;
|
|
SmallVector<Value> actualValues;
|
|
materializeConstants(b, loc, operands, constants, actualValues);
|
|
composeMultiResultAffineMap(map, actualValues);
|
|
OpFoldResult result =
|
|
createOrFold<AffineMinOp>(b, loc, actualValues, b.getIndexType(), map);
|
|
if (result.is<Attribute>()) {
|
|
for (Operation *op : constants)
|
|
b.eraseOp(op);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// Fully compose map with operands and canonicalize the result.
|
|
/// Return the `createOrFold`'ed AffineApply op.
|
|
static Value createFoldedComposedAffineApply(OpBuilder &b, Location loc,
|
|
AffineMap map,
|
|
ValueRange operandsRef) {
|
|
SmallVector<Value, 4> operands(operandsRef.begin(), operandsRef.end());
|
|
fullyComposeAffineMapAndOperands(&map, &operands);
|
|
canonicalizeMapAndOperands(&map, &operands);
|
|
return b.createOrFold<AffineApplyOp>(loc, map, operands);
|
|
}
|
|
|
|
SmallVector<Value, 4> mlir::applyMapToValues(OpBuilder &b, Location loc,
|
|
AffineMap map, ValueRange values) {
|
|
SmallVector<Value, 4> res;
|
|
res.reserve(map.getNumResults());
|
|
unsigned numDims = map.getNumDims(), numSym = map.getNumSymbols();
|
|
// For each `expr` in `map`, applies the `expr` to the values extracted from
|
|
// ranges. If the resulting application can be folded into a Value, the
|
|
// folding occurs eagerly.
|
|
for (auto expr : map.getResults()) {
|
|
AffineMap map = AffineMap::get(numDims, numSym, expr);
|
|
res.push_back(createFoldedComposedAffineApply(b, loc, map, values));
|
|
}
|
|
return res;
|
|
}
|
|
|
|
SmallVector<OpFoldResult>
|
|
mlir::applyMapToValues(RewriterBase &b, Location loc, AffineMap map,
|
|
ArrayRef<OpFoldResult> values) {
|
|
// Materialize constants and keep track of produced operations so we can clean
|
|
// them up later.
|
|
SmallVector<Operation *> constants;
|
|
SmallVector<Value> actualValues;
|
|
materializeConstants(b, loc, values, constants, actualValues);
|
|
|
|
// Compose, fold and construct maps for each result independently because they
|
|
// may simplify more effectively.
|
|
SmallVector<OpFoldResult> results;
|
|
results.reserve(map.getNumResults());
|
|
bool foldedAll = true;
|
|
for (auto i : llvm::seq<unsigned>(0, map.getNumResults())) {
|
|
AffineMap submap = map.getSubMap({i});
|
|
SmallVector<Value> operands = actualValues;
|
|
fullyComposeAffineMapAndOperands(&submap, &operands);
|
|
canonicalizeMapAndOperands(&submap, &operands);
|
|
results.push_back(createOrFold<AffineApplyOp>(b, loc, operands, submap));
|
|
if (!results.back().is<Attribute>())
|
|
foldedAll = false;
|
|
}
|
|
|
|
// If the entire map could be folded, remove the constants that were used in
|
|
// the initial ops.
|
|
if (foldedAll) {
|
|
for (Operation *constant : constants)
|
|
b.eraseOp(constant);
|
|
}
|
|
|
|
return results;
|
|
}
|
|
|
|
// A symbol may appear as a dim in affine.apply operations. This function
|
|
// canonicalizes dims that are valid symbols into actual symbols.
|
|
template <class MapOrSet>
|
|
static void canonicalizePromotedSymbols(MapOrSet *mapOrSet,
|
|
SmallVectorImpl<Value> *operands) {
|
|
if (!mapOrSet || operands->empty())
|
|
return;
|
|
|
|
assert(mapOrSet->getNumInputs() == operands->size() &&
|
|
"map/set inputs must match number of operands");
|
|
|
|
auto *context = mapOrSet->getContext();
|
|
SmallVector<Value, 8> resultOperands;
|
|
resultOperands.reserve(operands->size());
|
|
SmallVector<Value, 8> remappedSymbols;
|
|
remappedSymbols.reserve(operands->size());
|
|
unsigned nextDim = 0;
|
|
unsigned nextSym = 0;
|
|
unsigned oldNumSyms = mapOrSet->getNumSymbols();
|
|
SmallVector<AffineExpr, 8> dimRemapping(mapOrSet->getNumDims());
|
|
for (unsigned i = 0, e = mapOrSet->getNumInputs(); i != e; ++i) {
|
|
if (i < mapOrSet->getNumDims()) {
|
|
if (isValidSymbol((*operands)[i])) {
|
|
// This is a valid symbol that appears as a dim, canonicalize it.
|
|
dimRemapping[i] = getAffineSymbolExpr(oldNumSyms + nextSym++, context);
|
|
remappedSymbols.push_back((*operands)[i]);
|
|
} else {
|
|
dimRemapping[i] = getAffineDimExpr(nextDim++, context);
|
|
resultOperands.push_back((*operands)[i]);
|
|
}
|
|
} else {
|
|
resultOperands.push_back((*operands)[i]);
|
|
}
|
|
}
|
|
|
|
resultOperands.append(remappedSymbols.begin(), remappedSymbols.end());
|
|
*operands = resultOperands;
|
|
*mapOrSet = mapOrSet->replaceDimsAndSymbols(dimRemapping, {}, nextDim,
|
|
oldNumSyms + nextSym);
|
|
|
|
assert(mapOrSet->getNumInputs() == operands->size() &&
|
|
"map/set inputs must match number of operands");
|
|
}
|
|
|
|
// Works for either an affine map or an integer set.
|
|
template <class MapOrSet>
|
|
static void canonicalizeMapOrSetAndOperands(MapOrSet *mapOrSet,
|
|
SmallVectorImpl<Value> *operands) {
|
|
static_assert(llvm::is_one_of<MapOrSet, AffineMap, IntegerSet>::value,
|
|
"Argument must be either of AffineMap or IntegerSet type");
|
|
|
|
if (!mapOrSet || operands->empty())
|
|
return;
|
|
|
|
assert(mapOrSet->getNumInputs() == operands->size() &&
|
|
"map/set inputs must match number of operands");
|
|
|
|
canonicalizePromotedSymbols<MapOrSet>(mapOrSet, operands);
|
|
|
|
// Check to see what dims are used.
|
|
llvm::SmallBitVector usedDims(mapOrSet->getNumDims());
|
|
llvm::SmallBitVector usedSyms(mapOrSet->getNumSymbols());
|
|
mapOrSet->walkExprs([&](AffineExpr expr) {
|
|
if (auto dimExpr = expr.dyn_cast<AffineDimExpr>())
|
|
usedDims[dimExpr.getPosition()] = true;
|
|
else if (auto symExpr = expr.dyn_cast<AffineSymbolExpr>())
|
|
usedSyms[symExpr.getPosition()] = true;
|
|
});
|
|
|
|
auto *context = mapOrSet->getContext();
|
|
|
|
SmallVector<Value, 8> resultOperands;
|
|
resultOperands.reserve(operands->size());
|
|
|
|
llvm::SmallDenseMap<Value, AffineExpr, 8> seenDims;
|
|
SmallVector<AffineExpr, 8> dimRemapping(mapOrSet->getNumDims());
|
|
unsigned nextDim = 0;
|
|
for (unsigned i = 0, e = mapOrSet->getNumDims(); i != e; ++i) {
|
|
if (usedDims[i]) {
|
|
// Remap dim positions for duplicate operands.
|
|
auto it = seenDims.find((*operands)[i]);
|
|
if (it == seenDims.end()) {
|
|
dimRemapping[i] = getAffineDimExpr(nextDim++, context);
|
|
resultOperands.push_back((*operands)[i]);
|
|
seenDims.insert(std::make_pair((*operands)[i], dimRemapping[i]));
|
|
} else {
|
|
dimRemapping[i] = it->second;
|
|
}
|
|
}
|
|
}
|
|
llvm::SmallDenseMap<Value, AffineExpr, 8> seenSymbols;
|
|
SmallVector<AffineExpr, 8> symRemapping(mapOrSet->getNumSymbols());
|
|
unsigned nextSym = 0;
|
|
for (unsigned i = 0, e = mapOrSet->getNumSymbols(); i != e; ++i) {
|
|
if (!usedSyms[i])
|
|
continue;
|
|
// Handle constant operands (only needed for symbolic operands since
|
|
// constant operands in dimensional positions would have already been
|
|
// promoted to symbolic positions above).
|
|
IntegerAttr operandCst;
|
|
if (matchPattern((*operands)[i + mapOrSet->getNumDims()],
|
|
m_Constant(&operandCst))) {
|
|
symRemapping[i] =
|
|
getAffineConstantExpr(operandCst.getValue().getSExtValue(), context);
|
|
continue;
|
|
}
|
|
// Remap symbol positions for duplicate operands.
|
|
auto it = seenSymbols.find((*operands)[i + mapOrSet->getNumDims()]);
|
|
if (it == seenSymbols.end()) {
|
|
symRemapping[i] = getAffineSymbolExpr(nextSym++, context);
|
|
resultOperands.push_back((*operands)[i + mapOrSet->getNumDims()]);
|
|
seenSymbols.insert(std::make_pair((*operands)[i + mapOrSet->getNumDims()],
|
|
symRemapping[i]));
|
|
} else {
|
|
symRemapping[i] = it->second;
|
|
}
|
|
}
|
|
*mapOrSet = mapOrSet->replaceDimsAndSymbols(dimRemapping, symRemapping,
|
|
nextDim, nextSym);
|
|
*operands = resultOperands;
|
|
}
|
|
|
|
void mlir::canonicalizeMapAndOperands(AffineMap *map,
|
|
SmallVectorImpl<Value> *operands) {
|
|
canonicalizeMapOrSetAndOperands<AffineMap>(map, operands);
|
|
}
|
|
|
|
void mlir::canonicalizeSetAndOperands(IntegerSet *set,
|
|
SmallVectorImpl<Value> *operands) {
|
|
canonicalizeMapOrSetAndOperands<IntegerSet>(set, operands);
|
|
}
|
|
|
|
namespace {
|
|
/// Simplify AffineApply, AffineLoad, and AffineStore operations by composing
|
|
/// maps that supply results into them.
|
|
///
|
|
template <typename AffineOpTy>
|
|
struct SimplifyAffineOp : public OpRewritePattern<AffineOpTy> {
|
|
using OpRewritePattern<AffineOpTy>::OpRewritePattern;
|
|
|
|
/// Replace the affine op with another instance of it with the supplied
|
|
/// map and mapOperands.
|
|
void replaceAffineOp(PatternRewriter &rewriter, AffineOpTy affineOp,
|
|
AffineMap map, ArrayRef<Value> mapOperands) const;
|
|
|
|
LogicalResult matchAndRewrite(AffineOpTy affineOp,
|
|
PatternRewriter &rewriter) const override {
|
|
static_assert(
|
|
llvm::is_one_of<AffineOpTy, AffineLoadOp, AffinePrefetchOp,
|
|
AffineStoreOp, AffineApplyOp, AffineMinOp, AffineMaxOp,
|
|
AffineVectorStoreOp, AffineVectorLoadOp>::value,
|
|
"affine load/store/vectorstore/vectorload/apply/prefetch/min/max op "
|
|
"expected");
|
|
auto map = affineOp.getAffineMap();
|
|
AffineMap oldMap = map;
|
|
auto oldOperands = affineOp.getMapOperands();
|
|
SmallVector<Value, 8> resultOperands(oldOperands);
|
|
composeAffineMapAndOperands(&map, &resultOperands);
|
|
canonicalizeMapAndOperands(&map, &resultOperands);
|
|
if (map == oldMap && std::equal(oldOperands.begin(), oldOperands.end(),
|
|
resultOperands.begin()))
|
|
return failure();
|
|
|
|
replaceAffineOp(rewriter, affineOp, map, resultOperands);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// Specialize the template to account for the different build signatures for
|
|
// affine load, store, and apply ops.
|
|
template <>
|
|
void SimplifyAffineOp<AffineLoadOp>::replaceAffineOp(
|
|
PatternRewriter &rewriter, AffineLoadOp load, AffineMap map,
|
|
ArrayRef<Value> mapOperands) const {
|
|
rewriter.replaceOpWithNewOp<AffineLoadOp>(load, load.getMemRef(), map,
|
|
mapOperands);
|
|
}
|
|
template <>
|
|
void SimplifyAffineOp<AffinePrefetchOp>::replaceAffineOp(
|
|
PatternRewriter &rewriter, AffinePrefetchOp prefetch, AffineMap map,
|
|
ArrayRef<Value> mapOperands) const {
|
|
rewriter.replaceOpWithNewOp<AffinePrefetchOp>(
|
|
prefetch, prefetch.getMemref(), map, mapOperands,
|
|
prefetch.getLocalityHint(), prefetch.getIsWrite(),
|
|
prefetch.getIsDataCache());
|
|
}
|
|
template <>
|
|
void SimplifyAffineOp<AffineStoreOp>::replaceAffineOp(
|
|
PatternRewriter &rewriter, AffineStoreOp store, AffineMap map,
|
|
ArrayRef<Value> mapOperands) const {
|
|
rewriter.replaceOpWithNewOp<AffineStoreOp>(
|
|
store, store.getValueToStore(), store.getMemRef(), map, mapOperands);
|
|
}
|
|
template <>
|
|
void SimplifyAffineOp<AffineVectorLoadOp>::replaceAffineOp(
|
|
PatternRewriter &rewriter, AffineVectorLoadOp vectorload, AffineMap map,
|
|
ArrayRef<Value> mapOperands) const {
|
|
rewriter.replaceOpWithNewOp<AffineVectorLoadOp>(
|
|
vectorload, vectorload.getVectorType(), vectorload.getMemRef(), map,
|
|
mapOperands);
|
|
}
|
|
template <>
|
|
void SimplifyAffineOp<AffineVectorStoreOp>::replaceAffineOp(
|
|
PatternRewriter &rewriter, AffineVectorStoreOp vectorstore, AffineMap map,
|
|
ArrayRef<Value> mapOperands) const {
|
|
rewriter.replaceOpWithNewOp<AffineVectorStoreOp>(
|
|
vectorstore, vectorstore.getValueToStore(), vectorstore.getMemRef(), map,
|
|
mapOperands);
|
|
}
|
|
|
|
// Generic version for ops that don't have extra operands.
|
|
template <typename AffineOpTy>
|
|
void SimplifyAffineOp<AffineOpTy>::replaceAffineOp(
|
|
PatternRewriter &rewriter, AffineOpTy op, AffineMap map,
|
|
ArrayRef<Value> mapOperands) const {
|
|
rewriter.replaceOpWithNewOp<AffineOpTy>(op, map, mapOperands);
|
|
}
|
|
} // namespace
|
|
|
|
void AffineApplyOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<SimplifyAffineOp<AffineApplyOp>>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Common canonicalization pattern support logic
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This is a common class used for patterns of the form
|
|
/// "someop(memrefcast) -> someop". It folds the source of any memref.cast
|
|
/// into the root operation directly.
|
|
static LogicalResult foldMemRefCast(Operation *op, Value ignore = nullptr) {
|
|
bool folded = false;
|
|
for (OpOperand &operand : op->getOpOperands()) {
|
|
auto cast = operand.get().getDefiningOp<memref::CastOp>();
|
|
if (cast && operand.get() != ignore &&
|
|
!cast.getOperand().getType().isa<UnrankedMemRefType>()) {
|
|
operand.set(cast.getOperand());
|
|
folded = true;
|
|
}
|
|
}
|
|
return success(folded);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffineDmaStartOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// TODO: Check that map operands are loop IVs or symbols.
|
|
void AffineDmaStartOp::build(OpBuilder &builder, OperationState &result,
|
|
Value srcMemRef, AffineMap srcMap,
|
|
ValueRange srcIndices, Value destMemRef,
|
|
AffineMap dstMap, ValueRange destIndices,
|
|
Value tagMemRef, AffineMap tagMap,
|
|
ValueRange tagIndices, Value numElements,
|
|
Value stride, Value elementsPerStride) {
|
|
result.addOperands(srcMemRef);
|
|
result.addAttribute(getSrcMapAttrStrName(), AffineMapAttr::get(srcMap));
|
|
result.addOperands(srcIndices);
|
|
result.addOperands(destMemRef);
|
|
result.addAttribute(getDstMapAttrStrName(), AffineMapAttr::get(dstMap));
|
|
result.addOperands(destIndices);
|
|
result.addOperands(tagMemRef);
|
|
result.addAttribute(getTagMapAttrStrName(), AffineMapAttr::get(tagMap));
|
|
result.addOperands(tagIndices);
|
|
result.addOperands(numElements);
|
|
if (stride) {
|
|
result.addOperands({stride, elementsPerStride});
|
|
}
|
|
}
|
|
|
|
void AffineDmaStartOp::print(OpAsmPrinter &p) {
|
|
p << " " << getSrcMemRef() << '[';
|
|
p.printAffineMapOfSSAIds(getSrcMapAttr(), getSrcIndices());
|
|
p << "], " << getDstMemRef() << '[';
|
|
p.printAffineMapOfSSAIds(getDstMapAttr(), getDstIndices());
|
|
p << "], " << getTagMemRef() << '[';
|
|
p.printAffineMapOfSSAIds(getTagMapAttr(), getTagIndices());
|
|
p << "], " << getNumElements();
|
|
if (isStrided()) {
|
|
p << ", " << getStride();
|
|
p << ", " << getNumElementsPerStride();
|
|
}
|
|
p << " : " << getSrcMemRefType() << ", " << getDstMemRefType() << ", "
|
|
<< getTagMemRefType();
|
|
}
|
|
|
|
// Parse AffineDmaStartOp.
|
|
// Ex:
|
|
// affine.dma_start %src[%i, %j], %dst[%k, %l], %tag[%index], %size,
|
|
// %stride, %num_elt_per_stride
|
|
// : memref<3076 x f32, 0>, memref<1024 x f32, 2>, memref<1 x i32>
|
|
//
|
|
ParseResult AffineDmaStartOp::parse(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
OpAsmParser::UnresolvedOperand srcMemRefInfo;
|
|
AffineMapAttr srcMapAttr;
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 4> srcMapOperands;
|
|
OpAsmParser::UnresolvedOperand dstMemRefInfo;
|
|
AffineMapAttr dstMapAttr;
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 4> dstMapOperands;
|
|
OpAsmParser::UnresolvedOperand tagMemRefInfo;
|
|
AffineMapAttr tagMapAttr;
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 4> tagMapOperands;
|
|
OpAsmParser::UnresolvedOperand numElementsInfo;
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 2> strideInfo;
|
|
|
|
SmallVector<Type, 3> types;
|
|
auto indexType = parser.getBuilder().getIndexType();
|
|
|
|
// Parse and resolve the following list of operands:
|
|
// *) dst memref followed by its affine maps operands (in square brackets).
|
|
// *) src memref followed by its affine map operands (in square brackets).
|
|
// *) tag memref followed by its affine map operands (in square brackets).
|
|
// *) number of elements transferred by DMA operation.
|
|
if (parser.parseOperand(srcMemRefInfo) ||
|
|
parser.parseAffineMapOfSSAIds(srcMapOperands, srcMapAttr,
|
|
getSrcMapAttrStrName(),
|
|
result.attributes) ||
|
|
parser.parseComma() || parser.parseOperand(dstMemRefInfo) ||
|
|
parser.parseAffineMapOfSSAIds(dstMapOperands, dstMapAttr,
|
|
getDstMapAttrStrName(),
|
|
result.attributes) ||
|
|
parser.parseComma() || parser.parseOperand(tagMemRefInfo) ||
|
|
parser.parseAffineMapOfSSAIds(tagMapOperands, tagMapAttr,
|
|
getTagMapAttrStrName(),
|
|
result.attributes) ||
|
|
parser.parseComma() || parser.parseOperand(numElementsInfo))
|
|
return failure();
|
|
|
|
// Parse optional stride and elements per stride.
|
|
if (parser.parseTrailingOperandList(strideInfo))
|
|
return failure();
|
|
|
|
if (!strideInfo.empty() && strideInfo.size() != 2) {
|
|
return parser.emitError(parser.getNameLoc(),
|
|
"expected two stride related operands");
|
|
}
|
|
bool isStrided = strideInfo.size() == 2;
|
|
|
|
if (parser.parseColonTypeList(types))
|
|
return failure();
|
|
|
|
if (types.size() != 3)
|
|
return parser.emitError(parser.getNameLoc(), "expected three types");
|
|
|
|
if (parser.resolveOperand(srcMemRefInfo, types[0], result.operands) ||
|
|
parser.resolveOperands(srcMapOperands, indexType, result.operands) ||
|
|
parser.resolveOperand(dstMemRefInfo, types[1], result.operands) ||
|
|
parser.resolveOperands(dstMapOperands, indexType, result.operands) ||
|
|
parser.resolveOperand(tagMemRefInfo, types[2], result.operands) ||
|
|
parser.resolveOperands(tagMapOperands, indexType, result.operands) ||
|
|
parser.resolveOperand(numElementsInfo, indexType, result.operands))
|
|
return failure();
|
|
|
|
if (isStrided) {
|
|
if (parser.resolveOperands(strideInfo, indexType, result.operands))
|
|
return failure();
|
|
}
|
|
|
|
// Check that src/dst/tag operand counts match their map.numInputs.
|
|
if (srcMapOperands.size() != srcMapAttr.getValue().getNumInputs() ||
|
|
dstMapOperands.size() != dstMapAttr.getValue().getNumInputs() ||
|
|
tagMapOperands.size() != tagMapAttr.getValue().getNumInputs())
|
|
return parser.emitError(parser.getNameLoc(),
|
|
"memref operand count not equal to map.numInputs");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult AffineDmaStartOp::verifyInvariantsImpl() {
|
|
if (!getOperand(getSrcMemRefOperandIndex()).getType().isa<MemRefType>())
|
|
return emitOpError("expected DMA source to be of memref type");
|
|
if (!getOperand(getDstMemRefOperandIndex()).getType().isa<MemRefType>())
|
|
return emitOpError("expected DMA destination to be of memref type");
|
|
if (!getOperand(getTagMemRefOperandIndex()).getType().isa<MemRefType>())
|
|
return emitOpError("expected DMA tag to be of memref type");
|
|
|
|
unsigned numInputsAllMaps = getSrcMap().getNumInputs() +
|
|
getDstMap().getNumInputs() +
|
|
getTagMap().getNumInputs();
|
|
if (getNumOperands() != numInputsAllMaps + 3 + 1 &&
|
|
getNumOperands() != numInputsAllMaps + 3 + 1 + 2) {
|
|
return emitOpError("incorrect number of operands");
|
|
}
|
|
|
|
Region *scope = getAffineScope(*this);
|
|
for (auto idx : getSrcIndices()) {
|
|
if (!idx.getType().isIndex())
|
|
return emitOpError("src index to dma_start must have 'index' type");
|
|
if (!isValidAffineIndexOperand(idx, scope))
|
|
return emitOpError("src index must be a dimension or symbol identifier");
|
|
}
|
|
for (auto idx : getDstIndices()) {
|
|
if (!idx.getType().isIndex())
|
|
return emitOpError("dst index to dma_start must have 'index' type");
|
|
if (!isValidAffineIndexOperand(idx, scope))
|
|
return emitOpError("dst index must be a dimension or symbol identifier");
|
|
}
|
|
for (auto idx : getTagIndices()) {
|
|
if (!idx.getType().isIndex())
|
|
return emitOpError("tag index to dma_start must have 'index' type");
|
|
if (!isValidAffineIndexOperand(idx, scope))
|
|
return emitOpError("tag index must be a dimension or symbol identifier");
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult AffineDmaStartOp::fold(ArrayRef<Attribute> cstOperands,
|
|
SmallVectorImpl<OpFoldResult> &results) {
|
|
/// dma_start(memrefcast) -> dma_start
|
|
return foldMemRefCast(*this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffineDmaWaitOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// TODO: Check that map operands are loop IVs or symbols.
|
|
void AffineDmaWaitOp::build(OpBuilder &builder, OperationState &result,
|
|
Value tagMemRef, AffineMap tagMap,
|
|
ValueRange tagIndices, Value numElements) {
|
|
result.addOperands(tagMemRef);
|
|
result.addAttribute(getTagMapAttrStrName(), AffineMapAttr::get(tagMap));
|
|
result.addOperands(tagIndices);
|
|
result.addOperands(numElements);
|
|
}
|
|
|
|
void AffineDmaWaitOp::print(OpAsmPrinter &p) {
|
|
p << " " << getTagMemRef() << '[';
|
|
SmallVector<Value, 2> operands(getTagIndices());
|
|
p.printAffineMapOfSSAIds(getTagMapAttr(), operands);
|
|
p << "], ";
|
|
p.printOperand(getNumElements());
|
|
p << " : " << getTagMemRef().getType();
|
|
}
|
|
|
|
// Parse AffineDmaWaitOp.
|
|
// Eg:
|
|
// affine.dma_wait %tag[%index], %num_elements
|
|
// : memref<1 x i32, (d0) -> (d0), 4>
|
|
//
|
|
ParseResult AffineDmaWaitOp::parse(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
OpAsmParser::UnresolvedOperand tagMemRefInfo;
|
|
AffineMapAttr tagMapAttr;
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 2> tagMapOperands;
|
|
Type type;
|
|
auto indexType = parser.getBuilder().getIndexType();
|
|
OpAsmParser::UnresolvedOperand numElementsInfo;
|
|
|
|
// Parse tag memref, its map operands, and dma size.
|
|
if (parser.parseOperand(tagMemRefInfo) ||
|
|
parser.parseAffineMapOfSSAIds(tagMapOperands, tagMapAttr,
|
|
getTagMapAttrStrName(),
|
|
result.attributes) ||
|
|
parser.parseComma() || parser.parseOperand(numElementsInfo) ||
|
|
parser.parseColonType(type) ||
|
|
parser.resolveOperand(tagMemRefInfo, type, result.operands) ||
|
|
parser.resolveOperands(tagMapOperands, indexType, result.operands) ||
|
|
parser.resolveOperand(numElementsInfo, indexType, result.operands))
|
|
return failure();
|
|
|
|
if (!type.isa<MemRefType>())
|
|
return parser.emitError(parser.getNameLoc(),
|
|
"expected tag to be of memref type");
|
|
|
|
if (tagMapOperands.size() != tagMapAttr.getValue().getNumInputs())
|
|
return parser.emitError(parser.getNameLoc(),
|
|
"tag memref operand count != to map.numInputs");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult AffineDmaWaitOp::verifyInvariantsImpl() {
|
|
if (!getOperand(0).getType().isa<MemRefType>())
|
|
return emitOpError("expected DMA tag to be of memref type");
|
|
Region *scope = getAffineScope(*this);
|
|
for (auto idx : getTagIndices()) {
|
|
if (!idx.getType().isIndex())
|
|
return emitOpError("index to dma_wait must have 'index' type");
|
|
if (!isValidAffineIndexOperand(idx, scope))
|
|
return emitOpError("index must be a dimension or symbol identifier");
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult AffineDmaWaitOp::fold(ArrayRef<Attribute> cstOperands,
|
|
SmallVectorImpl<OpFoldResult> &results) {
|
|
/// dma_wait(memrefcast) -> dma_wait
|
|
return foldMemRefCast(*this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffineForOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// 'bodyBuilder' is used to build the body of affine.for. If iterArgs and
|
|
/// bodyBuilder are empty/null, we include default terminator op.
|
|
void AffineForOp::build(OpBuilder &builder, OperationState &result,
|
|
ValueRange lbOperands, AffineMap lbMap,
|
|
ValueRange ubOperands, AffineMap ubMap, int64_t step,
|
|
ValueRange iterArgs, BodyBuilderFn bodyBuilder) {
|
|
assert(((!lbMap && lbOperands.empty()) ||
|
|
lbOperands.size() == lbMap.getNumInputs()) &&
|
|
"lower bound operand count does not match the affine map");
|
|
assert(((!ubMap && ubOperands.empty()) ||
|
|
ubOperands.size() == ubMap.getNumInputs()) &&
|
|
"upper bound operand count does not match the affine map");
|
|
assert(step > 0 && "step has to be a positive integer constant");
|
|
|
|
for (Value val : iterArgs)
|
|
result.addTypes(val.getType());
|
|
|
|
// Add an attribute for the step.
|
|
result.addAttribute(getStepAttrStrName(),
|
|
builder.getIntegerAttr(builder.getIndexType(), step));
|
|
|
|
// Add the lower bound.
|
|
result.addAttribute(getLowerBoundAttrStrName(), AffineMapAttr::get(lbMap));
|
|
result.addOperands(lbOperands);
|
|
|
|
// Add the upper bound.
|
|
result.addAttribute(getUpperBoundAttrStrName(), AffineMapAttr::get(ubMap));
|
|
result.addOperands(ubOperands);
|
|
|
|
result.addOperands(iterArgs);
|
|
// Create a region and a block for the body. The argument of the region is
|
|
// the loop induction variable.
|
|
Region *bodyRegion = result.addRegion();
|
|
bodyRegion->push_back(new Block);
|
|
Block &bodyBlock = bodyRegion->front();
|
|
Value inductionVar =
|
|
bodyBlock.addArgument(builder.getIndexType(), result.location);
|
|
for (Value val : iterArgs)
|
|
bodyBlock.addArgument(val.getType(), val.getLoc());
|
|
|
|
// Create the default terminator if the builder is not provided and if the
|
|
// iteration arguments are not provided. Otherwise, leave this to the caller
|
|
// because we don't know which values to return from the loop.
|
|
if (iterArgs.empty() && !bodyBuilder) {
|
|
ensureTerminator(*bodyRegion, builder, result.location);
|
|
} else if (bodyBuilder) {
|
|
OpBuilder::InsertionGuard guard(builder);
|
|
builder.setInsertionPointToStart(&bodyBlock);
|
|
bodyBuilder(builder, result.location, inductionVar,
|
|
bodyBlock.getArguments().drop_front());
|
|
}
|
|
}
|
|
|
|
void AffineForOp::build(OpBuilder &builder, OperationState &result, int64_t lb,
|
|
int64_t ub, int64_t step, ValueRange iterArgs,
|
|
BodyBuilderFn bodyBuilder) {
|
|
auto lbMap = AffineMap::getConstantMap(lb, builder.getContext());
|
|
auto ubMap = AffineMap::getConstantMap(ub, builder.getContext());
|
|
return build(builder, result, {}, lbMap, {}, ubMap, step, iterArgs,
|
|
bodyBuilder);
|
|
}
|
|
|
|
LogicalResult AffineForOp::verifyRegions() {
|
|
// Check that the body defines as single block argument for the induction
|
|
// variable.
|
|
auto *body = getBody();
|
|
if (body->getNumArguments() == 0 || !body->getArgument(0).getType().isIndex())
|
|
return emitOpError("expected body to have a single index argument for the "
|
|
"induction variable");
|
|
|
|
// Verify that the bound operands are valid dimension/symbols.
|
|
/// Lower bound.
|
|
if (getLowerBoundMap().getNumInputs() > 0)
|
|
if (failed(verifyDimAndSymbolIdentifiers(*this, getLowerBoundOperands(),
|
|
getLowerBoundMap().getNumDims())))
|
|
return failure();
|
|
/// Upper bound.
|
|
if (getUpperBoundMap().getNumInputs() > 0)
|
|
if (failed(verifyDimAndSymbolIdentifiers(*this, getUpperBoundOperands(),
|
|
getUpperBoundMap().getNumDims())))
|
|
return failure();
|
|
|
|
unsigned opNumResults = getNumResults();
|
|
if (opNumResults == 0)
|
|
return success();
|
|
|
|
// If ForOp defines values, check that the number and types of the defined
|
|
// values match ForOp initial iter operands and backedge basic block
|
|
// arguments.
|
|
if (getNumIterOperands() != opNumResults)
|
|
return emitOpError(
|
|
"mismatch between the number of loop-carried values and results");
|
|
if (getNumRegionIterArgs() != opNumResults)
|
|
return emitOpError(
|
|
"mismatch between the number of basic block args and results");
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Parse a for operation loop bounds.
|
|
static ParseResult parseBound(bool isLower, OperationState &result,
|
|
OpAsmParser &p) {
|
|
// 'min' / 'max' prefixes are generally syntactic sugar, but are required if
|
|
// the map has multiple results.
|
|
bool failedToParsedMinMax =
|
|
failed(p.parseOptionalKeyword(isLower ? "max" : "min"));
|
|
|
|
auto &builder = p.getBuilder();
|
|
auto boundAttrStrName = isLower ? AffineForOp::getLowerBoundAttrStrName()
|
|
: AffineForOp::getUpperBoundAttrStrName();
|
|
|
|
// Parse ssa-id as identity map.
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 1> boundOpInfos;
|
|
if (p.parseOperandList(boundOpInfos))
|
|
return failure();
|
|
|
|
if (!boundOpInfos.empty()) {
|
|
// Check that only one operand was parsed.
|
|
if (boundOpInfos.size() > 1)
|
|
return p.emitError(p.getNameLoc(),
|
|
"expected only one loop bound operand");
|
|
|
|
// TODO: improve error message when SSA value is not of index type.
|
|
// Currently it is 'use of value ... expects different type than prior uses'
|
|
if (p.resolveOperand(boundOpInfos.front(), builder.getIndexType(),
|
|
result.operands))
|
|
return failure();
|
|
|
|
// Create an identity map using symbol id. This representation is optimized
|
|
// for storage. Analysis passes may expand it into a multi-dimensional map
|
|
// if desired.
|
|
AffineMap map = builder.getSymbolIdentityMap();
|
|
result.addAttribute(boundAttrStrName, AffineMapAttr::get(map));
|
|
return success();
|
|
}
|
|
|
|
// Get the attribute location.
|
|
SMLoc attrLoc = p.getCurrentLocation();
|
|
|
|
Attribute boundAttr;
|
|
if (p.parseAttribute(boundAttr, builder.getIndexType(), boundAttrStrName,
|
|
result.attributes))
|
|
return failure();
|
|
|
|
// Parse full form - affine map followed by dim and symbol list.
|
|
if (auto affineMapAttr = boundAttr.dyn_cast<AffineMapAttr>()) {
|
|
unsigned currentNumOperands = result.operands.size();
|
|
unsigned numDims;
|
|
if (parseDimAndSymbolList(p, result.operands, numDims))
|
|
return failure();
|
|
|
|
auto map = affineMapAttr.getValue();
|
|
if (map.getNumDims() != numDims)
|
|
return p.emitError(
|
|
p.getNameLoc(),
|
|
"dim operand count and affine map dim count must match");
|
|
|
|
unsigned numDimAndSymbolOperands =
|
|
result.operands.size() - currentNumOperands;
|
|
if (numDims + map.getNumSymbols() != numDimAndSymbolOperands)
|
|
return p.emitError(
|
|
p.getNameLoc(),
|
|
"symbol operand count and affine map symbol count must match");
|
|
|
|
// If the map has multiple results, make sure that we parsed the min/max
|
|
// prefix.
|
|
if (map.getNumResults() > 1 && failedToParsedMinMax) {
|
|
if (isLower) {
|
|
return p.emitError(attrLoc, "lower loop bound affine map with "
|
|
"multiple results requires 'max' prefix");
|
|
}
|
|
return p.emitError(attrLoc, "upper loop bound affine map with multiple "
|
|
"results requires 'min' prefix");
|
|
}
|
|
return success();
|
|
}
|
|
|
|
// Parse custom assembly form.
|
|
if (auto integerAttr = boundAttr.dyn_cast<IntegerAttr>()) {
|
|
result.attributes.pop_back();
|
|
result.addAttribute(
|
|
boundAttrStrName,
|
|
AffineMapAttr::get(builder.getConstantAffineMap(integerAttr.getInt())));
|
|
return success();
|
|
}
|
|
|
|
return p.emitError(
|
|
p.getNameLoc(),
|
|
"expected valid affine map representation for loop bounds");
|
|
}
|
|
|
|
ParseResult AffineForOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
auto &builder = parser.getBuilder();
|
|
OpAsmParser::Argument inductionVariable;
|
|
inductionVariable.type = builder.getIndexType();
|
|
// Parse the induction variable followed by '='.
|
|
if (parser.parseArgument(inductionVariable) || parser.parseEqual())
|
|
return failure();
|
|
|
|
// Parse loop bounds.
|
|
if (parseBound(/*isLower=*/true, result, parser) ||
|
|
parser.parseKeyword("to", " between bounds") ||
|
|
parseBound(/*isLower=*/false, result, parser))
|
|
return failure();
|
|
|
|
// Parse the optional loop step, we default to 1 if one is not present.
|
|
if (parser.parseOptionalKeyword("step")) {
|
|
result.addAttribute(
|
|
AffineForOp::getStepAttrStrName(),
|
|
builder.getIntegerAttr(builder.getIndexType(), /*value=*/1));
|
|
} else {
|
|
SMLoc stepLoc = parser.getCurrentLocation();
|
|
IntegerAttr stepAttr;
|
|
if (parser.parseAttribute(stepAttr, builder.getIndexType(),
|
|
AffineForOp::getStepAttrStrName().data(),
|
|
result.attributes))
|
|
return failure();
|
|
|
|
if (stepAttr.getValue().getSExtValue() < 0)
|
|
return parser.emitError(
|
|
stepLoc,
|
|
"expected step to be representable as a positive signed integer");
|
|
}
|
|
|
|
// Parse the optional initial iteration arguments.
|
|
SmallVector<OpAsmParser::Argument, 4> regionArgs;
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 4> operands;
|
|
|
|
// Induction variable.
|
|
regionArgs.push_back(inductionVariable);
|
|
|
|
if (succeeded(parser.parseOptionalKeyword("iter_args"))) {
|
|
// Parse assignment list and results type list.
|
|
if (parser.parseAssignmentList(regionArgs, operands) ||
|
|
parser.parseArrowTypeList(result.types))
|
|
return failure();
|
|
// Resolve input operands.
|
|
for (auto argOperandType :
|
|
llvm::zip(llvm::drop_begin(regionArgs), operands, result.types)) {
|
|
Type type = std::get<2>(argOperandType);
|
|
std::get<0>(argOperandType).type = type;
|
|
if (parser.resolveOperand(std::get<1>(argOperandType), type,
|
|
result.operands))
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
// Parse the body region.
|
|
Region *body = result.addRegion();
|
|
if (regionArgs.size() != result.types.size() + 1)
|
|
return parser.emitError(
|
|
parser.getNameLoc(),
|
|
"mismatch between the number of loop-carried values and results");
|
|
if (parser.parseRegion(*body, regionArgs))
|
|
return failure();
|
|
|
|
AffineForOp::ensureTerminator(*body, builder, result.location);
|
|
|
|
// Parse the optional attribute list.
|
|
return parser.parseOptionalAttrDict(result.attributes);
|
|
}
|
|
|
|
static void printBound(AffineMapAttr boundMap,
|
|
Operation::operand_range boundOperands,
|
|
const char *prefix, OpAsmPrinter &p) {
|
|
AffineMap map = boundMap.getValue();
|
|
|
|
// Check if this bound should be printed using custom assembly form.
|
|
// The decision to restrict printing custom assembly form to trivial cases
|
|
// comes from the will to roundtrip MLIR binary -> text -> binary in a
|
|
// lossless way.
|
|
// Therefore, custom assembly form parsing and printing is only supported for
|
|
// zero-operand constant maps and single symbol operand identity maps.
|
|
if (map.getNumResults() == 1) {
|
|
AffineExpr expr = map.getResult(0);
|
|
|
|
// Print constant bound.
|
|
if (map.getNumDims() == 0 && map.getNumSymbols() == 0) {
|
|
if (auto constExpr = expr.dyn_cast<AffineConstantExpr>()) {
|
|
p << constExpr.getValue();
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Print bound that consists of a single SSA symbol if the map is over a
|
|
// single symbol.
|
|
if (map.getNumDims() == 0 && map.getNumSymbols() == 1) {
|
|
if (auto symExpr = expr.dyn_cast<AffineSymbolExpr>()) {
|
|
p.printOperand(*boundOperands.begin());
|
|
return;
|
|
}
|
|
}
|
|
} else {
|
|
// Map has multiple results. Print 'min' or 'max' prefix.
|
|
p << prefix << ' ';
|
|
}
|
|
|
|
// Print the map and its operands.
|
|
p << boundMap;
|
|
printDimAndSymbolList(boundOperands.begin(), boundOperands.end(),
|
|
map.getNumDims(), p);
|
|
}
|
|
|
|
unsigned AffineForOp::getNumIterOperands() {
|
|
AffineMap lbMap = getLowerBoundMapAttr().getValue();
|
|
AffineMap ubMap = getUpperBoundMapAttr().getValue();
|
|
|
|
return getNumOperands() - lbMap.getNumInputs() - ubMap.getNumInputs();
|
|
}
|
|
|
|
void AffineForOp::print(OpAsmPrinter &p) {
|
|
p << ' ';
|
|
p.printRegionArgument(getBody()->getArgument(0), /*argAttrs=*/{},
|
|
/*omitType=*/true);
|
|
p << " = ";
|
|
printBound(getLowerBoundMapAttr(), getLowerBoundOperands(), "max", p);
|
|
p << " to ";
|
|
printBound(getUpperBoundMapAttr(), getUpperBoundOperands(), "min", p);
|
|
|
|
if (getStep() != 1)
|
|
p << " step " << getStep();
|
|
|
|
bool printBlockTerminators = false;
|
|
if (getNumIterOperands() > 0) {
|
|
p << " iter_args(";
|
|
auto regionArgs = getRegionIterArgs();
|
|
auto operands = getIterOperands();
|
|
|
|
llvm::interleaveComma(llvm::zip(regionArgs, operands), p, [&](auto it) {
|
|
p << std::get<0>(it) << " = " << std::get<1>(it);
|
|
});
|
|
p << ") -> (" << getResultTypes() << ")";
|
|
printBlockTerminators = true;
|
|
}
|
|
|
|
p << ' ';
|
|
p.printRegion(getRegion(), /*printEntryBlockArgs=*/false,
|
|
printBlockTerminators);
|
|
p.printOptionalAttrDict((*this)->getAttrs(),
|
|
/*elidedAttrs=*/{getLowerBoundAttrStrName(),
|
|
getUpperBoundAttrStrName(),
|
|
getStepAttrStrName()});
|
|
}
|
|
|
|
/// Fold the constant bounds of a loop.
|
|
static LogicalResult foldLoopBounds(AffineForOp forOp) {
|
|
auto foldLowerOrUpperBound = [&forOp](bool lower) {
|
|
// Check to see if each of the operands is the result of a constant. If
|
|
// so, get the value. If not, ignore it.
|
|
SmallVector<Attribute, 8> operandConstants;
|
|
auto boundOperands =
|
|
lower ? forOp.getLowerBoundOperands() : forOp.getUpperBoundOperands();
|
|
for (auto operand : boundOperands) {
|
|
Attribute operandCst;
|
|
matchPattern(operand, m_Constant(&operandCst));
|
|
operandConstants.push_back(operandCst);
|
|
}
|
|
|
|
AffineMap boundMap =
|
|
lower ? forOp.getLowerBoundMap() : forOp.getUpperBoundMap();
|
|
assert(boundMap.getNumResults() >= 1 &&
|
|
"bound maps should have at least one result");
|
|
SmallVector<Attribute, 4> foldedResults;
|
|
if (failed(boundMap.constantFold(operandConstants, foldedResults)))
|
|
return failure();
|
|
|
|
// Compute the max or min as applicable over the results.
|
|
assert(!foldedResults.empty() && "bounds should have at least one result");
|
|
auto maxOrMin = foldedResults[0].cast<IntegerAttr>().getValue();
|
|
for (unsigned i = 1, e = foldedResults.size(); i < e; i++) {
|
|
auto foldedResult = foldedResults[i].cast<IntegerAttr>().getValue();
|
|
maxOrMin = lower ? llvm::APIntOps::smax(maxOrMin, foldedResult)
|
|
: llvm::APIntOps::smin(maxOrMin, foldedResult);
|
|
}
|
|
lower ? forOp.setConstantLowerBound(maxOrMin.getSExtValue())
|
|
: forOp.setConstantUpperBound(maxOrMin.getSExtValue());
|
|
return success();
|
|
};
|
|
|
|
// Try to fold the lower bound.
|
|
bool folded = false;
|
|
if (!forOp.hasConstantLowerBound())
|
|
folded |= succeeded(foldLowerOrUpperBound(/*lower=*/true));
|
|
|
|
// Try to fold the upper bound.
|
|
if (!forOp.hasConstantUpperBound())
|
|
folded |= succeeded(foldLowerOrUpperBound(/*lower=*/false));
|
|
return success(folded);
|
|
}
|
|
|
|
/// Canonicalize the bounds of the given loop.
|
|
static LogicalResult canonicalizeLoopBounds(AffineForOp forOp) {
|
|
SmallVector<Value, 4> lbOperands(forOp.getLowerBoundOperands());
|
|
SmallVector<Value, 4> ubOperands(forOp.getUpperBoundOperands());
|
|
|
|
auto lbMap = forOp.getLowerBoundMap();
|
|
auto ubMap = forOp.getUpperBoundMap();
|
|
auto prevLbMap = lbMap;
|
|
auto prevUbMap = ubMap;
|
|
|
|
composeAffineMapAndOperands(&lbMap, &lbOperands);
|
|
canonicalizeMapAndOperands(&lbMap, &lbOperands);
|
|
lbMap = removeDuplicateExprs(lbMap);
|
|
|
|
composeAffineMapAndOperands(&ubMap, &ubOperands);
|
|
canonicalizeMapAndOperands(&ubMap, &ubOperands);
|
|
ubMap = removeDuplicateExprs(ubMap);
|
|
|
|
// Any canonicalization change always leads to updated map(s).
|
|
if (lbMap == prevLbMap && ubMap == prevUbMap)
|
|
return failure();
|
|
|
|
if (lbMap != prevLbMap)
|
|
forOp.setLowerBound(lbOperands, lbMap);
|
|
if (ubMap != prevUbMap)
|
|
forOp.setUpperBound(ubOperands, ubMap);
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
/// Returns constant trip count in trivial cases.
|
|
static Optional<uint64_t> getTrivialConstantTripCount(AffineForOp forOp) {
|
|
int64_t step = forOp.getStep();
|
|
if (!forOp.hasConstantBounds() || step <= 0)
|
|
return None;
|
|
int64_t lb = forOp.getConstantLowerBound();
|
|
int64_t ub = forOp.getConstantUpperBound();
|
|
return ub - lb <= 0 ? 0 : (ub - lb + step - 1) / step;
|
|
}
|
|
|
|
/// This is a pattern to fold trivially empty loop bodies.
|
|
/// TODO: This should be moved into the folding hook.
|
|
struct AffineForEmptyLoopFolder : public OpRewritePattern<AffineForOp> {
|
|
using OpRewritePattern<AffineForOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AffineForOp forOp,
|
|
PatternRewriter &rewriter) const override {
|
|
// Check that the body only contains a yield.
|
|
if (!llvm::hasSingleElement(*forOp.getBody()))
|
|
return failure();
|
|
if (forOp.getNumResults() == 0)
|
|
return success();
|
|
Optional<uint64_t> tripCount = getTrivialConstantTripCount(forOp);
|
|
if (tripCount && *tripCount == 0) {
|
|
// The initial values of the iteration arguments would be the op's
|
|
// results.
|
|
rewriter.replaceOp(forOp, forOp.getIterOperands());
|
|
return success();
|
|
}
|
|
SmallVector<Value, 4> replacements;
|
|
auto yieldOp = cast<AffineYieldOp>(forOp.getBody()->getTerminator());
|
|
auto iterArgs = forOp.getRegionIterArgs();
|
|
bool hasValDefinedOutsideLoop = false;
|
|
bool iterArgsNotInOrder = false;
|
|
for (unsigned i = 0, e = yieldOp->getNumOperands(); i < e; ++i) {
|
|
Value val = yieldOp.getOperand(i);
|
|
auto *iterArgIt = llvm::find(iterArgs, val);
|
|
if (iterArgIt == iterArgs.end()) {
|
|
// `val` is defined outside of the loop.
|
|
assert(forOp.isDefinedOutsideOfLoop(val) &&
|
|
"must be defined outside of the loop");
|
|
hasValDefinedOutsideLoop = true;
|
|
replacements.push_back(val);
|
|
} else {
|
|
unsigned pos = std::distance(iterArgs.begin(), iterArgIt);
|
|
if (pos != i)
|
|
iterArgsNotInOrder = true;
|
|
replacements.push_back(forOp.getIterOperands()[pos]);
|
|
}
|
|
}
|
|
// Bail out when the trip count is unknown and the loop returns any value
|
|
// defined outside of the loop or any iterArg out of order.
|
|
if (!tripCount.has_value() &&
|
|
(hasValDefinedOutsideLoop || iterArgsNotInOrder))
|
|
return failure();
|
|
// Bail out when the loop iterates more than once and it returns any iterArg
|
|
// out of order.
|
|
if (tripCount.has_value() && tripCount.value() >= 2 && iterArgsNotInOrder)
|
|
return failure();
|
|
rewriter.replaceOp(forOp, replacements);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void AffineForOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<AffineForEmptyLoopFolder>(context);
|
|
}
|
|
|
|
/// Return operands used when entering the region at 'index'. These operands
|
|
/// correspond to the loop iterator operands, i.e., those excluding the
|
|
/// induction variable. AffineForOp only has one region, so zero is the only
|
|
/// valid value for `index`.
|
|
OperandRange AffineForOp::getSuccessorEntryOperands(Optional<unsigned> index) {
|
|
assert((!index || *index == 0) && "invalid region index");
|
|
|
|
// The initial operands map to the loop arguments after the induction
|
|
// variable or are forwarded to the results when the trip count is zero.
|
|
return getIterOperands();
|
|
}
|
|
|
|
/// Given the region at `index`, or the parent operation if `index` is None,
|
|
/// return the successor regions. These are the regions that may be selected
|
|
/// during the flow of control. `operands` is a set of optional attributes that
|
|
/// correspond to a constant value for each operand, or null if that operand is
|
|
/// not a constant.
|
|
void AffineForOp::getSuccessorRegions(
|
|
Optional<unsigned> index, ArrayRef<Attribute> operands,
|
|
SmallVectorImpl<RegionSuccessor> ®ions) {
|
|
assert((!index.has_value() || index.value() == 0) && "expected loop region");
|
|
// The loop may typically branch back to its body or to the parent operation.
|
|
// If the predecessor is the parent op and the trip count is known to be at
|
|
// least one, branch into the body using the iterator arguments. And in cases
|
|
// we know the trip count is zero, it can only branch back to its parent.
|
|
Optional<uint64_t> tripCount = getTrivialConstantTripCount(*this);
|
|
if (!index.has_value() && tripCount.has_value()) {
|
|
if (tripCount.value() > 0) {
|
|
regions.push_back(RegionSuccessor(&getLoopBody(), getRegionIterArgs()));
|
|
return;
|
|
}
|
|
if (tripCount.value() == 0) {
|
|
regions.push_back(RegionSuccessor(getResults()));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// From the loop body, if the trip count is one, we can only branch back to
|
|
// the parent.
|
|
if (index && tripCount && *tripCount == 1) {
|
|
regions.push_back(RegionSuccessor(getResults()));
|
|
return;
|
|
}
|
|
|
|
// In all other cases, the loop may branch back to itself or the parent
|
|
// operation.
|
|
regions.push_back(RegionSuccessor(&getLoopBody(), getRegionIterArgs()));
|
|
regions.push_back(RegionSuccessor(getResults()));
|
|
}
|
|
|
|
/// Returns true if the affine.for has zero iterations in trivial cases.
|
|
static bool hasTrivialZeroTripCount(AffineForOp op) {
|
|
Optional<uint64_t> tripCount = getTrivialConstantTripCount(op);
|
|
return tripCount && *tripCount == 0;
|
|
}
|
|
|
|
LogicalResult AffineForOp::fold(ArrayRef<Attribute> operands,
|
|
SmallVectorImpl<OpFoldResult> &results) {
|
|
bool folded = succeeded(foldLoopBounds(*this));
|
|
folded |= succeeded(canonicalizeLoopBounds(*this));
|
|
if (hasTrivialZeroTripCount(*this)) {
|
|
// The initial values of the loop-carried variables (iter_args) are the
|
|
// results of the op.
|
|
results.assign(getIterOperands().begin(), getIterOperands().end());
|
|
folded = true;
|
|
}
|
|
return success(folded);
|
|
}
|
|
|
|
AffineBound AffineForOp::getLowerBound() {
|
|
auto lbMap = getLowerBoundMap();
|
|
return AffineBound(AffineForOp(*this), 0, lbMap.getNumInputs(), lbMap);
|
|
}
|
|
|
|
AffineBound AffineForOp::getUpperBound() {
|
|
auto lbMap = getLowerBoundMap();
|
|
auto ubMap = getUpperBoundMap();
|
|
return AffineBound(AffineForOp(*this), lbMap.getNumInputs(),
|
|
lbMap.getNumInputs() + ubMap.getNumInputs(), ubMap);
|
|
}
|
|
|
|
void AffineForOp::setLowerBound(ValueRange lbOperands, AffineMap map) {
|
|
assert(lbOperands.size() == map.getNumInputs());
|
|
assert(map.getNumResults() >= 1 && "bound map has at least one result");
|
|
|
|
SmallVector<Value, 4> newOperands(lbOperands.begin(), lbOperands.end());
|
|
|
|
auto ubOperands = getUpperBoundOperands();
|
|
newOperands.append(ubOperands.begin(), ubOperands.end());
|
|
auto iterOperands = getIterOperands();
|
|
newOperands.append(iterOperands.begin(), iterOperands.end());
|
|
(*this)->setOperands(newOperands);
|
|
|
|
(*this)->setAttr(getLowerBoundAttrStrName(), AffineMapAttr::get(map));
|
|
}
|
|
|
|
void AffineForOp::setUpperBound(ValueRange ubOperands, AffineMap map) {
|
|
assert(ubOperands.size() == map.getNumInputs());
|
|
assert(map.getNumResults() >= 1 && "bound map has at least one result");
|
|
|
|
SmallVector<Value, 4> newOperands(getLowerBoundOperands());
|
|
newOperands.append(ubOperands.begin(), ubOperands.end());
|
|
auto iterOperands = getIterOperands();
|
|
newOperands.append(iterOperands.begin(), iterOperands.end());
|
|
(*this)->setOperands(newOperands);
|
|
|
|
(*this)->setAttr(getUpperBoundAttrStrName(), AffineMapAttr::get(map));
|
|
}
|
|
|
|
void AffineForOp::setLowerBoundMap(AffineMap map) {
|
|
auto lbMap = getLowerBoundMap();
|
|
assert(lbMap.getNumDims() == map.getNumDims() &&
|
|
lbMap.getNumSymbols() == map.getNumSymbols());
|
|
assert(map.getNumResults() >= 1 && "bound map has at least one result");
|
|
(void)lbMap;
|
|
(*this)->setAttr(getLowerBoundAttrStrName(), AffineMapAttr::get(map));
|
|
}
|
|
|
|
void AffineForOp::setUpperBoundMap(AffineMap map) {
|
|
auto ubMap = getUpperBoundMap();
|
|
assert(ubMap.getNumDims() == map.getNumDims() &&
|
|
ubMap.getNumSymbols() == map.getNumSymbols());
|
|
assert(map.getNumResults() >= 1 && "bound map has at least one result");
|
|
(void)ubMap;
|
|
(*this)->setAttr(getUpperBoundAttrStrName(), AffineMapAttr::get(map));
|
|
}
|
|
|
|
bool AffineForOp::hasConstantLowerBound() {
|
|
return getLowerBoundMap().isSingleConstant();
|
|
}
|
|
|
|
bool AffineForOp::hasConstantUpperBound() {
|
|
return getUpperBoundMap().isSingleConstant();
|
|
}
|
|
|
|
int64_t AffineForOp::getConstantLowerBound() {
|
|
return getLowerBoundMap().getSingleConstantResult();
|
|
}
|
|
|
|
int64_t AffineForOp::getConstantUpperBound() {
|
|
return getUpperBoundMap().getSingleConstantResult();
|
|
}
|
|
|
|
void AffineForOp::setConstantLowerBound(int64_t value) {
|
|
setLowerBound({}, AffineMap::getConstantMap(value, getContext()));
|
|
}
|
|
|
|
void AffineForOp::setConstantUpperBound(int64_t value) {
|
|
setUpperBound({}, AffineMap::getConstantMap(value, getContext()));
|
|
}
|
|
|
|
AffineForOp::operand_range AffineForOp::getLowerBoundOperands() {
|
|
return {operand_begin(), operand_begin() + getLowerBoundMap().getNumInputs()};
|
|
}
|
|
|
|
AffineForOp::operand_range AffineForOp::getUpperBoundOperands() {
|
|
return {operand_begin() + getLowerBoundMap().getNumInputs(),
|
|
operand_begin() + getLowerBoundMap().getNumInputs() +
|
|
getUpperBoundMap().getNumInputs()};
|
|
}
|
|
|
|
AffineForOp::operand_range AffineForOp::getControlOperands() {
|
|
return {operand_begin(), operand_begin() + getLowerBoundMap().getNumInputs() +
|
|
getUpperBoundMap().getNumInputs()};
|
|
}
|
|
|
|
bool AffineForOp::matchingBoundOperandList() {
|
|
auto lbMap = getLowerBoundMap();
|
|
auto ubMap = getUpperBoundMap();
|
|
if (lbMap.getNumDims() != ubMap.getNumDims() ||
|
|
lbMap.getNumSymbols() != ubMap.getNumSymbols())
|
|
return false;
|
|
|
|
unsigned numOperands = lbMap.getNumInputs();
|
|
for (unsigned i = 0, e = lbMap.getNumInputs(); i < e; i++) {
|
|
// Compare Value 's.
|
|
if (getOperand(i) != getOperand(numOperands + i))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Region &AffineForOp::getLoopBody() { return getRegion(); }
|
|
|
|
Optional<Value> AffineForOp::getSingleInductionVar() {
|
|
return getInductionVar();
|
|
}
|
|
|
|
Optional<OpFoldResult> AffineForOp::getSingleLowerBound() {
|
|
if (!hasConstantLowerBound())
|
|
return llvm::None;
|
|
OpBuilder b(getContext());
|
|
return OpFoldResult(b.getI64IntegerAttr(getConstantLowerBound()));
|
|
}
|
|
|
|
Optional<OpFoldResult> AffineForOp::getSingleStep() {
|
|
OpBuilder b(getContext());
|
|
return OpFoldResult(b.getI64IntegerAttr(getStep()));
|
|
}
|
|
|
|
Optional<OpFoldResult> AffineForOp::getSingleUpperBound() {
|
|
if (!hasConstantUpperBound())
|
|
return llvm::None;
|
|
OpBuilder b(getContext());
|
|
return OpFoldResult(b.getI64IntegerAttr(getConstantUpperBound()));
|
|
}
|
|
|
|
/// Returns true if the provided value is the induction variable of a
|
|
/// AffineForOp.
|
|
bool mlir::isForInductionVar(Value val) {
|
|
return getForInductionVarOwner(val) != AffineForOp();
|
|
}
|
|
|
|
/// Returns the loop parent of an induction variable. If the provided value is
|
|
/// not an induction variable, then return nullptr.
|
|
AffineForOp mlir::getForInductionVarOwner(Value val) {
|
|
auto ivArg = val.dyn_cast<BlockArgument>();
|
|
if (!ivArg || !ivArg.getOwner())
|
|
return AffineForOp();
|
|
auto *containingInst = ivArg.getOwner()->getParent()->getParentOp();
|
|
if (auto forOp = dyn_cast<AffineForOp>(containingInst))
|
|
// Check to make sure `val` is the induction variable, not an iter_arg.
|
|
return forOp.getInductionVar() == val ? forOp : AffineForOp();
|
|
return AffineForOp();
|
|
}
|
|
|
|
/// Extracts the induction variables from a list of AffineForOps and returns
|
|
/// them.
|
|
void mlir::extractForInductionVars(ArrayRef<AffineForOp> forInsts,
|
|
SmallVectorImpl<Value> *ivs) {
|
|
ivs->reserve(forInsts.size());
|
|
for (auto forInst : forInsts)
|
|
ivs->push_back(forInst.getInductionVar());
|
|
}
|
|
|
|
/// Builds an affine loop nest, using "loopCreatorFn" to create individual loop
|
|
/// operations.
|
|
template <typename BoundListTy, typename LoopCreatorTy>
|
|
static void buildAffineLoopNestImpl(
|
|
OpBuilder &builder, Location loc, BoundListTy lbs, BoundListTy ubs,
|
|
ArrayRef<int64_t> steps,
|
|
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilderFn,
|
|
LoopCreatorTy &&loopCreatorFn) {
|
|
assert(lbs.size() == ubs.size() && "Mismatch in number of arguments");
|
|
assert(lbs.size() == steps.size() && "Mismatch in number of arguments");
|
|
|
|
// If there are no loops to be constructed, construct the body anyway.
|
|
OpBuilder::InsertionGuard guard(builder);
|
|
if (lbs.empty()) {
|
|
if (bodyBuilderFn)
|
|
bodyBuilderFn(builder, loc, ValueRange());
|
|
return;
|
|
}
|
|
|
|
// Create the loops iteratively and store the induction variables.
|
|
SmallVector<Value, 4> ivs;
|
|
ivs.reserve(lbs.size());
|
|
for (unsigned i = 0, e = lbs.size(); i < e; ++i) {
|
|
// Callback for creating the loop body, always creates the terminator.
|
|
auto loopBody = [&](OpBuilder &nestedBuilder, Location nestedLoc, Value iv,
|
|
ValueRange iterArgs) {
|
|
ivs.push_back(iv);
|
|
// In the innermost loop, call the body builder.
|
|
if (i == e - 1 && bodyBuilderFn) {
|
|
OpBuilder::InsertionGuard nestedGuard(nestedBuilder);
|
|
bodyBuilderFn(nestedBuilder, nestedLoc, ivs);
|
|
}
|
|
nestedBuilder.create<AffineYieldOp>(nestedLoc);
|
|
};
|
|
|
|
// Delegate actual loop creation to the callback in order to dispatch
|
|
// between constant- and variable-bound loops.
|
|
auto loop = loopCreatorFn(builder, loc, lbs[i], ubs[i], steps[i], loopBody);
|
|
builder.setInsertionPointToStart(loop.getBody());
|
|
}
|
|
}
|
|
|
|
/// Creates an affine loop from the bounds known to be constants.
|
|
static AffineForOp
|
|
buildAffineLoopFromConstants(OpBuilder &builder, Location loc, int64_t lb,
|
|
int64_t ub, int64_t step,
|
|
AffineForOp::BodyBuilderFn bodyBuilderFn) {
|
|
return builder.create<AffineForOp>(loc, lb, ub, step, /*iterArgs=*/llvm::None,
|
|
bodyBuilderFn);
|
|
}
|
|
|
|
/// Creates an affine loop from the bounds that may or may not be constants.
|
|
static AffineForOp
|
|
buildAffineLoopFromValues(OpBuilder &builder, Location loc, Value lb, Value ub,
|
|
int64_t step,
|
|
AffineForOp::BodyBuilderFn bodyBuilderFn) {
|
|
auto lbConst = lb.getDefiningOp<arith::ConstantIndexOp>();
|
|
auto ubConst = ub.getDefiningOp<arith::ConstantIndexOp>();
|
|
if (lbConst && ubConst)
|
|
return buildAffineLoopFromConstants(builder, loc, lbConst.value(),
|
|
ubConst.value(), step, bodyBuilderFn);
|
|
return builder.create<AffineForOp>(loc, lb, builder.getDimIdentityMap(), ub,
|
|
builder.getDimIdentityMap(), step,
|
|
/*iterArgs=*/llvm::None, bodyBuilderFn);
|
|
}
|
|
|
|
void mlir::buildAffineLoopNest(
|
|
OpBuilder &builder, Location loc, ArrayRef<int64_t> lbs,
|
|
ArrayRef<int64_t> ubs, ArrayRef<int64_t> steps,
|
|
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilderFn) {
|
|
buildAffineLoopNestImpl(builder, loc, lbs, ubs, steps, bodyBuilderFn,
|
|
buildAffineLoopFromConstants);
|
|
}
|
|
|
|
void mlir::buildAffineLoopNest(
|
|
OpBuilder &builder, Location loc, ValueRange lbs, ValueRange ubs,
|
|
ArrayRef<int64_t> steps,
|
|
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilderFn) {
|
|
buildAffineLoopNestImpl(builder, loc, lbs, ubs, steps, bodyBuilderFn,
|
|
buildAffineLoopFromValues);
|
|
}
|
|
|
|
AffineForOp mlir::replaceForOpWithNewYields(OpBuilder &b, AffineForOp loop,
|
|
ValueRange newIterOperands,
|
|
ValueRange newYieldedValues,
|
|
ValueRange newIterArgs,
|
|
bool replaceLoopResults) {
|
|
assert(newIterOperands.size() == newYieldedValues.size() &&
|
|
"newIterOperands must be of the same size as newYieldedValues");
|
|
// Create a new loop before the existing one, with the extra operands.
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPoint(loop);
|
|
auto operands = llvm::to_vector<4>(loop.getIterOperands());
|
|
operands.append(newIterOperands.begin(), newIterOperands.end());
|
|
SmallVector<Value, 4> lbOperands(loop.getLowerBoundOperands());
|
|
SmallVector<Value, 4> ubOperands(loop.getUpperBoundOperands());
|
|
SmallVector<Value, 4> steps(loop.getStep());
|
|
auto lbMap = loop.getLowerBoundMap();
|
|
auto ubMap = loop.getUpperBoundMap();
|
|
AffineForOp newLoop =
|
|
b.create<AffineForOp>(loop.getLoc(), lbOperands, lbMap, ubOperands, ubMap,
|
|
loop.getStep(), operands);
|
|
// Take the body of the original parent loop.
|
|
newLoop.getLoopBody().takeBody(loop.getLoopBody());
|
|
for (Value val : newIterArgs)
|
|
newLoop.getLoopBody().addArgument(val.getType(), val.getLoc());
|
|
|
|
// Update yield operation with new values to be added.
|
|
if (!newYieldedValues.empty()) {
|
|
auto yield = cast<AffineYieldOp>(newLoop.getBody()->getTerminator());
|
|
b.setInsertionPoint(yield);
|
|
auto yieldOperands = llvm::to_vector<4>(yield.getOperands());
|
|
yieldOperands.append(newYieldedValues.begin(), newYieldedValues.end());
|
|
b.create<AffineYieldOp>(yield.getLoc(), yieldOperands);
|
|
yield.erase();
|
|
}
|
|
if (replaceLoopResults) {
|
|
for (auto it : llvm::zip(loop.getResults(), newLoop.getResults().take_front(
|
|
loop.getNumResults()))) {
|
|
std::get<0>(it).replaceAllUsesWith(std::get<1>(it));
|
|
}
|
|
}
|
|
return newLoop;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffineIfOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// Remove else blocks that have nothing other than a zero value yield.
|
|
struct SimplifyDeadElse : public OpRewritePattern<AffineIfOp> {
|
|
using OpRewritePattern<AffineIfOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AffineIfOp ifOp,
|
|
PatternRewriter &rewriter) const override {
|
|
if (ifOp.getElseRegion().empty() ||
|
|
!llvm::hasSingleElement(*ifOp.getElseBlock()) || ifOp.getNumResults())
|
|
return failure();
|
|
|
|
rewriter.startRootUpdate(ifOp);
|
|
rewriter.eraseBlock(ifOp.getElseBlock());
|
|
rewriter.finalizeRootUpdate(ifOp);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Removes affine.if cond if the condition is always true or false in certain
|
|
/// trivial cases. Promotes the then/else block in the parent operation block.
|
|
struct AlwaysTrueOrFalseIf : public OpRewritePattern<AffineIfOp> {
|
|
using OpRewritePattern<AffineIfOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AffineIfOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
auto isTriviallyFalse = [](IntegerSet iSet) {
|
|
return iSet.isEmptyIntegerSet();
|
|
};
|
|
|
|
auto isTriviallyTrue = [](IntegerSet iSet) {
|
|
return (iSet.getNumEqualities() == 1 && iSet.getNumInequalities() == 0 &&
|
|
iSet.getConstraint(0) == 0);
|
|
};
|
|
|
|
IntegerSet affineIfConditions = op.getIntegerSet();
|
|
Block *blockToMove;
|
|
if (isTriviallyFalse(affineIfConditions)) {
|
|
// The absence, or equivalently, the emptiness of the else region need not
|
|
// be checked when affine.if is returning results because if an affine.if
|
|
// operation is returning results, it always has a non-empty else region.
|
|
if (op.getNumResults() == 0 && !op.hasElse()) {
|
|
// If the else region is absent, or equivalently, empty, remove the
|
|
// affine.if operation (which is not returning any results).
|
|
rewriter.eraseOp(op);
|
|
return success();
|
|
}
|
|
blockToMove = op.getElseBlock();
|
|
} else if (isTriviallyTrue(affineIfConditions)) {
|
|
blockToMove = op.getThenBlock();
|
|
} else {
|
|
return failure();
|
|
}
|
|
Operation *blockToMoveTerminator = blockToMove->getTerminator();
|
|
// Promote the "blockToMove" block to the parent operation block between the
|
|
// prologue and epilogue of "op".
|
|
rewriter.mergeBlockBefore(blockToMove, op);
|
|
// Replace the "op" operation with the operands of the
|
|
// "blockToMoveTerminator" operation. Note that "blockToMoveTerminator" is
|
|
// the affine.yield operation present in the "blockToMove" block. It has no
|
|
// operands when affine.if is not returning results and therefore, in that
|
|
// case, replaceOp just erases "op". When affine.if is not returning
|
|
// results, the affine.yield operation can be omitted. It gets inserted
|
|
// implicitly.
|
|
rewriter.replaceOp(op, blockToMoveTerminator->getOperands());
|
|
// Erase the "blockToMoveTerminator" operation since it is now in the parent
|
|
// operation block, which already has its own terminator.
|
|
rewriter.eraseOp(blockToMoveTerminator);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult AffineIfOp::verify() {
|
|
// Verify that we have a condition attribute.
|
|
// FIXME: This should be specified in the arguments list in ODS.
|
|
auto conditionAttr =
|
|
(*this)->getAttrOfType<IntegerSetAttr>(getConditionAttrStrName());
|
|
if (!conditionAttr)
|
|
return emitOpError("requires an integer set attribute named 'condition'");
|
|
|
|
// Verify that there are enough operands for the condition.
|
|
IntegerSet condition = conditionAttr.getValue();
|
|
if (getNumOperands() != condition.getNumInputs())
|
|
return emitOpError("operand count and condition integer set dimension and "
|
|
"symbol count must match");
|
|
|
|
// Verify that the operands are valid dimension/symbols.
|
|
if (failed(verifyDimAndSymbolIdentifiers(*this, getOperands(),
|
|
condition.getNumDims())))
|
|
return failure();
|
|
|
|
return success();
|
|
}
|
|
|
|
ParseResult AffineIfOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
// Parse the condition attribute set.
|
|
IntegerSetAttr conditionAttr;
|
|
unsigned numDims;
|
|
if (parser.parseAttribute(conditionAttr,
|
|
AffineIfOp::getConditionAttrStrName(),
|
|
result.attributes) ||
|
|
parseDimAndSymbolList(parser, result.operands, numDims))
|
|
return failure();
|
|
|
|
// Verify the condition operands.
|
|
auto set = conditionAttr.getValue();
|
|
if (set.getNumDims() != numDims)
|
|
return parser.emitError(
|
|
parser.getNameLoc(),
|
|
"dim operand count and integer set dim count must match");
|
|
if (numDims + set.getNumSymbols() != result.operands.size())
|
|
return parser.emitError(
|
|
parser.getNameLoc(),
|
|
"symbol operand count and integer set symbol count must match");
|
|
|
|
if (parser.parseOptionalArrowTypeList(result.types))
|
|
return failure();
|
|
|
|
// Create the regions for 'then' and 'else'. The latter must be created even
|
|
// if it remains empty for the validity of the operation.
|
|
result.regions.reserve(2);
|
|
Region *thenRegion = result.addRegion();
|
|
Region *elseRegion = result.addRegion();
|
|
|
|
// Parse the 'then' region.
|
|
if (parser.parseRegion(*thenRegion, {}, {}))
|
|
return failure();
|
|
AffineIfOp::ensureTerminator(*thenRegion, parser.getBuilder(),
|
|
result.location);
|
|
|
|
// If we find an 'else' keyword then parse the 'else' region.
|
|
if (!parser.parseOptionalKeyword("else")) {
|
|
if (parser.parseRegion(*elseRegion, {}, {}))
|
|
return failure();
|
|
AffineIfOp::ensureTerminator(*elseRegion, parser.getBuilder(),
|
|
result.location);
|
|
}
|
|
|
|
// Parse the optional attribute list.
|
|
if (parser.parseOptionalAttrDict(result.attributes))
|
|
return failure();
|
|
|
|
return success();
|
|
}
|
|
|
|
void AffineIfOp::print(OpAsmPrinter &p) {
|
|
auto conditionAttr =
|
|
(*this)->getAttrOfType<IntegerSetAttr>(getConditionAttrStrName());
|
|
p << " " << conditionAttr;
|
|
printDimAndSymbolList(operand_begin(), operand_end(),
|
|
conditionAttr.getValue().getNumDims(), p);
|
|
p.printOptionalArrowTypeList(getResultTypes());
|
|
p << ' ';
|
|
p.printRegion(getThenRegion(), /*printEntryBlockArgs=*/false,
|
|
/*printBlockTerminators=*/getNumResults());
|
|
|
|
// Print the 'else' regions if it has any blocks.
|
|
auto &elseRegion = this->getElseRegion();
|
|
if (!elseRegion.empty()) {
|
|
p << " else ";
|
|
p.printRegion(elseRegion,
|
|
/*printEntryBlockArgs=*/false,
|
|
/*printBlockTerminators=*/getNumResults());
|
|
}
|
|
|
|
// Print the attribute list.
|
|
p.printOptionalAttrDict((*this)->getAttrs(),
|
|
/*elidedAttrs=*/getConditionAttrStrName());
|
|
}
|
|
|
|
IntegerSet AffineIfOp::getIntegerSet() {
|
|
return (*this)
|
|
->getAttrOfType<IntegerSetAttr>(getConditionAttrStrName())
|
|
.getValue();
|
|
}
|
|
|
|
void AffineIfOp::setIntegerSet(IntegerSet newSet) {
|
|
(*this)->setAttr(getConditionAttrStrName(), IntegerSetAttr::get(newSet));
|
|
}
|
|
|
|
void AffineIfOp::setConditional(IntegerSet set, ValueRange operands) {
|
|
setIntegerSet(set);
|
|
(*this)->setOperands(operands);
|
|
}
|
|
|
|
void AffineIfOp::build(OpBuilder &builder, OperationState &result,
|
|
TypeRange resultTypes, IntegerSet set, ValueRange args,
|
|
bool withElseRegion) {
|
|
assert(resultTypes.empty() || withElseRegion);
|
|
result.addTypes(resultTypes);
|
|
result.addOperands(args);
|
|
result.addAttribute(getConditionAttrStrName(), IntegerSetAttr::get(set));
|
|
|
|
Region *thenRegion = result.addRegion();
|
|
thenRegion->push_back(new Block());
|
|
if (resultTypes.empty())
|
|
AffineIfOp::ensureTerminator(*thenRegion, builder, result.location);
|
|
|
|
Region *elseRegion = result.addRegion();
|
|
if (withElseRegion) {
|
|
elseRegion->push_back(new Block());
|
|
if (resultTypes.empty())
|
|
AffineIfOp::ensureTerminator(*elseRegion, builder, result.location);
|
|
}
|
|
}
|
|
|
|
void AffineIfOp::build(OpBuilder &builder, OperationState &result,
|
|
IntegerSet set, ValueRange args, bool withElseRegion) {
|
|
AffineIfOp::build(builder, result, /*resultTypes=*/{}, set, args,
|
|
withElseRegion);
|
|
}
|
|
|
|
/// Canonicalize an affine if op's conditional (integer set + operands).
|
|
LogicalResult AffineIfOp::fold(ArrayRef<Attribute>,
|
|
SmallVectorImpl<OpFoldResult> &) {
|
|
auto set = getIntegerSet();
|
|
SmallVector<Value, 4> operands(getOperands());
|
|
canonicalizeSetAndOperands(&set, &operands);
|
|
|
|
// Any canonicalization change always leads to either a reduction in the
|
|
// number of operands or a change in the number of symbolic operands
|
|
// (promotion of dims to symbols).
|
|
if (operands.size() < getIntegerSet().getNumInputs() ||
|
|
set.getNumSymbols() > getIntegerSet().getNumSymbols()) {
|
|
setConditional(set, operands);
|
|
return success();
|
|
}
|
|
|
|
return failure();
|
|
}
|
|
|
|
void AffineIfOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<SimplifyDeadElse, AlwaysTrueOrFalseIf>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffineLoadOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void AffineLoadOp::build(OpBuilder &builder, OperationState &result,
|
|
AffineMap map, ValueRange operands) {
|
|
assert(operands.size() == 1 + map.getNumInputs() && "inconsistent operands");
|
|
result.addOperands(operands);
|
|
if (map)
|
|
result.addAttribute(getMapAttrStrName(), AffineMapAttr::get(map));
|
|
auto memrefType = operands[0].getType().cast<MemRefType>();
|
|
result.types.push_back(memrefType.getElementType());
|
|
}
|
|
|
|
void AffineLoadOp::build(OpBuilder &builder, OperationState &result,
|
|
Value memref, AffineMap map, ValueRange mapOperands) {
|
|
assert(map.getNumInputs() == mapOperands.size() && "inconsistent index info");
|
|
result.addOperands(memref);
|
|
result.addOperands(mapOperands);
|
|
auto memrefType = memref.getType().cast<MemRefType>();
|
|
result.addAttribute(getMapAttrStrName(), AffineMapAttr::get(map));
|
|
result.types.push_back(memrefType.getElementType());
|
|
}
|
|
|
|
void AffineLoadOp::build(OpBuilder &builder, OperationState &result,
|
|
Value memref, ValueRange indices) {
|
|
auto memrefType = memref.getType().cast<MemRefType>();
|
|
int64_t rank = memrefType.getRank();
|
|
// Create identity map for memrefs with at least one dimension or () -> ()
|
|
// for zero-dimensional memrefs.
|
|
auto map =
|
|
rank ? builder.getMultiDimIdentityMap(rank) : builder.getEmptyAffineMap();
|
|
build(builder, result, memref, map, indices);
|
|
}
|
|
|
|
ParseResult AffineLoadOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
auto &builder = parser.getBuilder();
|
|
auto indexTy = builder.getIndexType();
|
|
|
|
MemRefType type;
|
|
OpAsmParser::UnresolvedOperand memrefInfo;
|
|
AffineMapAttr mapAttr;
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 1> mapOperands;
|
|
return failure(
|
|
parser.parseOperand(memrefInfo) ||
|
|
parser.parseAffineMapOfSSAIds(mapOperands, mapAttr,
|
|
AffineLoadOp::getMapAttrStrName(),
|
|
result.attributes) ||
|
|
parser.parseOptionalAttrDict(result.attributes) ||
|
|
parser.parseColonType(type) ||
|
|
parser.resolveOperand(memrefInfo, type, result.operands) ||
|
|
parser.resolveOperands(mapOperands, indexTy, result.operands) ||
|
|
parser.addTypeToList(type.getElementType(), result.types));
|
|
}
|
|
|
|
void AffineLoadOp::print(OpAsmPrinter &p) {
|
|
p << " " << getMemRef() << '[';
|
|
if (AffineMapAttr mapAttr =
|
|
(*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName()))
|
|
p.printAffineMapOfSSAIds(mapAttr, getMapOperands());
|
|
p << ']';
|
|
p.printOptionalAttrDict((*this)->getAttrs(),
|
|
/*elidedAttrs=*/{getMapAttrStrName()});
|
|
p << " : " << getMemRefType();
|
|
}
|
|
|
|
/// Verify common indexing invariants of affine.load, affine.store,
|
|
/// affine.vector_load and affine.vector_store.
|
|
static LogicalResult
|
|
verifyMemoryOpIndexing(Operation *op, AffineMapAttr mapAttr,
|
|
Operation::operand_range mapOperands,
|
|
MemRefType memrefType, unsigned numIndexOperands) {
|
|
if (mapAttr) {
|
|
AffineMap map = mapAttr.getValue();
|
|
if (map.getNumResults() != memrefType.getRank())
|
|
return op->emitOpError("affine map num results must equal memref rank");
|
|
if (map.getNumInputs() != numIndexOperands)
|
|
return op->emitOpError("expects as many subscripts as affine map inputs");
|
|
} else {
|
|
if (memrefType.getRank() != numIndexOperands)
|
|
return op->emitOpError(
|
|
"expects the number of subscripts to be equal to memref rank");
|
|
}
|
|
|
|
Region *scope = getAffineScope(op);
|
|
for (auto idx : mapOperands) {
|
|
if (!idx.getType().isIndex())
|
|
return op->emitOpError("index to load must have 'index' type");
|
|
if (!isValidAffineIndexOperand(idx, scope))
|
|
return op->emitOpError("index must be a dimension or symbol identifier");
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult AffineLoadOp::verify() {
|
|
auto memrefType = getMemRefType();
|
|
if (getType() != memrefType.getElementType())
|
|
return emitOpError("result type must match element type of memref");
|
|
|
|
if (failed(verifyMemoryOpIndexing(
|
|
getOperation(),
|
|
(*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName()),
|
|
getMapOperands(), memrefType,
|
|
/*numIndexOperands=*/getNumOperands() - 1)))
|
|
return failure();
|
|
|
|
return success();
|
|
}
|
|
|
|
void AffineLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<SimplifyAffineOp<AffineLoadOp>>(context);
|
|
}
|
|
|
|
OpFoldResult AffineLoadOp::fold(ArrayRef<Attribute> cstOperands) {
|
|
/// load(memrefcast) -> load
|
|
if (succeeded(foldMemRefCast(*this)))
|
|
return getResult();
|
|
|
|
// Fold load from a global constant memref.
|
|
auto getGlobalOp = getMemref().getDefiningOp<memref::GetGlobalOp>();
|
|
if (!getGlobalOp)
|
|
return {};
|
|
// Get to the memref.global defining the symbol.
|
|
auto *symbolTableOp = getGlobalOp->getParentWithTrait<OpTrait::SymbolTable>();
|
|
if (!symbolTableOp)
|
|
return {};
|
|
auto global = dyn_cast_or_null<memref::GlobalOp>(
|
|
SymbolTable::lookupSymbolIn(symbolTableOp, getGlobalOp.getNameAttr()));
|
|
if (!global)
|
|
return {};
|
|
|
|
// Check if the global memref is a constant.
|
|
auto cstAttr =
|
|
global.getConstantInitValue().dyn_cast_or_null<DenseElementsAttr>();
|
|
if (!cstAttr)
|
|
return {};
|
|
// If it's a splat constant, we can fold irrespective of indices.
|
|
if (auto splatAttr = cstAttr.dyn_cast<SplatElementsAttr>())
|
|
return splatAttr.getSplatValue<Attribute>();
|
|
// Otherwise, we can fold only if we know the indices.
|
|
if (!getAffineMap().isConstant())
|
|
return {};
|
|
auto indices = llvm::to_vector<4>(
|
|
llvm::map_range(getAffineMap().getConstantResults(),
|
|
[](int64_t v) -> uint64_t { return v; }));
|
|
return cstAttr.getValues<Attribute>()[indices];
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffineStoreOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void AffineStoreOp::build(OpBuilder &builder, OperationState &result,
|
|
Value valueToStore, Value memref, AffineMap map,
|
|
ValueRange mapOperands) {
|
|
assert(map.getNumInputs() == mapOperands.size() && "inconsistent index info");
|
|
result.addOperands(valueToStore);
|
|
result.addOperands(memref);
|
|
result.addOperands(mapOperands);
|
|
result.addAttribute(getMapAttrStrName(), AffineMapAttr::get(map));
|
|
}
|
|
|
|
// Use identity map.
|
|
void AffineStoreOp::build(OpBuilder &builder, OperationState &result,
|
|
Value valueToStore, Value memref,
|
|
ValueRange indices) {
|
|
auto memrefType = memref.getType().cast<MemRefType>();
|
|
int64_t rank = memrefType.getRank();
|
|
// Create identity map for memrefs with at least one dimension or () -> ()
|
|
// for zero-dimensional memrefs.
|
|
auto map =
|
|
rank ? builder.getMultiDimIdentityMap(rank) : builder.getEmptyAffineMap();
|
|
build(builder, result, valueToStore, memref, map, indices);
|
|
}
|
|
|
|
ParseResult AffineStoreOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
auto indexTy = parser.getBuilder().getIndexType();
|
|
|
|
MemRefType type;
|
|
OpAsmParser::UnresolvedOperand storeValueInfo;
|
|
OpAsmParser::UnresolvedOperand memrefInfo;
|
|
AffineMapAttr mapAttr;
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 1> mapOperands;
|
|
return failure(parser.parseOperand(storeValueInfo) || parser.parseComma() ||
|
|
parser.parseOperand(memrefInfo) ||
|
|
parser.parseAffineMapOfSSAIds(
|
|
mapOperands, mapAttr, AffineStoreOp::getMapAttrStrName(),
|
|
result.attributes) ||
|
|
parser.parseOptionalAttrDict(result.attributes) ||
|
|
parser.parseColonType(type) ||
|
|
parser.resolveOperand(storeValueInfo, type.getElementType(),
|
|
result.operands) ||
|
|
parser.resolveOperand(memrefInfo, type, result.operands) ||
|
|
parser.resolveOperands(mapOperands, indexTy, result.operands));
|
|
}
|
|
|
|
void AffineStoreOp::print(OpAsmPrinter &p) {
|
|
p << " " << getValueToStore();
|
|
p << ", " << getMemRef() << '[';
|
|
if (AffineMapAttr mapAttr =
|
|
(*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName()))
|
|
p.printAffineMapOfSSAIds(mapAttr, getMapOperands());
|
|
p << ']';
|
|
p.printOptionalAttrDict((*this)->getAttrs(),
|
|
/*elidedAttrs=*/{getMapAttrStrName()});
|
|
p << " : " << getMemRefType();
|
|
}
|
|
|
|
LogicalResult AffineStoreOp::verify() {
|
|
// The value to store must have the same type as memref element type.
|
|
auto memrefType = getMemRefType();
|
|
if (getValueToStore().getType() != memrefType.getElementType())
|
|
return emitOpError(
|
|
"value to store must have the same type as memref element type");
|
|
|
|
if (failed(verifyMemoryOpIndexing(
|
|
getOperation(),
|
|
(*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName()),
|
|
getMapOperands(), memrefType,
|
|
/*numIndexOperands=*/getNumOperands() - 2)))
|
|
return failure();
|
|
|
|
return success();
|
|
}
|
|
|
|
void AffineStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<SimplifyAffineOp<AffineStoreOp>>(context);
|
|
}
|
|
|
|
LogicalResult AffineStoreOp::fold(ArrayRef<Attribute> cstOperands,
|
|
SmallVectorImpl<OpFoldResult> &results) {
|
|
/// store(memrefcast) -> store
|
|
return foldMemRefCast(*this, getValueToStore());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffineMinMaxOpBase
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename T>
|
|
static LogicalResult verifyAffineMinMaxOp(T op) {
|
|
// Verify that operand count matches affine map dimension and symbol count.
|
|
if (op.getNumOperands() !=
|
|
op.getMap().getNumDims() + op.getMap().getNumSymbols())
|
|
return op.emitOpError(
|
|
"operand count and affine map dimension and symbol count must match");
|
|
return success();
|
|
}
|
|
|
|
template <typename T>
|
|
static void printAffineMinMaxOp(OpAsmPrinter &p, T op) {
|
|
p << ' ' << op->getAttr(T::getMapAttrStrName());
|
|
auto operands = op.getOperands();
|
|
unsigned numDims = op.getMap().getNumDims();
|
|
p << '(' << operands.take_front(numDims) << ')';
|
|
|
|
if (operands.size() != numDims)
|
|
p << '[' << operands.drop_front(numDims) << ']';
|
|
p.printOptionalAttrDict(op->getAttrs(),
|
|
/*elidedAttrs=*/{T::getMapAttrStrName()});
|
|
}
|
|
|
|
template <typename T>
|
|
static ParseResult parseAffineMinMaxOp(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
auto &builder = parser.getBuilder();
|
|
auto indexType = builder.getIndexType();
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 8> dimInfos;
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 8> symInfos;
|
|
AffineMapAttr mapAttr;
|
|
return failure(
|
|
parser.parseAttribute(mapAttr, T::getMapAttrStrName(),
|
|
result.attributes) ||
|
|
parser.parseOperandList(dimInfos, OpAsmParser::Delimiter::Paren) ||
|
|
parser.parseOperandList(symInfos,
|
|
OpAsmParser::Delimiter::OptionalSquare) ||
|
|
parser.parseOptionalAttrDict(result.attributes) ||
|
|
parser.resolveOperands(dimInfos, indexType, result.operands) ||
|
|
parser.resolveOperands(symInfos, indexType, result.operands) ||
|
|
parser.addTypeToList(indexType, result.types));
|
|
}
|
|
|
|
/// Fold an affine min or max operation with the given operands. The operand
|
|
/// list may contain nulls, which are interpreted as the operand not being a
|
|
/// constant.
|
|
template <typename T>
|
|
static OpFoldResult foldMinMaxOp(T op, ArrayRef<Attribute> operands) {
|
|
static_assert(llvm::is_one_of<T, AffineMinOp, AffineMaxOp>::value,
|
|
"expected affine min or max op");
|
|
|
|
// Fold the affine map.
|
|
// TODO: Fold more cases:
|
|
// min(some_affine, some_affine + constant, ...), etc.
|
|
SmallVector<int64_t, 2> results;
|
|
auto foldedMap = op.getMap().partialConstantFold(operands, &results);
|
|
|
|
// If some of the map results are not constant, try changing the map in-place.
|
|
if (results.empty()) {
|
|
// If the map is the same, report that folding did not happen.
|
|
if (foldedMap == op.getMap())
|
|
return {};
|
|
op->setAttr("map", AffineMapAttr::get(foldedMap));
|
|
return op.getResult();
|
|
}
|
|
|
|
// Otherwise, completely fold the op into a constant.
|
|
auto resultIt = std::is_same<T, AffineMinOp>::value
|
|
? std::min_element(results.begin(), results.end())
|
|
: std::max_element(results.begin(), results.end());
|
|
if (resultIt == results.end())
|
|
return {};
|
|
return IntegerAttr::get(IndexType::get(op.getContext()), *resultIt);
|
|
}
|
|
|
|
/// Remove duplicated expressions in affine min/max ops.
|
|
template <typename T>
|
|
struct DeduplicateAffineMinMaxExpressions : public OpRewritePattern<T> {
|
|
using OpRewritePattern<T>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(T affineOp,
|
|
PatternRewriter &rewriter) const override {
|
|
AffineMap oldMap = affineOp.getAffineMap();
|
|
|
|
SmallVector<AffineExpr, 4> newExprs;
|
|
for (AffineExpr expr : oldMap.getResults()) {
|
|
// This is a linear scan over newExprs, but it should be fine given that
|
|
// we typically just have a few expressions per op.
|
|
if (!llvm::is_contained(newExprs, expr))
|
|
newExprs.push_back(expr);
|
|
}
|
|
|
|
if (newExprs.size() == oldMap.getNumResults())
|
|
return failure();
|
|
|
|
auto newMap = AffineMap::get(oldMap.getNumDims(), oldMap.getNumSymbols(),
|
|
newExprs, rewriter.getContext());
|
|
rewriter.replaceOpWithNewOp<T>(affineOp, newMap, affineOp.getMapOperands());
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Merge an affine min/max op to its consumers if its consumer is also an
|
|
/// affine min/max op.
|
|
///
|
|
/// This pattern requires the producer affine min/max op is bound to a
|
|
/// dimension/symbol that is used as a standalone expression in the consumer
|
|
/// affine op's map.
|
|
///
|
|
/// For example, a pattern like the following:
|
|
///
|
|
/// %0 = affine.min affine_map<()[s0] -> (s0 + 16, s0 * 8)> ()[%sym1]
|
|
/// %1 = affine.min affine_map<(d0)[s0] -> (s0 + 4, d0)> (%0)[%sym2]
|
|
///
|
|
/// Can be turned into:
|
|
///
|
|
/// %1 = affine.min affine_map<
|
|
/// ()[s0, s1] -> (s0 + 4, s1 + 16, s1 * 8)> ()[%sym2, %sym1]
|
|
template <typename T>
|
|
struct MergeAffineMinMaxOp : public OpRewritePattern<T> {
|
|
using OpRewritePattern<T>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(T affineOp,
|
|
PatternRewriter &rewriter) const override {
|
|
AffineMap oldMap = affineOp.getAffineMap();
|
|
ValueRange dimOperands =
|
|
affineOp.getMapOperands().take_front(oldMap.getNumDims());
|
|
ValueRange symOperands =
|
|
affineOp.getMapOperands().take_back(oldMap.getNumSymbols());
|
|
|
|
auto newDimOperands = llvm::to_vector<8>(dimOperands);
|
|
auto newSymOperands = llvm::to_vector<8>(symOperands);
|
|
SmallVector<AffineExpr, 4> newExprs;
|
|
SmallVector<T, 4> producerOps;
|
|
|
|
// Go over each expression to see whether it's a single dimension/symbol
|
|
// with the corresponding operand which is the result of another affine
|
|
// min/max op. If So it can be merged into this affine op.
|
|
for (AffineExpr expr : oldMap.getResults()) {
|
|
if (auto symExpr = expr.dyn_cast<AffineSymbolExpr>()) {
|
|
Value symValue = symOperands[symExpr.getPosition()];
|
|
if (auto producerOp = symValue.getDefiningOp<T>()) {
|
|
producerOps.push_back(producerOp);
|
|
continue;
|
|
}
|
|
} else if (auto dimExpr = expr.dyn_cast<AffineDimExpr>()) {
|
|
Value dimValue = dimOperands[dimExpr.getPosition()];
|
|
if (auto producerOp = dimValue.getDefiningOp<T>()) {
|
|
producerOps.push_back(producerOp);
|
|
continue;
|
|
}
|
|
}
|
|
// For the above cases we will remove the expression by merging the
|
|
// producer affine min/max's affine expressions. Otherwise we need to
|
|
// keep the existing expression.
|
|
newExprs.push_back(expr);
|
|
}
|
|
|
|
if (producerOps.empty())
|
|
return failure();
|
|
|
|
unsigned numUsedDims = oldMap.getNumDims();
|
|
unsigned numUsedSyms = oldMap.getNumSymbols();
|
|
|
|
// Now go over all producer affine ops and merge their expressions.
|
|
for (T producerOp : producerOps) {
|
|
AffineMap producerMap = producerOp.getAffineMap();
|
|
unsigned numProducerDims = producerMap.getNumDims();
|
|
unsigned numProducerSyms = producerMap.getNumSymbols();
|
|
|
|
// Collect all dimension/symbol values.
|
|
ValueRange dimValues =
|
|
producerOp.getMapOperands().take_front(numProducerDims);
|
|
ValueRange symValues =
|
|
producerOp.getMapOperands().take_back(numProducerSyms);
|
|
newDimOperands.append(dimValues.begin(), dimValues.end());
|
|
newSymOperands.append(symValues.begin(), symValues.end());
|
|
|
|
// For expressions we need to shift to avoid overlap.
|
|
for (AffineExpr expr : producerMap.getResults()) {
|
|
newExprs.push_back(expr.shiftDims(numProducerDims, numUsedDims)
|
|
.shiftSymbols(numProducerSyms, numUsedSyms));
|
|
}
|
|
|
|
numUsedDims += numProducerDims;
|
|
numUsedSyms += numProducerSyms;
|
|
}
|
|
|
|
auto newMap = AffineMap::get(numUsedDims, numUsedSyms, newExprs,
|
|
rewriter.getContext());
|
|
auto newOperands =
|
|
llvm::to_vector<8>(llvm::concat<Value>(newDimOperands, newSymOperands));
|
|
rewriter.replaceOpWithNewOp<T>(affineOp, newMap, newOperands);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Canonicalize the result expression order of an affine map and return success
|
|
/// if the order changed.
|
|
///
|
|
/// The function flattens the map's affine expressions to coefficient arrays and
|
|
/// sorts them in lexicographic order. A coefficient array contains a multiplier
|
|
/// for every dimension/symbol and a constant term. The canonicalization fails
|
|
/// if a result expression is not pure or if the flattening requires local
|
|
/// variables that, unlike dimensions and symbols, have no global order.
|
|
static LogicalResult canonicalizeMapExprAndTermOrder(AffineMap &map) {
|
|
SmallVector<SmallVector<int64_t>> flattenedExprs;
|
|
for (const AffineExpr &resultExpr : map.getResults()) {
|
|
// Fail if the expression is not pure.
|
|
if (!resultExpr.isPureAffine())
|
|
return failure();
|
|
|
|
SimpleAffineExprFlattener flattener(map.getNumDims(), map.getNumSymbols());
|
|
flattener.walkPostOrder(resultExpr);
|
|
|
|
// Fail if the flattened expression has local variables.
|
|
if (flattener.operandExprStack.back().size() !=
|
|
map.getNumDims() + map.getNumSymbols() + 1)
|
|
return failure();
|
|
|
|
flattenedExprs.emplace_back(flattener.operandExprStack.back().begin(),
|
|
flattener.operandExprStack.back().end());
|
|
}
|
|
|
|
// Fail if sorting is not necessary.
|
|
if (llvm::is_sorted(flattenedExprs))
|
|
return failure();
|
|
|
|
// Reorder the result expressions according to their flattened form.
|
|
SmallVector<unsigned> resultPermutation =
|
|
llvm::to_vector(llvm::seq<unsigned>(0, map.getNumResults()));
|
|
llvm::sort(resultPermutation, [&](unsigned lhs, unsigned rhs) {
|
|
return flattenedExprs[lhs] < flattenedExprs[rhs];
|
|
});
|
|
SmallVector<AffineExpr> newExprs;
|
|
for (unsigned idx : resultPermutation)
|
|
newExprs.push_back(map.getResult(idx));
|
|
|
|
map = AffineMap::get(map.getNumDims(), map.getNumSymbols(), newExprs,
|
|
map.getContext());
|
|
return success();
|
|
}
|
|
|
|
/// Canonicalize the affine map result expression order of an affine min/max
|
|
/// operation.
|
|
///
|
|
/// The pattern calls `canonicalizeMapExprAndTermOrder` to order the result
|
|
/// expressions and replaces the operation if the order changed.
|
|
///
|
|
/// For example, the following operation:
|
|
///
|
|
/// %0 = affine.min affine_map<(d0, d1) -> (d0 + d1, d1 + 16, 32)> (%i0, %i1)
|
|
///
|
|
/// Turns into:
|
|
///
|
|
/// %0 = affine.min affine_map<(d0, d1) -> (32, d1 + 16, d0 + d1)> (%i0, %i1)
|
|
template <typename T>
|
|
struct CanonicalizeAffineMinMaxOpExprAndTermOrder : public OpRewritePattern<T> {
|
|
using OpRewritePattern<T>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(T affineOp,
|
|
PatternRewriter &rewriter) const override {
|
|
AffineMap map = affineOp.getAffineMap();
|
|
if (failed(canonicalizeMapExprAndTermOrder(map)))
|
|
return failure();
|
|
|
|
rewriter.replaceOpWithNewOp<T>(affineOp, map, affineOp.getMapOperands());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct CanonicalizeSingleResultAffineMinMaxOp : public OpRewritePattern<T> {
|
|
using OpRewritePattern<T>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(T affineOp,
|
|
PatternRewriter &rewriter) const override {
|
|
if (affineOp.getMap().getNumResults() != 1)
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<AffineApplyOp>(affineOp, affineOp.getMap(),
|
|
affineOp.getOperands());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffineMinOp
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// %0 = affine.min (d0) -> (1000, d0 + 512) (%i0)
|
|
//
|
|
|
|
OpFoldResult AffineMinOp::fold(ArrayRef<Attribute> operands) {
|
|
return foldMinMaxOp(*this, operands);
|
|
}
|
|
|
|
void AffineMinOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add<CanonicalizeSingleResultAffineMinMaxOp<AffineMinOp>,
|
|
DeduplicateAffineMinMaxExpressions<AffineMinOp>,
|
|
MergeAffineMinMaxOp<AffineMinOp>, SimplifyAffineOp<AffineMinOp>,
|
|
CanonicalizeAffineMinMaxOpExprAndTermOrder<AffineMinOp>>(
|
|
context);
|
|
}
|
|
|
|
LogicalResult AffineMinOp::verify() { return verifyAffineMinMaxOp(*this); }
|
|
|
|
ParseResult AffineMinOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
return parseAffineMinMaxOp<AffineMinOp>(parser, result);
|
|
}
|
|
|
|
void AffineMinOp::print(OpAsmPrinter &p) { printAffineMinMaxOp(p, *this); }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffineMaxOp
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// %0 = affine.max (d0) -> (1000, d0 + 512) (%i0)
|
|
//
|
|
|
|
OpFoldResult AffineMaxOp::fold(ArrayRef<Attribute> operands) {
|
|
return foldMinMaxOp(*this, operands);
|
|
}
|
|
|
|
void AffineMaxOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add<CanonicalizeSingleResultAffineMinMaxOp<AffineMaxOp>,
|
|
DeduplicateAffineMinMaxExpressions<AffineMaxOp>,
|
|
MergeAffineMinMaxOp<AffineMaxOp>, SimplifyAffineOp<AffineMaxOp>,
|
|
CanonicalizeAffineMinMaxOpExprAndTermOrder<AffineMaxOp>>(
|
|
context);
|
|
}
|
|
|
|
LogicalResult AffineMaxOp::verify() { return verifyAffineMinMaxOp(*this); }
|
|
|
|
ParseResult AffineMaxOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
return parseAffineMinMaxOp<AffineMaxOp>(parser, result);
|
|
}
|
|
|
|
void AffineMaxOp::print(OpAsmPrinter &p) { printAffineMinMaxOp(p, *this); }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffinePrefetchOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
// affine.prefetch %0[%i, %j + 5], read, locality<3>, data : memref<400x400xi32>
|
|
//
|
|
ParseResult AffinePrefetchOp::parse(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
auto &builder = parser.getBuilder();
|
|
auto indexTy = builder.getIndexType();
|
|
|
|
MemRefType type;
|
|
OpAsmParser::UnresolvedOperand memrefInfo;
|
|
IntegerAttr hintInfo;
|
|
auto i32Type = parser.getBuilder().getIntegerType(32);
|
|
StringRef readOrWrite, cacheType;
|
|
|
|
AffineMapAttr mapAttr;
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 1> mapOperands;
|
|
if (parser.parseOperand(memrefInfo) ||
|
|
parser.parseAffineMapOfSSAIds(mapOperands, mapAttr,
|
|
AffinePrefetchOp::getMapAttrStrName(),
|
|
result.attributes) ||
|
|
parser.parseComma() || parser.parseKeyword(&readOrWrite) ||
|
|
parser.parseComma() || parser.parseKeyword("locality") ||
|
|
parser.parseLess() ||
|
|
parser.parseAttribute(hintInfo, i32Type,
|
|
AffinePrefetchOp::getLocalityHintAttrStrName(),
|
|
result.attributes) ||
|
|
parser.parseGreater() || parser.parseComma() ||
|
|
parser.parseKeyword(&cacheType) ||
|
|
parser.parseOptionalAttrDict(result.attributes) ||
|
|
parser.parseColonType(type) ||
|
|
parser.resolveOperand(memrefInfo, type, result.operands) ||
|
|
parser.resolveOperands(mapOperands, indexTy, result.operands))
|
|
return failure();
|
|
|
|
if (!readOrWrite.equals("read") && !readOrWrite.equals("write"))
|
|
return parser.emitError(parser.getNameLoc(),
|
|
"rw specifier has to be 'read' or 'write'");
|
|
result.addAttribute(
|
|
AffinePrefetchOp::getIsWriteAttrStrName(),
|
|
parser.getBuilder().getBoolAttr(readOrWrite.equals("write")));
|
|
|
|
if (!cacheType.equals("data") && !cacheType.equals("instr"))
|
|
return parser.emitError(parser.getNameLoc(),
|
|
"cache type has to be 'data' or 'instr'");
|
|
|
|
result.addAttribute(
|
|
AffinePrefetchOp::getIsDataCacheAttrStrName(),
|
|
parser.getBuilder().getBoolAttr(cacheType.equals("data")));
|
|
|
|
return success();
|
|
}
|
|
|
|
void AffinePrefetchOp::print(OpAsmPrinter &p) {
|
|
p << " " << getMemref() << '[';
|
|
AffineMapAttr mapAttr =
|
|
(*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName());
|
|
if (mapAttr)
|
|
p.printAffineMapOfSSAIds(mapAttr, getMapOperands());
|
|
p << ']' << ", " << (getIsWrite() ? "write" : "read") << ", "
|
|
<< "locality<" << getLocalityHint() << ">, "
|
|
<< (getIsDataCache() ? "data" : "instr");
|
|
p.printOptionalAttrDict(
|
|
(*this)->getAttrs(),
|
|
/*elidedAttrs=*/{getMapAttrStrName(), getLocalityHintAttrStrName(),
|
|
getIsDataCacheAttrStrName(), getIsWriteAttrStrName()});
|
|
p << " : " << getMemRefType();
|
|
}
|
|
|
|
LogicalResult AffinePrefetchOp::verify() {
|
|
auto mapAttr = (*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName());
|
|
if (mapAttr) {
|
|
AffineMap map = mapAttr.getValue();
|
|
if (map.getNumResults() != getMemRefType().getRank())
|
|
return emitOpError("affine.prefetch affine map num results must equal"
|
|
" memref rank");
|
|
if (map.getNumInputs() + 1 != getNumOperands())
|
|
return emitOpError("too few operands");
|
|
} else {
|
|
if (getNumOperands() != 1)
|
|
return emitOpError("too few operands");
|
|
}
|
|
|
|
Region *scope = getAffineScope(*this);
|
|
for (auto idx : getMapOperands()) {
|
|
if (!isValidAffineIndexOperand(idx, scope))
|
|
return emitOpError("index must be a dimension or symbol identifier");
|
|
}
|
|
return success();
|
|
}
|
|
|
|
void AffinePrefetchOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
// prefetch(memrefcast) -> prefetch
|
|
results.add<SimplifyAffineOp<AffinePrefetchOp>>(context);
|
|
}
|
|
|
|
LogicalResult AffinePrefetchOp::fold(ArrayRef<Attribute> cstOperands,
|
|
SmallVectorImpl<OpFoldResult> &results) {
|
|
/// prefetch(memrefcast) -> prefetch
|
|
return foldMemRefCast(*this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffineParallelOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void AffineParallelOp::build(OpBuilder &builder, OperationState &result,
|
|
TypeRange resultTypes,
|
|
ArrayRef<arith::AtomicRMWKind> reductions,
|
|
ArrayRef<int64_t> ranges) {
|
|
SmallVector<AffineMap> lbs(ranges.size(), builder.getConstantAffineMap(0));
|
|
auto ubs = llvm::to_vector<4>(llvm::map_range(ranges, [&](int64_t value) {
|
|
return builder.getConstantAffineMap(value);
|
|
}));
|
|
SmallVector<int64_t> steps(ranges.size(), 1);
|
|
build(builder, result, resultTypes, reductions, lbs, /*lbArgs=*/{}, ubs,
|
|
/*ubArgs=*/{}, steps);
|
|
}
|
|
|
|
void AffineParallelOp::build(OpBuilder &builder, OperationState &result,
|
|
TypeRange resultTypes,
|
|
ArrayRef<arith::AtomicRMWKind> reductions,
|
|
ArrayRef<AffineMap> lbMaps, ValueRange lbArgs,
|
|
ArrayRef<AffineMap> ubMaps, ValueRange ubArgs,
|
|
ArrayRef<int64_t> steps) {
|
|
assert(llvm::all_of(lbMaps,
|
|
[lbMaps](AffineMap m) {
|
|
return m.getNumDims() == lbMaps[0].getNumDims() &&
|
|
m.getNumSymbols() == lbMaps[0].getNumSymbols();
|
|
}) &&
|
|
"expected all lower bounds maps to have the same number of dimensions "
|
|
"and symbols");
|
|
assert(llvm::all_of(ubMaps,
|
|
[ubMaps](AffineMap m) {
|
|
return m.getNumDims() == ubMaps[0].getNumDims() &&
|
|
m.getNumSymbols() == ubMaps[0].getNumSymbols();
|
|
}) &&
|
|
"expected all upper bounds maps to have the same number of dimensions "
|
|
"and symbols");
|
|
assert((lbMaps.empty() || lbMaps[0].getNumInputs() == lbArgs.size()) &&
|
|
"expected lower bound maps to have as many inputs as lower bound "
|
|
"operands");
|
|
assert((ubMaps.empty() || ubMaps[0].getNumInputs() == ubArgs.size()) &&
|
|
"expected upper bound maps to have as many inputs as upper bound "
|
|
"operands");
|
|
|
|
result.addTypes(resultTypes);
|
|
|
|
// Convert the reductions to integer attributes.
|
|
SmallVector<Attribute, 4> reductionAttrs;
|
|
for (arith::AtomicRMWKind reduction : reductions)
|
|
reductionAttrs.push_back(
|
|
builder.getI64IntegerAttr(static_cast<int64_t>(reduction)));
|
|
result.addAttribute(getReductionsAttrStrName(),
|
|
builder.getArrayAttr(reductionAttrs));
|
|
|
|
// Concatenates maps defined in the same input space (same dimensions and
|
|
// symbols), assumes there is at least one map.
|
|
auto concatMapsSameInput = [&builder](ArrayRef<AffineMap> maps,
|
|
SmallVectorImpl<int32_t> &groups) {
|
|
if (maps.empty())
|
|
return AffineMap::get(builder.getContext());
|
|
SmallVector<AffineExpr> exprs;
|
|
groups.reserve(groups.size() + maps.size());
|
|
exprs.reserve(maps.size());
|
|
for (AffineMap m : maps) {
|
|
llvm::append_range(exprs, m.getResults());
|
|
groups.push_back(m.getNumResults());
|
|
}
|
|
return AffineMap::get(maps[0].getNumDims(), maps[0].getNumSymbols(), exprs,
|
|
maps[0].getContext());
|
|
};
|
|
|
|
// Set up the bounds.
|
|
SmallVector<int32_t> lbGroups, ubGroups;
|
|
AffineMap lbMap = concatMapsSameInput(lbMaps, lbGroups);
|
|
AffineMap ubMap = concatMapsSameInput(ubMaps, ubGroups);
|
|
result.addAttribute(getLowerBoundsMapAttrStrName(),
|
|
AffineMapAttr::get(lbMap));
|
|
result.addAttribute(getLowerBoundsGroupsAttrStrName(),
|
|
builder.getI32TensorAttr(lbGroups));
|
|
result.addAttribute(getUpperBoundsMapAttrStrName(),
|
|
AffineMapAttr::get(ubMap));
|
|
result.addAttribute(getUpperBoundsGroupsAttrStrName(),
|
|
builder.getI32TensorAttr(ubGroups));
|
|
result.addAttribute(getStepsAttrStrName(), builder.getI64ArrayAttr(steps));
|
|
result.addOperands(lbArgs);
|
|
result.addOperands(ubArgs);
|
|
|
|
// Create a region and a block for the body.
|
|
auto *bodyRegion = result.addRegion();
|
|
auto *body = new Block();
|
|
// Add all the block arguments.
|
|
for (unsigned i = 0, e = steps.size(); i < e; ++i)
|
|
body->addArgument(IndexType::get(builder.getContext()), result.location);
|
|
bodyRegion->push_back(body);
|
|
if (resultTypes.empty())
|
|
ensureTerminator(*bodyRegion, builder, result.location);
|
|
}
|
|
|
|
Region &AffineParallelOp::getLoopBody() { return getRegion(); }
|
|
|
|
unsigned AffineParallelOp::getNumDims() { return getSteps().size(); }
|
|
|
|
AffineParallelOp::operand_range AffineParallelOp::getLowerBoundsOperands() {
|
|
return getOperands().take_front(getLowerBoundsMap().getNumInputs());
|
|
}
|
|
|
|
AffineParallelOp::operand_range AffineParallelOp::getUpperBoundsOperands() {
|
|
return getOperands().drop_front(getLowerBoundsMap().getNumInputs());
|
|
}
|
|
|
|
AffineMap AffineParallelOp::getLowerBoundMap(unsigned pos) {
|
|
auto values = getLowerBoundsGroups().getValues<int32_t>();
|
|
unsigned start = 0;
|
|
for (unsigned i = 0; i < pos; ++i)
|
|
start += values[i];
|
|
return getLowerBoundsMap().getSliceMap(start, values[pos]);
|
|
}
|
|
|
|
AffineMap AffineParallelOp::getUpperBoundMap(unsigned pos) {
|
|
auto values = getUpperBoundsGroups().getValues<int32_t>();
|
|
unsigned start = 0;
|
|
for (unsigned i = 0; i < pos; ++i)
|
|
start += values[i];
|
|
return getUpperBoundsMap().getSliceMap(start, values[pos]);
|
|
}
|
|
|
|
AffineValueMap AffineParallelOp::getLowerBoundsValueMap() {
|
|
return AffineValueMap(getLowerBoundsMap(), getLowerBoundsOperands());
|
|
}
|
|
|
|
AffineValueMap AffineParallelOp::getUpperBoundsValueMap() {
|
|
return AffineValueMap(getUpperBoundsMap(), getUpperBoundsOperands());
|
|
}
|
|
|
|
Optional<SmallVector<int64_t, 8>> AffineParallelOp::getConstantRanges() {
|
|
if (hasMinMaxBounds())
|
|
return llvm::None;
|
|
|
|
// Try to convert all the ranges to constant expressions.
|
|
SmallVector<int64_t, 8> out;
|
|
AffineValueMap rangesValueMap;
|
|
AffineValueMap::difference(getUpperBoundsValueMap(), getLowerBoundsValueMap(),
|
|
&rangesValueMap);
|
|
out.reserve(rangesValueMap.getNumResults());
|
|
for (unsigned i = 0, e = rangesValueMap.getNumResults(); i < e; ++i) {
|
|
auto expr = rangesValueMap.getResult(i);
|
|
auto cst = expr.dyn_cast<AffineConstantExpr>();
|
|
if (!cst)
|
|
return llvm::None;
|
|
out.push_back(cst.getValue());
|
|
}
|
|
return out;
|
|
}
|
|
|
|
Block *AffineParallelOp::getBody() { return &getRegion().front(); }
|
|
|
|
OpBuilder AffineParallelOp::getBodyBuilder() {
|
|
return OpBuilder(getBody(), std::prev(getBody()->end()));
|
|
}
|
|
|
|
void AffineParallelOp::setLowerBounds(ValueRange lbOperands, AffineMap map) {
|
|
assert(lbOperands.size() == map.getNumInputs() &&
|
|
"operands to map must match number of inputs");
|
|
|
|
auto ubOperands = getUpperBoundsOperands();
|
|
|
|
SmallVector<Value, 4> newOperands(lbOperands);
|
|
newOperands.append(ubOperands.begin(), ubOperands.end());
|
|
(*this)->setOperands(newOperands);
|
|
|
|
setLowerBoundsMapAttr(AffineMapAttr::get(map));
|
|
}
|
|
|
|
void AffineParallelOp::setUpperBounds(ValueRange ubOperands, AffineMap map) {
|
|
assert(ubOperands.size() == map.getNumInputs() &&
|
|
"operands to map must match number of inputs");
|
|
|
|
SmallVector<Value, 4> newOperands(getLowerBoundsOperands());
|
|
newOperands.append(ubOperands.begin(), ubOperands.end());
|
|
(*this)->setOperands(newOperands);
|
|
|
|
setUpperBoundsMapAttr(AffineMapAttr::get(map));
|
|
}
|
|
|
|
void AffineParallelOp::setLowerBoundsMap(AffineMap map) {
|
|
AffineMap lbMap = getLowerBoundsMap();
|
|
assert(lbMap.getNumDims() == map.getNumDims() &&
|
|
lbMap.getNumSymbols() == map.getNumSymbols());
|
|
(void)lbMap;
|
|
setLowerBoundsMapAttr(AffineMapAttr::get(map));
|
|
}
|
|
|
|
void AffineParallelOp::setUpperBoundsMap(AffineMap map) {
|
|
AffineMap ubMap = getUpperBoundsMap();
|
|
assert(ubMap.getNumDims() == map.getNumDims() &&
|
|
ubMap.getNumSymbols() == map.getNumSymbols());
|
|
(void)ubMap;
|
|
setUpperBoundsMapAttr(AffineMapAttr::get(map));
|
|
}
|
|
|
|
void AffineParallelOp::setSteps(ArrayRef<int64_t> newSteps) {
|
|
setStepsAttr(getBodyBuilder().getI64ArrayAttr(newSteps));
|
|
}
|
|
|
|
LogicalResult AffineParallelOp::verify() {
|
|
auto numDims = getNumDims();
|
|
if (getLowerBoundsGroups().getNumElements() != numDims ||
|
|
getUpperBoundsGroups().getNumElements() != numDims ||
|
|
getSteps().size() != numDims || getBody()->getNumArguments() != numDims) {
|
|
return emitOpError() << "the number of region arguments ("
|
|
<< getBody()->getNumArguments()
|
|
<< ") and the number of map groups for lower ("
|
|
<< getLowerBoundsGroups().getNumElements()
|
|
<< ") and upper bound ("
|
|
<< getUpperBoundsGroups().getNumElements()
|
|
<< "), and the number of steps (" << getSteps().size()
|
|
<< ") must all match";
|
|
}
|
|
|
|
unsigned expectedNumLBResults = 0;
|
|
for (APInt v : getLowerBoundsGroups())
|
|
expectedNumLBResults += v.getZExtValue();
|
|
if (expectedNumLBResults != getLowerBoundsMap().getNumResults())
|
|
return emitOpError() << "expected lower bounds map to have "
|
|
<< expectedNumLBResults << " results";
|
|
unsigned expectedNumUBResults = 0;
|
|
for (APInt v : getUpperBoundsGroups())
|
|
expectedNumUBResults += v.getZExtValue();
|
|
if (expectedNumUBResults != getUpperBoundsMap().getNumResults())
|
|
return emitOpError() << "expected upper bounds map to have "
|
|
<< expectedNumUBResults << " results";
|
|
|
|
if (getReductions().size() != getNumResults())
|
|
return emitOpError("a reduction must be specified for each output");
|
|
|
|
// Verify reduction ops are all valid
|
|
for (Attribute attr : getReductions()) {
|
|
auto intAttr = attr.dyn_cast<IntegerAttr>();
|
|
if (!intAttr || !arith::symbolizeAtomicRMWKind(intAttr.getInt()))
|
|
return emitOpError("invalid reduction attribute");
|
|
}
|
|
|
|
// Verify that the bound operands are valid dimension/symbols.
|
|
/// Lower bounds.
|
|
if (failed(verifyDimAndSymbolIdentifiers(*this, getLowerBoundsOperands(),
|
|
getLowerBoundsMap().getNumDims())))
|
|
return failure();
|
|
/// Upper bounds.
|
|
if (failed(verifyDimAndSymbolIdentifiers(*this, getUpperBoundsOperands(),
|
|
getUpperBoundsMap().getNumDims())))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
LogicalResult AffineValueMap::canonicalize() {
|
|
SmallVector<Value, 4> newOperands{operands};
|
|
auto newMap = getAffineMap();
|
|
composeAffineMapAndOperands(&newMap, &newOperands);
|
|
if (newMap == getAffineMap() && newOperands == operands)
|
|
return failure();
|
|
reset(newMap, newOperands);
|
|
return success();
|
|
}
|
|
|
|
/// Canonicalize the bounds of the given loop.
|
|
static LogicalResult canonicalizeLoopBounds(AffineParallelOp op) {
|
|
AffineValueMap lb = op.getLowerBoundsValueMap();
|
|
bool lbCanonicalized = succeeded(lb.canonicalize());
|
|
|
|
AffineValueMap ub = op.getUpperBoundsValueMap();
|
|
bool ubCanonicalized = succeeded(ub.canonicalize());
|
|
|
|
// Any canonicalization change always leads to updated map(s).
|
|
if (!lbCanonicalized && !ubCanonicalized)
|
|
return failure();
|
|
|
|
if (lbCanonicalized)
|
|
op.setLowerBounds(lb.getOperands(), lb.getAffineMap());
|
|
if (ubCanonicalized)
|
|
op.setUpperBounds(ub.getOperands(), ub.getAffineMap());
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult AffineParallelOp::fold(ArrayRef<Attribute> operands,
|
|
SmallVectorImpl<OpFoldResult> &results) {
|
|
return canonicalizeLoopBounds(*this);
|
|
}
|
|
|
|
/// Prints a lower(upper) bound of an affine parallel loop with max(min)
|
|
/// conditions in it. `mapAttr` is a flat list of affine expressions and `group`
|
|
/// identifies which of the those expressions form max/min groups. `operands`
|
|
/// are the SSA values of dimensions and symbols and `keyword` is either "min"
|
|
/// or "max".
|
|
static void printMinMaxBound(OpAsmPrinter &p, AffineMapAttr mapAttr,
|
|
DenseIntElementsAttr group, ValueRange operands,
|
|
StringRef keyword) {
|
|
AffineMap map = mapAttr.getValue();
|
|
unsigned numDims = map.getNumDims();
|
|
ValueRange dimOperands = operands.take_front(numDims);
|
|
ValueRange symOperands = operands.drop_front(numDims);
|
|
unsigned start = 0;
|
|
for (llvm::APInt groupSize : group) {
|
|
if (start != 0)
|
|
p << ", ";
|
|
|
|
unsigned size = groupSize.getZExtValue();
|
|
if (size == 1) {
|
|
p.printAffineExprOfSSAIds(map.getResult(start), dimOperands, symOperands);
|
|
++start;
|
|
} else {
|
|
p << keyword << '(';
|
|
AffineMap submap = map.getSliceMap(start, size);
|
|
p.printAffineMapOfSSAIds(AffineMapAttr::get(submap), operands);
|
|
p << ')';
|
|
start += size;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AffineParallelOp::print(OpAsmPrinter &p) {
|
|
p << " (" << getBody()->getArguments() << ") = (";
|
|
printMinMaxBound(p, getLowerBoundsMapAttr(), getLowerBoundsGroupsAttr(),
|
|
getLowerBoundsOperands(), "max");
|
|
p << ") to (";
|
|
printMinMaxBound(p, getUpperBoundsMapAttr(), getUpperBoundsGroupsAttr(),
|
|
getUpperBoundsOperands(), "min");
|
|
p << ')';
|
|
SmallVector<int64_t, 8> steps = getSteps();
|
|
bool elideSteps = llvm::all_of(steps, [](int64_t step) { return step == 1; });
|
|
if (!elideSteps) {
|
|
p << " step (";
|
|
llvm::interleaveComma(steps, p);
|
|
p << ')';
|
|
}
|
|
if (getNumResults()) {
|
|
p << " reduce (";
|
|
llvm::interleaveComma(getReductions(), p, [&](auto &attr) {
|
|
arith::AtomicRMWKind sym = *arith::symbolizeAtomicRMWKind(
|
|
attr.template cast<IntegerAttr>().getInt());
|
|
p << "\"" << arith::stringifyAtomicRMWKind(sym) << "\"";
|
|
});
|
|
p << ") -> (" << getResultTypes() << ")";
|
|
}
|
|
|
|
p << ' ';
|
|
p.printRegion(getRegion(), /*printEntryBlockArgs=*/false,
|
|
/*printBlockTerminators=*/getNumResults());
|
|
p.printOptionalAttrDict(
|
|
(*this)->getAttrs(),
|
|
/*elidedAttrs=*/{AffineParallelOp::getReductionsAttrStrName(),
|
|
AffineParallelOp::getLowerBoundsMapAttrStrName(),
|
|
AffineParallelOp::getLowerBoundsGroupsAttrStrName(),
|
|
AffineParallelOp::getUpperBoundsMapAttrStrName(),
|
|
AffineParallelOp::getUpperBoundsGroupsAttrStrName(),
|
|
AffineParallelOp::getStepsAttrStrName()});
|
|
}
|
|
|
|
/// Given a list of lists of parsed operands, populates `uniqueOperands` with
|
|
/// unique operands. Also populates `replacements with affine expressions of
|
|
/// `kind` that can be used to update affine maps previously accepting a
|
|
/// `operands` to accept `uniqueOperands` instead.
|
|
static ParseResult deduplicateAndResolveOperands(
|
|
OpAsmParser &parser,
|
|
ArrayRef<SmallVector<OpAsmParser::UnresolvedOperand>> operands,
|
|
SmallVectorImpl<Value> &uniqueOperands,
|
|
SmallVectorImpl<AffineExpr> &replacements, AffineExprKind kind) {
|
|
assert((kind == AffineExprKind::DimId || kind == AffineExprKind::SymbolId) &&
|
|
"expected operands to be dim or symbol expression");
|
|
|
|
Type indexType = parser.getBuilder().getIndexType();
|
|
for (const auto &list : operands) {
|
|
SmallVector<Value> valueOperands;
|
|
if (parser.resolveOperands(list, indexType, valueOperands))
|
|
return failure();
|
|
for (Value operand : valueOperands) {
|
|
unsigned pos = std::distance(uniqueOperands.begin(),
|
|
llvm::find(uniqueOperands, operand));
|
|
if (pos == uniqueOperands.size())
|
|
uniqueOperands.push_back(operand);
|
|
replacements.push_back(
|
|
kind == AffineExprKind::DimId
|
|
? getAffineDimExpr(pos, parser.getContext())
|
|
: getAffineSymbolExpr(pos, parser.getContext()));
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
enum class MinMaxKind { Min, Max };
|
|
} // namespace
|
|
|
|
/// Parses an affine map that can contain a min/max for groups of its results,
|
|
/// e.g., max(expr-1, expr-2), expr-3, max(expr-4, expr-5, expr-6). Populates
|
|
/// `result` attributes with the map (flat list of expressions) and the grouping
|
|
/// (list of integers that specify how many expressions to put into each
|
|
/// min/max) attributes. Deduplicates repeated operands.
|
|
///
|
|
/// parallel-bound ::= `(` parallel-group-list `)`
|
|
/// parallel-group-list ::= parallel-group (`,` parallel-group-list)?
|
|
/// parallel-group ::= simple-group | min-max-group
|
|
/// simple-group ::= expr-of-ssa-ids
|
|
/// min-max-group ::= ( `min` | `max` ) `(` expr-of-ssa-ids-list `)`
|
|
/// expr-of-ssa-ids-list ::= expr-of-ssa-ids (`,` expr-of-ssa-id-list)?
|
|
///
|
|
/// Examples:
|
|
/// (%0, min(%1 + %2, %3), %4, min(%5 floordiv 32, %6))
|
|
/// (%0, max(%1 - 2 * %2))
|
|
static ParseResult parseAffineMapWithMinMax(OpAsmParser &parser,
|
|
OperationState &result,
|
|
MinMaxKind kind) {
|
|
constexpr llvm::StringLiteral tmpAttrStrName = "__pseudo_bound_map";
|
|
|
|
StringRef mapName = kind == MinMaxKind::Min
|
|
? AffineParallelOp::getUpperBoundsMapAttrStrName()
|
|
: AffineParallelOp::getLowerBoundsMapAttrStrName();
|
|
StringRef groupsName =
|
|
kind == MinMaxKind::Min
|
|
? AffineParallelOp::getUpperBoundsGroupsAttrStrName()
|
|
: AffineParallelOp::getLowerBoundsGroupsAttrStrName();
|
|
|
|
if (failed(parser.parseLParen()))
|
|
return failure();
|
|
|
|
if (succeeded(parser.parseOptionalRParen())) {
|
|
result.addAttribute(
|
|
mapName, AffineMapAttr::get(parser.getBuilder().getEmptyAffineMap()));
|
|
result.addAttribute(groupsName, parser.getBuilder().getI32TensorAttr({}));
|
|
return success();
|
|
}
|
|
|
|
SmallVector<AffineExpr> flatExprs;
|
|
SmallVector<SmallVector<OpAsmParser::UnresolvedOperand>> flatDimOperands;
|
|
SmallVector<SmallVector<OpAsmParser::UnresolvedOperand>> flatSymOperands;
|
|
SmallVector<int32_t> numMapsPerGroup;
|
|
SmallVector<OpAsmParser::UnresolvedOperand> mapOperands;
|
|
auto parseOperands = [&]() {
|
|
if (succeeded(parser.parseOptionalKeyword(
|
|
kind == MinMaxKind::Min ? "min" : "max"))) {
|
|
mapOperands.clear();
|
|
AffineMapAttr map;
|
|
if (failed(parser.parseAffineMapOfSSAIds(mapOperands, map, tmpAttrStrName,
|
|
result.attributes,
|
|
OpAsmParser::Delimiter::Paren)))
|
|
return failure();
|
|
result.attributes.erase(tmpAttrStrName);
|
|
llvm::append_range(flatExprs, map.getValue().getResults());
|
|
auto operandsRef = llvm::makeArrayRef(mapOperands);
|
|
auto dimsRef = operandsRef.take_front(map.getValue().getNumDims());
|
|
SmallVector<OpAsmParser::UnresolvedOperand> dims(dimsRef.begin(),
|
|
dimsRef.end());
|
|
auto symsRef = operandsRef.drop_front(map.getValue().getNumDims());
|
|
SmallVector<OpAsmParser::UnresolvedOperand> syms(symsRef.begin(),
|
|
symsRef.end());
|
|
flatDimOperands.append(map.getValue().getNumResults(), dims);
|
|
flatSymOperands.append(map.getValue().getNumResults(), syms);
|
|
numMapsPerGroup.push_back(map.getValue().getNumResults());
|
|
} else {
|
|
if (failed(parser.parseAffineExprOfSSAIds(flatDimOperands.emplace_back(),
|
|
flatSymOperands.emplace_back(),
|
|
flatExprs.emplace_back())))
|
|
return failure();
|
|
numMapsPerGroup.push_back(1);
|
|
}
|
|
return success();
|
|
};
|
|
if (parser.parseCommaSeparatedList(parseOperands) || parser.parseRParen())
|
|
return failure();
|
|
|
|
unsigned totalNumDims = 0;
|
|
unsigned totalNumSyms = 0;
|
|
for (unsigned i = 0, e = flatExprs.size(); i < e; ++i) {
|
|
unsigned numDims = flatDimOperands[i].size();
|
|
unsigned numSyms = flatSymOperands[i].size();
|
|
flatExprs[i] = flatExprs[i]
|
|
.shiftDims(numDims, totalNumDims)
|
|
.shiftSymbols(numSyms, totalNumSyms);
|
|
totalNumDims += numDims;
|
|
totalNumSyms += numSyms;
|
|
}
|
|
|
|
// Deduplicate map operands.
|
|
SmallVector<Value> dimOperands, symOperands;
|
|
SmallVector<AffineExpr> dimRplacements, symRepacements;
|
|
if (deduplicateAndResolveOperands(parser, flatDimOperands, dimOperands,
|
|
dimRplacements, AffineExprKind::DimId) ||
|
|
deduplicateAndResolveOperands(parser, flatSymOperands, symOperands,
|
|
symRepacements, AffineExprKind::SymbolId))
|
|
return failure();
|
|
|
|
result.operands.append(dimOperands.begin(), dimOperands.end());
|
|
result.operands.append(symOperands.begin(), symOperands.end());
|
|
|
|
Builder &builder = parser.getBuilder();
|
|
auto flatMap = AffineMap::get(totalNumDims, totalNumSyms, flatExprs,
|
|
parser.getContext());
|
|
flatMap = flatMap.replaceDimsAndSymbols(
|
|
dimRplacements, symRepacements, dimOperands.size(), symOperands.size());
|
|
|
|
result.addAttribute(mapName, AffineMapAttr::get(flatMap));
|
|
result.addAttribute(groupsName, builder.getI32TensorAttr(numMapsPerGroup));
|
|
return success();
|
|
}
|
|
|
|
//
|
|
// operation ::= `affine.parallel` `(` ssa-ids `)` `=` parallel-bound
|
|
// `to` parallel-bound steps? region attr-dict?
|
|
// steps ::= `steps` `(` integer-literals `)`
|
|
//
|
|
ParseResult AffineParallelOp::parse(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
auto &builder = parser.getBuilder();
|
|
auto indexType = builder.getIndexType();
|
|
SmallVector<OpAsmParser::Argument, 4> ivs;
|
|
if (parser.parseArgumentList(ivs, OpAsmParser::Delimiter::Paren) ||
|
|
parser.parseEqual() ||
|
|
parseAffineMapWithMinMax(parser, result, MinMaxKind::Max) ||
|
|
parser.parseKeyword("to") ||
|
|
parseAffineMapWithMinMax(parser, result, MinMaxKind::Min))
|
|
return failure();
|
|
|
|
AffineMapAttr stepsMapAttr;
|
|
NamedAttrList stepsAttrs;
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 4> stepsMapOperands;
|
|
if (failed(parser.parseOptionalKeyword("step"))) {
|
|
SmallVector<int64_t, 4> steps(ivs.size(), 1);
|
|
result.addAttribute(AffineParallelOp::getStepsAttrStrName(),
|
|
builder.getI64ArrayAttr(steps));
|
|
} else {
|
|
if (parser.parseAffineMapOfSSAIds(stepsMapOperands, stepsMapAttr,
|
|
AffineParallelOp::getStepsAttrStrName(),
|
|
stepsAttrs,
|
|
OpAsmParser::Delimiter::Paren))
|
|
return failure();
|
|
|
|
// Convert steps from an AffineMap into an I64ArrayAttr.
|
|
SmallVector<int64_t, 4> steps;
|
|
auto stepsMap = stepsMapAttr.getValue();
|
|
for (const auto &result : stepsMap.getResults()) {
|
|
auto constExpr = result.dyn_cast<AffineConstantExpr>();
|
|
if (!constExpr)
|
|
return parser.emitError(parser.getNameLoc(),
|
|
"steps must be constant integers");
|
|
steps.push_back(constExpr.getValue());
|
|
}
|
|
result.addAttribute(AffineParallelOp::getStepsAttrStrName(),
|
|
builder.getI64ArrayAttr(steps));
|
|
}
|
|
|
|
// Parse optional clause of the form: `reduce ("addf", "maxf")`, where the
|
|
// quoted strings are a member of the enum AtomicRMWKind.
|
|
SmallVector<Attribute, 4> reductions;
|
|
if (succeeded(parser.parseOptionalKeyword("reduce"))) {
|
|
if (parser.parseLParen())
|
|
return failure();
|
|
auto parseAttributes = [&]() -> ParseResult {
|
|
// Parse a single quoted string via the attribute parsing, and then
|
|
// verify it is a member of the enum and convert to it's integer
|
|
// representation.
|
|
StringAttr attrVal;
|
|
NamedAttrList attrStorage;
|
|
auto loc = parser.getCurrentLocation();
|
|
if (parser.parseAttribute(attrVal, builder.getNoneType(), "reduce",
|
|
attrStorage))
|
|
return failure();
|
|
llvm::Optional<arith::AtomicRMWKind> reduction =
|
|
arith::symbolizeAtomicRMWKind(attrVal.getValue());
|
|
if (!reduction)
|
|
return parser.emitError(loc, "invalid reduction value: ") << attrVal;
|
|
reductions.push_back(
|
|
builder.getI64IntegerAttr(static_cast<int64_t>(reduction.value())));
|
|
// While we keep getting commas, keep parsing.
|
|
return success();
|
|
};
|
|
if (parser.parseCommaSeparatedList(parseAttributes) || parser.parseRParen())
|
|
return failure();
|
|
}
|
|
result.addAttribute(AffineParallelOp::getReductionsAttrStrName(),
|
|
builder.getArrayAttr(reductions));
|
|
|
|
// Parse return types of reductions (if any)
|
|
if (parser.parseOptionalArrowTypeList(result.types))
|
|
return failure();
|
|
|
|
// Now parse the body.
|
|
Region *body = result.addRegion();
|
|
for (auto &iv : ivs)
|
|
iv.type = indexType;
|
|
if (parser.parseRegion(*body, ivs) ||
|
|
parser.parseOptionalAttrDict(result.attributes))
|
|
return failure();
|
|
|
|
// Add a terminator if none was parsed.
|
|
AffineParallelOp::ensureTerminator(*body, builder, result.location);
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffineYieldOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult AffineYieldOp::verify() {
|
|
auto *parentOp = (*this)->getParentOp();
|
|
auto results = parentOp->getResults();
|
|
auto operands = getOperands();
|
|
|
|
if (!isa<AffineParallelOp, AffineIfOp, AffineForOp>(parentOp))
|
|
return emitOpError() << "only terminates affine.if/for/parallel regions";
|
|
if (parentOp->getNumResults() != getNumOperands())
|
|
return emitOpError() << "parent of yield must have same number of "
|
|
"results as the yield operands";
|
|
for (auto it : llvm::zip(results, operands)) {
|
|
if (std::get<0>(it).getType() != std::get<1>(it).getType())
|
|
return emitOpError() << "types mismatch between yield op and its parent";
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffineVectorLoadOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void AffineVectorLoadOp::build(OpBuilder &builder, OperationState &result,
|
|
VectorType resultType, AffineMap map,
|
|
ValueRange operands) {
|
|
assert(operands.size() == 1 + map.getNumInputs() && "inconsistent operands");
|
|
result.addOperands(operands);
|
|
if (map)
|
|
result.addAttribute(getMapAttrStrName(), AffineMapAttr::get(map));
|
|
result.types.push_back(resultType);
|
|
}
|
|
|
|
void AffineVectorLoadOp::build(OpBuilder &builder, OperationState &result,
|
|
VectorType resultType, Value memref,
|
|
AffineMap map, ValueRange mapOperands) {
|
|
assert(map.getNumInputs() == mapOperands.size() && "inconsistent index info");
|
|
result.addOperands(memref);
|
|
result.addOperands(mapOperands);
|
|
result.addAttribute(getMapAttrStrName(), AffineMapAttr::get(map));
|
|
result.types.push_back(resultType);
|
|
}
|
|
|
|
void AffineVectorLoadOp::build(OpBuilder &builder, OperationState &result,
|
|
VectorType resultType, Value memref,
|
|
ValueRange indices) {
|
|
auto memrefType = memref.getType().cast<MemRefType>();
|
|
int64_t rank = memrefType.getRank();
|
|
// Create identity map for memrefs with at least one dimension or () -> ()
|
|
// for zero-dimensional memrefs.
|
|
auto map =
|
|
rank ? builder.getMultiDimIdentityMap(rank) : builder.getEmptyAffineMap();
|
|
build(builder, result, resultType, memref, map, indices);
|
|
}
|
|
|
|
void AffineVectorLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<SimplifyAffineOp<AffineVectorLoadOp>>(context);
|
|
}
|
|
|
|
ParseResult AffineVectorLoadOp::parse(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
auto &builder = parser.getBuilder();
|
|
auto indexTy = builder.getIndexType();
|
|
|
|
MemRefType memrefType;
|
|
VectorType resultType;
|
|
OpAsmParser::UnresolvedOperand memrefInfo;
|
|
AffineMapAttr mapAttr;
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 1> mapOperands;
|
|
return failure(
|
|
parser.parseOperand(memrefInfo) ||
|
|
parser.parseAffineMapOfSSAIds(mapOperands, mapAttr,
|
|
AffineVectorLoadOp::getMapAttrStrName(),
|
|
result.attributes) ||
|
|
parser.parseOptionalAttrDict(result.attributes) ||
|
|
parser.parseColonType(memrefType) || parser.parseComma() ||
|
|
parser.parseType(resultType) ||
|
|
parser.resolveOperand(memrefInfo, memrefType, result.operands) ||
|
|
parser.resolveOperands(mapOperands, indexTy, result.operands) ||
|
|
parser.addTypeToList(resultType, result.types));
|
|
}
|
|
|
|
void AffineVectorLoadOp::print(OpAsmPrinter &p) {
|
|
p << " " << getMemRef() << '[';
|
|
if (AffineMapAttr mapAttr =
|
|
(*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName()))
|
|
p.printAffineMapOfSSAIds(mapAttr, getMapOperands());
|
|
p << ']';
|
|
p.printOptionalAttrDict((*this)->getAttrs(),
|
|
/*elidedAttrs=*/{getMapAttrStrName()});
|
|
p << " : " << getMemRefType() << ", " << getType();
|
|
}
|
|
|
|
/// Verify common invariants of affine.vector_load and affine.vector_store.
|
|
static LogicalResult verifyVectorMemoryOp(Operation *op, MemRefType memrefType,
|
|
VectorType vectorType) {
|
|
// Check that memref and vector element types match.
|
|
if (memrefType.getElementType() != vectorType.getElementType())
|
|
return op->emitOpError(
|
|
"requires memref and vector types of the same elemental type");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult AffineVectorLoadOp::verify() {
|
|
MemRefType memrefType = getMemRefType();
|
|
if (failed(verifyMemoryOpIndexing(
|
|
getOperation(),
|
|
(*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName()),
|
|
getMapOperands(), memrefType,
|
|
/*numIndexOperands=*/getNumOperands() - 1)))
|
|
return failure();
|
|
|
|
if (failed(verifyVectorMemoryOp(getOperation(), memrefType, getVectorType())))
|
|
return failure();
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffineVectorStoreOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void AffineVectorStoreOp::build(OpBuilder &builder, OperationState &result,
|
|
Value valueToStore, Value memref, AffineMap map,
|
|
ValueRange mapOperands) {
|
|
assert(map.getNumInputs() == mapOperands.size() && "inconsistent index info");
|
|
result.addOperands(valueToStore);
|
|
result.addOperands(memref);
|
|
result.addOperands(mapOperands);
|
|
result.addAttribute(getMapAttrStrName(), AffineMapAttr::get(map));
|
|
}
|
|
|
|
// Use identity map.
|
|
void AffineVectorStoreOp::build(OpBuilder &builder, OperationState &result,
|
|
Value valueToStore, Value memref,
|
|
ValueRange indices) {
|
|
auto memrefType = memref.getType().cast<MemRefType>();
|
|
int64_t rank = memrefType.getRank();
|
|
// Create identity map for memrefs with at least one dimension or () -> ()
|
|
// for zero-dimensional memrefs.
|
|
auto map =
|
|
rank ? builder.getMultiDimIdentityMap(rank) : builder.getEmptyAffineMap();
|
|
build(builder, result, valueToStore, memref, map, indices);
|
|
}
|
|
void AffineVectorStoreOp::getCanonicalizationPatterns(
|
|
RewritePatternSet &results, MLIRContext *context) {
|
|
results.add<SimplifyAffineOp<AffineVectorStoreOp>>(context);
|
|
}
|
|
|
|
ParseResult AffineVectorStoreOp::parse(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
auto indexTy = parser.getBuilder().getIndexType();
|
|
|
|
MemRefType memrefType;
|
|
VectorType resultType;
|
|
OpAsmParser::UnresolvedOperand storeValueInfo;
|
|
OpAsmParser::UnresolvedOperand memrefInfo;
|
|
AffineMapAttr mapAttr;
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 1> mapOperands;
|
|
return failure(
|
|
parser.parseOperand(storeValueInfo) || parser.parseComma() ||
|
|
parser.parseOperand(memrefInfo) ||
|
|
parser.parseAffineMapOfSSAIds(mapOperands, mapAttr,
|
|
AffineVectorStoreOp::getMapAttrStrName(),
|
|
result.attributes) ||
|
|
parser.parseOptionalAttrDict(result.attributes) ||
|
|
parser.parseColonType(memrefType) || parser.parseComma() ||
|
|
parser.parseType(resultType) ||
|
|
parser.resolveOperand(storeValueInfo, resultType, result.operands) ||
|
|
parser.resolveOperand(memrefInfo, memrefType, result.operands) ||
|
|
parser.resolveOperands(mapOperands, indexTy, result.operands));
|
|
}
|
|
|
|
void AffineVectorStoreOp::print(OpAsmPrinter &p) {
|
|
p << " " << getValueToStore();
|
|
p << ", " << getMemRef() << '[';
|
|
if (AffineMapAttr mapAttr =
|
|
(*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName()))
|
|
p.printAffineMapOfSSAIds(mapAttr, getMapOperands());
|
|
p << ']';
|
|
p.printOptionalAttrDict((*this)->getAttrs(),
|
|
/*elidedAttrs=*/{getMapAttrStrName()});
|
|
p << " : " << getMemRefType() << ", " << getValueToStore().getType();
|
|
}
|
|
|
|
LogicalResult AffineVectorStoreOp::verify() {
|
|
MemRefType memrefType = getMemRefType();
|
|
if (failed(verifyMemoryOpIndexing(
|
|
*this, (*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName()),
|
|
getMapOperands(), memrefType,
|
|
/*numIndexOperands=*/getNumOperands() - 2)))
|
|
return failure();
|
|
|
|
if (failed(verifyVectorMemoryOp(*this, memrefType, getVectorType())))
|
|
return failure();
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TableGen'd op method definitions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define GET_OP_CLASSES
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.cpp.inc"
|