llvm-project/mlir/lib/IR/Builders.cpp

339 lines
12 KiB
C++

//===- Builders.cpp - Helpers for constructing MLIR Classes ---------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/IR/Builders.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/Types.h"
using namespace mlir;
Builder::Builder(Module *module) : context(module->getContext()) {}
Identifier Builder::getIdentifier(StringRef str) {
return Identifier::get(str, context);
}
Module *Builder::createModule() { return new Module(context); }
//===----------------------------------------------------------------------===//
// Locations.
//===----------------------------------------------------------------------===//
UnknownLoc *Builder::getUnknownLoc() { return UnknownLoc::get(context); }
UniquedFilename Builder::getUniquedFilename(StringRef filename) {
return UniquedFilename::get(filename, context);
}
FileLineColLoc *Builder::getFileLineColLoc(UniquedFilename filename,
unsigned line, unsigned column) {
return FileLineColLoc::get(filename, line, column, context);
}
//===----------------------------------------------------------------------===//
// Types.
//===----------------------------------------------------------------------===//
FloatType *Builder::getBF16Type() { return Type::getBF16(context); }
FloatType *Builder::getF16Type() { return Type::getF16(context); }
FloatType *Builder::getF32Type() { return Type::getF32(context); }
FloatType *Builder::getF64Type() { return Type::getF64(context); }
OtherType *Builder::getAffineIntType() { return Type::getAffineInt(context); }
OtherType *Builder::getTFControlType() { return Type::getTFControl(context); }
OtherType *Builder::getTFResourceType() { return Type::getTFResource(context); }
OtherType *Builder::getTFVariantType() { return Type::getTFVariant(context); }
OtherType *Builder::getTFComplex64Type() {
return Type::getTFComplex64(context);
}
OtherType *Builder::getTFComplex128Type() {
return Type::getTFComplex128(context);
}
OtherType *Builder::getTFF32REFType() { return Type::getTFF32REF(context); }
OtherType *Builder::getTFStringType() { return Type::getTFString(context); }
IntegerType *Builder::getIntegerType(unsigned width) {
return Type::getInteger(width, context);
}
FunctionType *Builder::getFunctionType(ArrayRef<Type *> inputs,
ArrayRef<Type *> results) {
return FunctionType::get(inputs, results, context);
}
MemRefType *Builder::getMemRefType(ArrayRef<int> shape, Type *elementType,
ArrayRef<AffineMap *> affineMapComposition,
unsigned memorySpace) {
return MemRefType::get(shape, elementType, affineMapComposition, memorySpace);
}
VectorType *Builder::getVectorType(ArrayRef<unsigned> shape,
Type *elementType) {
return VectorType::get(shape, elementType);
}
RankedTensorType *Builder::getTensorType(ArrayRef<int> shape,
Type *elementType) {
return RankedTensorType::get(shape, elementType);
}
UnrankedTensorType *Builder::getTensorType(Type *elementType) {
return UnrankedTensorType::get(elementType);
}
//===----------------------------------------------------------------------===//
// Attributes.
//===----------------------------------------------------------------------===//
BoolAttr *Builder::getBoolAttr(bool value) {
return BoolAttr::get(value, context);
}
IntegerAttr *Builder::getIntegerAttr(int64_t value) {
return IntegerAttr::get(value, context);
}
FloatAttr *Builder::getFloatAttr(double value) {
return FloatAttr::get(value, context);
}
StringAttr *Builder::getStringAttr(StringRef bytes) {
return StringAttr::get(bytes, context);
}
ArrayAttr *Builder::getArrayAttr(ArrayRef<Attribute *> value) {
return ArrayAttr::get(value, context);
}
AffineMapAttr *Builder::getAffineMapAttr(AffineMap *map) {
return AffineMapAttr::get(map, context);
}
TypeAttr *Builder::getTypeAttr(Type *type) {
return TypeAttr::get(type, context);
}
FunctionAttr *Builder::getFunctionAttr(const Function *value) {
return FunctionAttr::get(value, context);
}
//===----------------------------------------------------------------------===//
// Affine Expressions, Affine Maps, and Integet Sets.
//===----------------------------------------------------------------------===//
AffineMap *Builder::getAffineMap(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExprRef> results,
ArrayRef<AffineExprRef> rangeSizes) {
return AffineMap::get(dimCount, symbolCount, results, rangeSizes, context);
}
AffineExprRef Builder::getDimExpr(unsigned position) {
return AffineDimExpr::get(position, context);
}
AffineExprRef Builder::getSymbolExpr(unsigned position) {
return AffineSymbolExpr::get(position, context);
}
AffineExprRef Builder::getConstantExpr(int64_t constant) {
return AffineConstantExpr::get(constant, context);
}
AffineExprRef Builder::getAddExpr(AffineExprRef lhs, AffineExprRef rhs) {
return AffineBinaryOpExpr::get(AffineExpr::Kind::Add, lhs, rhs, context);
}
AffineExprRef Builder::getAddExpr(AffineExprRef lhs, int64_t rhs) {
return AffineBinaryOpExpr::getAdd(lhs, rhs, context);
}
AffineExprRef Builder::getMulExpr(AffineExprRef lhs, AffineExprRef rhs) {
return AffineBinaryOpExpr::get(AffineExpr::Kind::Mul, lhs, rhs, context);
}
// Most multiply expressions are pure affine (rhs is a constant).
AffineExprRef Builder::getMulExpr(AffineExprRef lhs, int64_t rhs) {
return AffineBinaryOpExpr::get(AffineExpr::Kind::Mul, lhs,
getConstantExpr(rhs), context);
}
AffineExprRef Builder::getSubExpr(AffineExprRef lhs, AffineExprRef rhs) {
return getAddExpr(lhs, getMulExpr(rhs, getConstantExpr(-1)));
}
AffineExprRef Builder::getSubExpr(AffineExprRef lhs, int64_t rhs) {
return AffineBinaryOpExpr::getAdd(lhs, -rhs, context);
}
AffineExprRef Builder::getModExpr(AffineExprRef lhs, AffineExprRef rhs) {
return AffineBinaryOpExpr::get(AffineExpr::Kind::Mod, lhs, rhs, context);
}
// Most modulo expressions are pure affine.
AffineExprRef Builder::getModExpr(AffineExprRef lhs, uint64_t rhs) {
return AffineBinaryOpExpr::get(AffineExpr::Kind::Mod, lhs,
getConstantExpr(rhs), context);
}
AffineExprRef Builder::getFloorDivExpr(AffineExprRef lhs, AffineExprRef rhs) {
return AffineBinaryOpExpr::get(AffineExpr::Kind::FloorDiv, lhs, rhs, context);
}
// Most floordiv expressions are pure affine.
AffineExprRef Builder::getFloorDivExpr(AffineExprRef lhs, uint64_t rhs) {
return AffineBinaryOpExpr::get(AffineExpr::Kind::FloorDiv, lhs,
getConstantExpr(rhs), context);
}
AffineExprRef Builder::getCeilDivExpr(AffineExprRef lhs, AffineExprRef rhs) {
return AffineBinaryOpExpr::get(AffineExpr::Kind::CeilDiv, lhs, rhs, context);
}
// Most ceildiv expressions are pure affine.
AffineExprRef Builder::getCeilDivExpr(AffineExprRef lhs, uint64_t rhs) {
return AffineBinaryOpExpr::get(AffineExpr::Kind::CeilDiv, lhs,
getConstantExpr(rhs), context);
}
IntegerSet *Builder::getIntegerSet(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExprRef> constraints,
ArrayRef<bool> isEq) {
return IntegerSet::get(dimCount, symbolCount, constraints, isEq, context);
}
AffineMap *Builder::getConstantAffineMap(int64_t val) {
return AffineMap::get(/*dimCount=*/0, /*symbolCount=*/0,
{getConstantExpr(val)}, {}, context);
}
AffineMap *Builder::getDimIdentityMap() {
return AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, {getDimExpr(0)}, {},
context);
}
AffineMap *Builder::getSymbolIdentityMap() {
return AffineMap::get(/*dimCount=*/0, /*symbolCount=*/1, {getSymbolExpr(0)},
{}, context);
}
AffineMap *Builder::getSingleDimShiftAffineMap(int64_t shift) {
// expr = d0 + shift.
auto expr = getDimExpr(0) + shift;
return AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, {expr}, {}, context);
}
AffineMap *Builder::getShiftedAffineMap(AffineMap *map, int64_t shift) {
SmallVector<AffineExprRef, 4> shiftedResults;
shiftedResults.reserve(map->getNumResults());
for (auto resultExpr : map->getResults()) {
shiftedResults.push_back(getAddExpr(resultExpr, shift));
}
return AffineMap::get(map->getNumDims(), map->getNumSymbols(), shiftedResults,
map->getRangeSizes(), context);
}
//===----------------------------------------------------------------------===//
// CFG function elements.
//===----------------------------------------------------------------------===//
/// Add new basic block and set the insertion point to the end of it. If an
/// 'insertBefore' basic block is passed, the block will be placed before the
/// specified block. If not, the block will be appended to the end of the
/// current function.
BasicBlock *CFGFuncBuilder::createBlock(BasicBlock *insertBefore) {
BasicBlock *b = new BasicBlock();
// If we are supposed to insert before a specific block, do so, otherwise add
// the block to the end of the function.
if (insertBefore)
function->getBlocks().insert(CFGFunction::iterator(insertBefore), b);
else
function->push_back(b);
setInsertionPoint(b);
return b;
}
/// Create an operation given the fields represented as an OperationState.
OperationInst *CFGFuncBuilder::createOperation(const OperationState &state) {
SmallVector<CFGValue *, 8> operands;
operands.reserve(state.operands.size());
for (auto elt : state.operands)
operands.push_back(cast<CFGValue>(elt));
auto *op = OperationInst::create(state.location, state.name, operands,
state.types, state.attributes, context);
block->getOperations().insert(insertPoint, op);
return op;
}
//===----------------------------------------------------------------------===//
// Statements.
//===----------------------------------------------------------------------===//
/// Create an operation given the fields represented as an OperationState.
OperationStmt *MLFuncBuilder::createOperation(const OperationState &state) {
SmallVector<MLValue *, 8> operands;
operands.reserve(state.operands.size());
for (auto elt : state.operands)
operands.push_back(cast<MLValue>(elt));
auto *op = OperationStmt::create(state.location, state.name, operands,
state.types, state.attributes, context);
block->getStatements().insert(insertPoint, op);
return op;
}
ForStmt *MLFuncBuilder::createFor(Location *location,
ArrayRef<MLValue *> lbOperands,
AffineMap *lbMap,
ArrayRef<MLValue *> ubOperands,
AffineMap *ubMap, int64_t step) {
auto *stmt = ForStmt::create(location, lbOperands, lbMap, ubOperands, ubMap,
step, context);
block->getStatements().insert(insertPoint, stmt);
return stmt;
}
ForStmt *MLFuncBuilder::createFor(Location *location, int64_t lb, int64_t ub,
int64_t step) {
auto *lbMap = AffineMap::getConstantMap(lb, context);
auto *ubMap = AffineMap::getConstantMap(ub, context);
return createFor(location, {}, lbMap, {}, ubMap, step);
}
IfStmt *MLFuncBuilder::createIf(Location *location,
ArrayRef<MLValue *> operands, IntegerSet *set) {
auto *stmt = IfStmt::create(location, operands, set);
block->getStatements().insert(insertPoint, stmt);
return stmt;
}