215 lines
8.9 KiB
C++
215 lines
8.9 KiB
C++
//===- ParallelLoopTiling.cpp - Tiles scf.parallel ------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements loop tiling on parallel loops.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/SCF/Transforms/Passes.h"
|
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/SCF/IR/SCF.h"
|
|
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/SCF/Utils/Utils.h"
|
|
|
|
namespace mlir {
|
|
#define GEN_PASS_DEF_SCFPARALLELLOOPTILING
|
|
#include "mlir/Dialect/SCF/Transforms/Passes.h.inc"
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::scf;
|
|
|
|
/// Tile a parallel loop of the form
|
|
/// scf.parallel (%i0, %i1) = (%arg0, %arg1) to (%arg2, %arg3)
|
|
/// step (%arg4, %arg5)
|
|
///
|
|
/// into
|
|
/// scf.parallel (%i0, %i1) = (%arg0, %arg1) to (%arg2, %arg3)
|
|
/// step (%arg4*tileSize[0],
|
|
/// %arg5*tileSize[1])
|
|
/// scf.parallel (%j0, %j1) = (0, 0) to (min(%arg4*tileSize[0], %arg2-%i0)
|
|
/// min(%arg5*tileSize[1], %arg3-%i1))
|
|
/// step (%arg4, %arg5)
|
|
///
|
|
/// or, when no-min-max-bounds is true, into
|
|
/// scf.parallel (%i0, %i1) = (%arg0, %arg1) to (%arg2, %arg3)
|
|
/// step (%arg4*tileSize[0],
|
|
/// %arg5*tileSize[1])
|
|
/// scf.parallel (%j0, %j1) = (0, 0) to (%arg4*tileSize[0],
|
|
/// %arg5*tileSize[1])
|
|
/// step (%arg4, %arg5)
|
|
/// %inbound = (%j0 * %arg4 + %i0 < %arg2) &&
|
|
/// (%j1 * %arg5 + %i1 < %arg3)
|
|
/// scf.if (%inbound)
|
|
/// ....
|
|
///
|
|
/// where the uses of %i0 and %i1 in the loop body are replaced by
|
|
/// %i0 + j0 and %i1 + %j1.
|
|
///
|
|
/// The old loop is replaced with the new one.
|
|
std::pair<ParallelOp, ParallelOp>
|
|
mlir::scf::tileParallelLoop(ParallelOp op, ArrayRef<int64_t> tileSizes,
|
|
bool noMinMaxBounds) {
|
|
OpBuilder b(op);
|
|
auto zero = b.create<arith::ConstantIndexOp>(op.getLoc(), 0);
|
|
SmallVector<Value, 2> tileSizeConstants;
|
|
tileSizeConstants.reserve(op.getUpperBound().size());
|
|
for (size_t i = 0, end = op.getUpperBound().size(); i != end; ++i) {
|
|
if (i < tileSizes.size())
|
|
tileSizeConstants.push_back(
|
|
b.create<arith::ConstantIndexOp>(op.getLoc(), tileSizes[i]));
|
|
else
|
|
// Just pick 1 for the remaining dimensions.
|
|
tileSizeConstants.push_back(
|
|
b.create<arith::ConstantIndexOp>(op.getLoc(), 1));
|
|
}
|
|
|
|
// Create the outer loop with adjusted steps.
|
|
SmallVector<Value, 2> newSteps;
|
|
newSteps.reserve(op.getStep().size());
|
|
for (auto step : llvm::zip(op.getStep(), tileSizeConstants)) {
|
|
newSteps.push_back(b.create<arith::MulIOp>(op.getLoc(), std::get<0>(step),
|
|
std::get<1>(step)));
|
|
}
|
|
auto outerLoop = b.create<ParallelOp>(op.getLoc(), op.getLowerBound(),
|
|
op.getUpperBound(), newSteps);
|
|
b.setInsertionPointToStart(outerLoop.getBody());
|
|
|
|
// Compute min(size, dim - offset) to avoid out-of-bounds accesses.
|
|
auto minMap = AffineMap::get(
|
|
/*dimCount=*/3, /*symbolCount=*/0,
|
|
{getAffineDimExpr(/*position=*/0, b.getContext()),
|
|
getAffineDimExpr(/*position=*/1, b.getContext()) -
|
|
getAffineDimExpr(/*position=*/2, b.getContext())},
|
|
b.getContext());
|
|
|
|
// Create the inner loop with adjusted bounds.
|
|
SmallVector<Value, 2> newBounds;
|
|
newBounds.reserve(op.getUpperBound().size());
|
|
bool needInboundCheck = false;
|
|
for (auto [lowerBound, upperBound, newStep, iv, step, tileSizeConstant] :
|
|
llvm::zip(outerLoop.getLowerBound(), outerLoop.getUpperBound(),
|
|
outerLoop.getStep(), outerLoop.getInductionVars(),
|
|
op.getStep(), tileSizeConstants)) {
|
|
// Collect the statically known loop bounds
|
|
auto lowerBoundConstant =
|
|
dyn_cast_or_null<arith::ConstantIndexOp>(lowerBound.getDefiningOp());
|
|
auto upperBoundConstant =
|
|
dyn_cast_or_null<arith::ConstantIndexOp>(upperBound.getDefiningOp());
|
|
auto stepConstant =
|
|
dyn_cast_or_null<arith::ConstantIndexOp>(step.getDefiningOp());
|
|
auto tileSize =
|
|
cast<arith::ConstantIndexOp>(tileSizeConstant.getDefiningOp()).value();
|
|
// If the loop bounds and the loop step are constant and if the number of
|
|
// loop iterations is an integer multiple of the tile size, we use a static
|
|
// bound for the inner loop.
|
|
if (lowerBoundConstant && upperBoundConstant && stepConstant) {
|
|
auto numIterations = llvm::divideCeil(upperBoundConstant.value() -
|
|
lowerBoundConstant.value(),
|
|
stepConstant.value());
|
|
if (numIterations % tileSize == 0) {
|
|
newBounds.push_back(newStep);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// For InboundCheck mode, just use the variable outer step
|
|
if (noMinMaxBounds) {
|
|
newBounds.push_back(newStep);
|
|
needInboundCheck = true;
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, we dynamically compute the bound for
|
|
// each iteration of the outer loop.
|
|
newBounds.push_back(
|
|
b.create<AffineMinOp>(op.getLoc(), b.getIndexType(), minMap,
|
|
ValueRange{newStep, upperBound, iv}));
|
|
}
|
|
auto innerLoop = b.create<ParallelOp>(
|
|
op.getLoc(), SmallVector<Value, 2>(newBounds.size(), zero), newBounds,
|
|
op.getStep());
|
|
|
|
if (noMinMaxBounds && needInboundCheck) {
|
|
b.setInsertionPointToStart(innerLoop.getBody());
|
|
// Insert in-bound check
|
|
Value inbound =
|
|
b.create<arith::ConstantIntOp>(op.getLoc(), 1, b.getIntegerType(1));
|
|
for (auto [outerUpperBound, outerIV, innerIV, innerStep] :
|
|
llvm::zip(outerLoop.getUpperBound(), outerLoop.getInductionVars(),
|
|
innerLoop.getInductionVars(), innerLoop.getStep())) {
|
|
// %in_bound = %in_bound &&
|
|
// (%inner_iv * %inner_step + %outer_iv < %outer_upper_bound)
|
|
Value index = b.create<arith::AddIOp>(
|
|
op.getLoc(), b.create<arith::MulIOp>(op.getLoc(), innerIV, innerStep),
|
|
outerIV);
|
|
Value dimInbound = b.create<arith::CmpIOp>(
|
|
op.getLoc(), arith::CmpIPredicate::ult, index, outerUpperBound);
|
|
inbound = b.create<arith::AndIOp>(op.getLoc(), inbound, dimInbound);
|
|
}
|
|
auto ifInbound = b.create<IfOp>(op.getLoc(),
|
|
/*resultTypes*/ ArrayRef<Type>{}, inbound,
|
|
/*hasElseRegion*/ false);
|
|
ifInbound.getThenRegion().takeBody(op.getRegion());
|
|
Block &thenBlock = ifInbound.getThenRegion().front();
|
|
b.setInsertionPointToStart(innerLoop.getBody());
|
|
for (const auto &ivs : llvm::enumerate(llvm::zip(
|
|
innerLoop.getInductionVars(), outerLoop.getInductionVars()))) {
|
|
auto newIndex = b.create<arith::AddIOp>(
|
|
op.getLoc(), std::get<0>(ivs.value()), std::get<1>(ivs.value()));
|
|
thenBlock.getArgument(ivs.index())
|
|
.replaceAllUsesExcept(newIndex, newIndex);
|
|
}
|
|
thenBlock.eraseArguments(0, thenBlock.getNumArguments());
|
|
} else {
|
|
innerLoop.getRegion().takeBody(op.getRegion());
|
|
b.setInsertionPointToStart(innerLoop.getBody());
|
|
for (auto ivs : llvm::zip(innerLoop.getInductionVars(),
|
|
outerLoop.getInductionVars())) {
|
|
Value innerIndex = std::get<0>(ivs);
|
|
auto newIndex = b.create<arith::AddIOp>(op.getLoc(), std::get<0>(ivs),
|
|
std::get<1>(ivs));
|
|
innerIndex.replaceAllUsesExcept(newIndex, newIndex);
|
|
}
|
|
}
|
|
|
|
op.erase();
|
|
return std::make_pair(outerLoop, innerLoop);
|
|
}
|
|
|
|
namespace {
|
|
struct ParallelLoopTiling
|
|
: public impl::SCFParallelLoopTilingBase<ParallelLoopTiling> {
|
|
ParallelLoopTiling() = default;
|
|
explicit ParallelLoopTiling(ArrayRef<int64_t> tileSizes,
|
|
bool noMinMaxBounds = false) {
|
|
this->tileSizes = tileSizes;
|
|
this->noMinMaxBounds = noMinMaxBounds;
|
|
}
|
|
|
|
void runOnOperation() override {
|
|
auto *parentOp = getOperation();
|
|
SmallVector<ParallelOp, 2> innermostPloops;
|
|
getInnermostParallelLoops(parentOp, innermostPloops);
|
|
for (ParallelOp ploop : innermostPloops) {
|
|
// FIXME: Add reduction support.
|
|
if (ploop.getNumReductions() == 0)
|
|
tileParallelLoop(ploop, tileSizes, noMinMaxBounds);
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<Pass>
|
|
mlir::createParallelLoopTilingPass(ArrayRef<int64_t> tileSizes,
|
|
bool noMinMaxBounds) {
|
|
return std::make_unique<ParallelLoopTiling>(tileSizes, noMinMaxBounds);
|
|
}
|