llvm-project/mlir/lib/Dialect/SCF/Transforms/ParallelLoopTiling.cpp

215 lines
8.9 KiB
C++

//===- ParallelLoopTiling.cpp - Tiles scf.parallel ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements loop tiling on parallel loops.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SCF/Transforms/Passes.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/Utils/Utils.h"
namespace mlir {
#define GEN_PASS_DEF_SCFPARALLELLOOPTILING
#include "mlir/Dialect/SCF/Transforms/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::scf;
/// Tile a parallel loop of the form
/// scf.parallel (%i0, %i1) = (%arg0, %arg1) to (%arg2, %arg3)
/// step (%arg4, %arg5)
///
/// into
/// scf.parallel (%i0, %i1) = (%arg0, %arg1) to (%arg2, %arg3)
/// step (%arg4*tileSize[0],
/// %arg5*tileSize[1])
/// scf.parallel (%j0, %j1) = (0, 0) to (min(%arg4*tileSize[0], %arg2-%i0)
/// min(%arg5*tileSize[1], %arg3-%i1))
/// step (%arg4, %arg5)
///
/// or, when no-min-max-bounds is true, into
/// scf.parallel (%i0, %i1) = (%arg0, %arg1) to (%arg2, %arg3)
/// step (%arg4*tileSize[0],
/// %arg5*tileSize[1])
/// scf.parallel (%j0, %j1) = (0, 0) to (%arg4*tileSize[0],
/// %arg5*tileSize[1])
/// step (%arg4, %arg5)
/// %inbound = (%j0 * %arg4 + %i0 < %arg2) &&
/// (%j1 * %arg5 + %i1 < %arg3)
/// scf.if (%inbound)
/// ....
///
/// where the uses of %i0 and %i1 in the loop body are replaced by
/// %i0 + j0 and %i1 + %j1.
///
/// The old loop is replaced with the new one.
std::pair<ParallelOp, ParallelOp>
mlir::scf::tileParallelLoop(ParallelOp op, ArrayRef<int64_t> tileSizes,
bool noMinMaxBounds) {
OpBuilder b(op);
auto zero = b.create<arith::ConstantIndexOp>(op.getLoc(), 0);
SmallVector<Value, 2> tileSizeConstants;
tileSizeConstants.reserve(op.getUpperBound().size());
for (size_t i = 0, end = op.getUpperBound().size(); i != end; ++i) {
if (i < tileSizes.size())
tileSizeConstants.push_back(
b.create<arith::ConstantIndexOp>(op.getLoc(), tileSizes[i]));
else
// Just pick 1 for the remaining dimensions.
tileSizeConstants.push_back(
b.create<arith::ConstantIndexOp>(op.getLoc(), 1));
}
// Create the outer loop with adjusted steps.
SmallVector<Value, 2> newSteps;
newSteps.reserve(op.getStep().size());
for (auto step : llvm::zip(op.getStep(), tileSizeConstants)) {
newSteps.push_back(b.create<arith::MulIOp>(op.getLoc(), std::get<0>(step),
std::get<1>(step)));
}
auto outerLoop = b.create<ParallelOp>(op.getLoc(), op.getLowerBound(),
op.getUpperBound(), newSteps);
b.setInsertionPointToStart(outerLoop.getBody());
// Compute min(size, dim - offset) to avoid out-of-bounds accesses.
auto minMap = AffineMap::get(
/*dimCount=*/3, /*symbolCount=*/0,
{getAffineDimExpr(/*position=*/0, b.getContext()),
getAffineDimExpr(/*position=*/1, b.getContext()) -
getAffineDimExpr(/*position=*/2, b.getContext())},
b.getContext());
// Create the inner loop with adjusted bounds.
SmallVector<Value, 2> newBounds;
newBounds.reserve(op.getUpperBound().size());
bool needInboundCheck = false;
for (auto [lowerBound, upperBound, newStep, iv, step, tileSizeConstant] :
llvm::zip(outerLoop.getLowerBound(), outerLoop.getUpperBound(),
outerLoop.getStep(), outerLoop.getInductionVars(),
op.getStep(), tileSizeConstants)) {
// Collect the statically known loop bounds
auto lowerBoundConstant =
dyn_cast_or_null<arith::ConstantIndexOp>(lowerBound.getDefiningOp());
auto upperBoundConstant =
dyn_cast_or_null<arith::ConstantIndexOp>(upperBound.getDefiningOp());
auto stepConstant =
dyn_cast_or_null<arith::ConstantIndexOp>(step.getDefiningOp());
auto tileSize =
cast<arith::ConstantIndexOp>(tileSizeConstant.getDefiningOp()).value();
// If the loop bounds and the loop step are constant and if the number of
// loop iterations is an integer multiple of the tile size, we use a static
// bound for the inner loop.
if (lowerBoundConstant && upperBoundConstant && stepConstant) {
auto numIterations = llvm::divideCeil(upperBoundConstant.value() -
lowerBoundConstant.value(),
stepConstant.value());
if (numIterations % tileSize == 0) {
newBounds.push_back(newStep);
continue;
}
}
// For InboundCheck mode, just use the variable outer step
if (noMinMaxBounds) {
newBounds.push_back(newStep);
needInboundCheck = true;
continue;
}
// Otherwise, we dynamically compute the bound for
// each iteration of the outer loop.
newBounds.push_back(
b.create<AffineMinOp>(op.getLoc(), b.getIndexType(), minMap,
ValueRange{newStep, upperBound, iv}));
}
auto innerLoop = b.create<ParallelOp>(
op.getLoc(), SmallVector<Value, 2>(newBounds.size(), zero), newBounds,
op.getStep());
if (noMinMaxBounds && needInboundCheck) {
b.setInsertionPointToStart(innerLoop.getBody());
// Insert in-bound check
Value inbound =
b.create<arith::ConstantIntOp>(op.getLoc(), 1, b.getIntegerType(1));
for (auto [outerUpperBound, outerIV, innerIV, innerStep] :
llvm::zip(outerLoop.getUpperBound(), outerLoop.getInductionVars(),
innerLoop.getInductionVars(), innerLoop.getStep())) {
// %in_bound = %in_bound &&
// (%inner_iv * %inner_step + %outer_iv < %outer_upper_bound)
Value index = b.create<arith::AddIOp>(
op.getLoc(), b.create<arith::MulIOp>(op.getLoc(), innerIV, innerStep),
outerIV);
Value dimInbound = b.create<arith::CmpIOp>(
op.getLoc(), arith::CmpIPredicate::ult, index, outerUpperBound);
inbound = b.create<arith::AndIOp>(op.getLoc(), inbound, dimInbound);
}
auto ifInbound = b.create<IfOp>(op.getLoc(),
/*resultTypes*/ ArrayRef<Type>{}, inbound,
/*hasElseRegion*/ false);
ifInbound.getThenRegion().takeBody(op.getRegion());
Block &thenBlock = ifInbound.getThenRegion().front();
b.setInsertionPointToStart(innerLoop.getBody());
for (const auto &ivs : llvm::enumerate(llvm::zip(
innerLoop.getInductionVars(), outerLoop.getInductionVars()))) {
auto newIndex = b.create<arith::AddIOp>(
op.getLoc(), std::get<0>(ivs.value()), std::get<1>(ivs.value()));
thenBlock.getArgument(ivs.index())
.replaceAllUsesExcept(newIndex, newIndex);
}
thenBlock.eraseArguments(0, thenBlock.getNumArguments());
} else {
innerLoop.getRegion().takeBody(op.getRegion());
b.setInsertionPointToStart(innerLoop.getBody());
for (auto ivs : llvm::zip(innerLoop.getInductionVars(),
outerLoop.getInductionVars())) {
Value innerIndex = std::get<0>(ivs);
auto newIndex = b.create<arith::AddIOp>(op.getLoc(), std::get<0>(ivs),
std::get<1>(ivs));
innerIndex.replaceAllUsesExcept(newIndex, newIndex);
}
}
op.erase();
return std::make_pair(outerLoop, innerLoop);
}
namespace {
struct ParallelLoopTiling
: public impl::SCFParallelLoopTilingBase<ParallelLoopTiling> {
ParallelLoopTiling() = default;
explicit ParallelLoopTiling(ArrayRef<int64_t> tileSizes,
bool noMinMaxBounds = false) {
this->tileSizes = tileSizes;
this->noMinMaxBounds = noMinMaxBounds;
}
void runOnOperation() override {
auto *parentOp = getOperation();
SmallVector<ParallelOp, 2> innermostPloops;
getInnermostParallelLoops(parentOp, innermostPloops);
for (ParallelOp ploop : innermostPloops) {
// FIXME: Add reduction support.
if (ploop.getNumReductions() == 0)
tileParallelLoop(ploop, tileSizes, noMinMaxBounds);
}
}
};
} // namespace
std::unique_ptr<Pass>
mlir::createParallelLoopTilingPass(ArrayRef<int64_t> tileSizes,
bool noMinMaxBounds) {
return std::make_unique<ParallelLoopTiling>(tileSizes, noMinMaxBounds);
}