1126 lines
42 KiB
C++
1126 lines
42 KiB
C++
//===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PPCTargetTransformInfo.h"
|
|
#include "llvm/Analysis/CodeMetrics.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/BasicTTIImpl.h"
|
|
#include "llvm/CodeGen/CostTable.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetSchedule.h"
|
|
#include "llvm/IR/IntrinsicsPowerPC.h"
|
|
#include "llvm/IR/ProfDataUtils.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Transforms/InstCombine/InstCombiner.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <optional>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "ppctti"
|
|
|
|
static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
|
|
cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
|
|
|
|
static cl::opt<bool>
|
|
EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false),
|
|
cl::desc("Enable using coldcc calling conv for cold "
|
|
"internal functions"));
|
|
|
|
static cl::opt<bool>
|
|
LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false),
|
|
cl::desc("Do not add instruction count to lsr cost model"));
|
|
|
|
// The latency of mtctr is only justified if there are more than 4
|
|
// comparisons that will be removed as a result.
|
|
static cl::opt<unsigned>
|
|
SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden,
|
|
cl::desc("Loops with a constant trip count smaller than "
|
|
"this value will not use the count register."));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// PPC cost model.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
TargetTransformInfo::PopcntSupportKind
|
|
PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
|
|
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
|
|
if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
|
|
return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
|
|
TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
|
|
return TTI::PSK_Software;
|
|
}
|
|
|
|
std::optional<Instruction *>
|
|
PPCTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
|
|
Intrinsic::ID IID = II.getIntrinsicID();
|
|
switch (IID) {
|
|
default:
|
|
break;
|
|
case Intrinsic::ppc_altivec_lvx:
|
|
case Intrinsic::ppc_altivec_lvxl:
|
|
// Turn PPC lvx -> load if the pointer is known aligned.
|
|
if (getOrEnforceKnownAlignment(
|
|
II.getArgOperand(0), Align(16), IC.getDataLayout(), &II,
|
|
&IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
|
|
Value *Ptr = IC.Builder.CreateBitCast(
|
|
II.getArgOperand(0), PointerType::getUnqual(II.getType()));
|
|
return new LoadInst(II.getType(), Ptr, "", false, Align(16));
|
|
}
|
|
break;
|
|
case Intrinsic::ppc_vsx_lxvw4x:
|
|
case Intrinsic::ppc_vsx_lxvd2x: {
|
|
// Turn PPC VSX loads into normal loads.
|
|
Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(0),
|
|
PointerType::getUnqual(II.getType()));
|
|
return new LoadInst(II.getType(), Ptr, Twine(""), false, Align(1));
|
|
}
|
|
case Intrinsic::ppc_altivec_stvx:
|
|
case Intrinsic::ppc_altivec_stvxl:
|
|
// Turn stvx -> store if the pointer is known aligned.
|
|
if (getOrEnforceKnownAlignment(
|
|
II.getArgOperand(1), Align(16), IC.getDataLayout(), &II,
|
|
&IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
|
|
Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType());
|
|
Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy);
|
|
return new StoreInst(II.getArgOperand(0), Ptr, false, Align(16));
|
|
}
|
|
break;
|
|
case Intrinsic::ppc_vsx_stxvw4x:
|
|
case Intrinsic::ppc_vsx_stxvd2x: {
|
|
// Turn PPC VSX stores into normal stores.
|
|
Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType());
|
|
Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy);
|
|
return new StoreInst(II.getArgOperand(0), Ptr, false, Align(1));
|
|
}
|
|
case Intrinsic::ppc_altivec_vperm:
|
|
// Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
|
|
// Note that ppc_altivec_vperm has a big-endian bias, so when creating
|
|
// a vectorshuffle for little endian, we must undo the transformation
|
|
// performed on vec_perm in altivec.h. That is, we must complement
|
|
// the permutation mask with respect to 31 and reverse the order of
|
|
// V1 and V2.
|
|
if (Constant *Mask = dyn_cast<Constant>(II.getArgOperand(2))) {
|
|
assert(cast<FixedVectorType>(Mask->getType())->getNumElements() == 16 &&
|
|
"Bad type for intrinsic!");
|
|
|
|
// Check that all of the elements are integer constants or undefs.
|
|
bool AllEltsOk = true;
|
|
for (unsigned i = 0; i != 16; ++i) {
|
|
Constant *Elt = Mask->getAggregateElement(i);
|
|
if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
|
|
AllEltsOk = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (AllEltsOk) {
|
|
// Cast the input vectors to byte vectors.
|
|
Value *Op0 =
|
|
IC.Builder.CreateBitCast(II.getArgOperand(0), Mask->getType());
|
|
Value *Op1 =
|
|
IC.Builder.CreateBitCast(II.getArgOperand(1), Mask->getType());
|
|
Value *Result = UndefValue::get(Op0->getType());
|
|
|
|
// Only extract each element once.
|
|
Value *ExtractedElts[32];
|
|
memset(ExtractedElts, 0, sizeof(ExtractedElts));
|
|
|
|
for (unsigned i = 0; i != 16; ++i) {
|
|
if (isa<UndefValue>(Mask->getAggregateElement(i)))
|
|
continue;
|
|
unsigned Idx =
|
|
cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
|
|
Idx &= 31; // Match the hardware behavior.
|
|
if (DL.isLittleEndian())
|
|
Idx = 31 - Idx;
|
|
|
|
if (!ExtractedElts[Idx]) {
|
|
Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
|
|
Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
|
|
ExtractedElts[Idx] = IC.Builder.CreateExtractElement(
|
|
Idx < 16 ? Op0ToUse : Op1ToUse, IC.Builder.getInt32(Idx & 15));
|
|
}
|
|
|
|
// Insert this value into the result vector.
|
|
Result = IC.Builder.CreateInsertElement(Result, ExtractedElts[Idx],
|
|
IC.Builder.getInt32(i));
|
|
}
|
|
return CastInst::Create(Instruction::BitCast, Result, II.getType());
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
InstructionCost PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind) {
|
|
if (DisablePPCConstHoist)
|
|
return BaseT::getIntImmCost(Imm, Ty, CostKind);
|
|
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
if (BitSize == 0)
|
|
return ~0U;
|
|
|
|
if (Imm == 0)
|
|
return TTI::TCC_Free;
|
|
|
|
if (Imm.getBitWidth() <= 64) {
|
|
if (isInt<16>(Imm.getSExtValue()))
|
|
return TTI::TCC_Basic;
|
|
|
|
if (isInt<32>(Imm.getSExtValue())) {
|
|
// A constant that can be materialized using lis.
|
|
if ((Imm.getZExtValue() & 0xFFFF) == 0)
|
|
return TTI::TCC_Basic;
|
|
|
|
return 2 * TTI::TCC_Basic;
|
|
}
|
|
}
|
|
|
|
return 4 * TTI::TCC_Basic;
|
|
}
|
|
|
|
InstructionCost PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
|
|
const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind) {
|
|
if (DisablePPCConstHoist)
|
|
return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
|
|
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
if (BitSize == 0)
|
|
return ~0U;
|
|
|
|
switch (IID) {
|
|
default:
|
|
return TTI::TCC_Free;
|
|
case Intrinsic::sadd_with_overflow:
|
|
case Intrinsic::uadd_with_overflow:
|
|
case Intrinsic::ssub_with_overflow:
|
|
case Intrinsic::usub_with_overflow:
|
|
if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
|
|
return TTI::TCC_Free;
|
|
break;
|
|
case Intrinsic::experimental_stackmap:
|
|
if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
|
|
return TTI::TCC_Free;
|
|
break;
|
|
case Intrinsic::experimental_patchpoint_void:
|
|
case Intrinsic::experimental_patchpoint_i64:
|
|
if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
|
|
return TTI::TCC_Free;
|
|
break;
|
|
}
|
|
return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
|
|
}
|
|
|
|
InstructionCost PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
|
|
const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind,
|
|
Instruction *Inst) {
|
|
if (DisablePPCConstHoist)
|
|
return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
|
|
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
if (BitSize == 0)
|
|
return ~0U;
|
|
|
|
unsigned ImmIdx = ~0U;
|
|
bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
|
|
ZeroFree = false;
|
|
switch (Opcode) {
|
|
default:
|
|
return TTI::TCC_Free;
|
|
case Instruction::GetElementPtr:
|
|
// Always hoist the base address of a GetElementPtr. This prevents the
|
|
// creation of new constants for every base constant that gets constant
|
|
// folded with the offset.
|
|
if (Idx == 0)
|
|
return 2 * TTI::TCC_Basic;
|
|
return TTI::TCC_Free;
|
|
case Instruction::And:
|
|
RunFree = true; // (for the rotate-and-mask instructions)
|
|
[[fallthrough]];
|
|
case Instruction::Add:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
ShiftedFree = true;
|
|
[[fallthrough]];
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
ImmIdx = 1;
|
|
break;
|
|
case Instruction::ICmp:
|
|
UnsignedFree = true;
|
|
ImmIdx = 1;
|
|
// Zero comparisons can use record-form instructions.
|
|
[[fallthrough]];
|
|
case Instruction::Select:
|
|
ZeroFree = true;
|
|
break;
|
|
case Instruction::PHI:
|
|
case Instruction::Call:
|
|
case Instruction::Ret:
|
|
case Instruction::Load:
|
|
case Instruction::Store:
|
|
break;
|
|
}
|
|
|
|
if (ZeroFree && Imm == 0)
|
|
return TTI::TCC_Free;
|
|
|
|
if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
|
|
if (isInt<16>(Imm.getSExtValue()))
|
|
return TTI::TCC_Free;
|
|
|
|
if (RunFree) {
|
|
if (Imm.getBitWidth() <= 32 &&
|
|
(isShiftedMask_32(Imm.getZExtValue()) ||
|
|
isShiftedMask_32(~Imm.getZExtValue())))
|
|
return TTI::TCC_Free;
|
|
|
|
if (ST->isPPC64() &&
|
|
(isShiftedMask_64(Imm.getZExtValue()) ||
|
|
isShiftedMask_64(~Imm.getZExtValue())))
|
|
return TTI::TCC_Free;
|
|
}
|
|
|
|
if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
|
|
return TTI::TCC_Free;
|
|
|
|
if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
|
|
return TTI::TCC_Free;
|
|
}
|
|
|
|
return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
|
|
}
|
|
|
|
// Check if the current Type is an MMA vector type. Valid MMA types are
|
|
// v256i1 and v512i1 respectively.
|
|
static bool isMMAType(Type *Ty) {
|
|
return Ty->isVectorTy() && (Ty->getScalarSizeInBits() == 1) &&
|
|
(Ty->getPrimitiveSizeInBits() > 128);
|
|
}
|
|
|
|
InstructionCost PPCTTIImpl::getInstructionCost(const User *U,
|
|
ArrayRef<const Value *> Operands,
|
|
TTI::TargetCostKind CostKind) {
|
|
// We already implement getCastInstrCost and getMemoryOpCost where we perform
|
|
// the vector adjustment there.
|
|
if (isa<CastInst>(U) || isa<LoadInst>(U) || isa<StoreInst>(U))
|
|
return BaseT::getInstructionCost(U, Operands, CostKind);
|
|
|
|
if (U->getType()->isVectorTy()) {
|
|
// Instructions that need to be split should cost more.
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(U->getType());
|
|
return LT.first * BaseT::getInstructionCost(U, Operands, CostKind);
|
|
}
|
|
|
|
return BaseT::getInstructionCost(U, Operands, CostKind);
|
|
}
|
|
|
|
// Determining the address of a TLS variable results in a function call in
|
|
// certain TLS models.
|
|
static bool memAddrUsesCTR(const Value *MemAddr, const PPCTargetMachine &TM,
|
|
SmallPtrSetImpl<const Value *> &Visited) {
|
|
// No need to traverse again if we already checked this operand.
|
|
if (!Visited.insert(MemAddr).second)
|
|
return false;
|
|
const auto *GV = dyn_cast<GlobalValue>(MemAddr);
|
|
if (!GV) {
|
|
// Recurse to check for constants that refer to TLS global variables.
|
|
if (const auto *CV = dyn_cast<Constant>(MemAddr))
|
|
for (const auto &CO : CV->operands())
|
|
if (memAddrUsesCTR(CO, TM, Visited))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
if (!GV->isThreadLocal())
|
|
return false;
|
|
TLSModel::Model Model = TM.getTLSModel(GV);
|
|
return Model == TLSModel::GeneralDynamic || Model == TLSModel::LocalDynamic;
|
|
}
|
|
|
|
bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
|
|
AssumptionCache &AC,
|
|
TargetLibraryInfo *LibInfo,
|
|
HardwareLoopInfo &HWLoopInfo) {
|
|
const PPCTargetMachine &TM = ST->getTargetMachine();
|
|
TargetSchedModel SchedModel;
|
|
SchedModel.init(ST);
|
|
|
|
// Do not convert small short loops to CTR loop.
|
|
unsigned ConstTripCount = SE.getSmallConstantTripCount(L);
|
|
if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) {
|
|
SmallPtrSet<const Value *, 32> EphValues;
|
|
CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
|
|
CodeMetrics Metrics;
|
|
for (BasicBlock *BB : L->blocks())
|
|
Metrics.analyzeBasicBlock(BB, *this, EphValues);
|
|
// 6 is an approximate latency for the mtctr instruction.
|
|
if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth()))
|
|
return false;
|
|
}
|
|
|
|
SmallVector<BasicBlock*, 4> ExitingBlocks;
|
|
L->getExitingBlocks(ExitingBlocks);
|
|
|
|
// If there is an exit edge known to be frequently taken,
|
|
// we should not transform this loop.
|
|
for (auto &BB : ExitingBlocks) {
|
|
Instruction *TI = BB->getTerminator();
|
|
if (!TI) continue;
|
|
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
|
|
uint64_t TrueWeight = 0, FalseWeight = 0;
|
|
if (!BI->isConditional() ||
|
|
!extractBranchWeights(*BI, TrueWeight, FalseWeight))
|
|
continue;
|
|
|
|
// If the exit path is more frequent than the loop path,
|
|
// we return here without further analysis for this loop.
|
|
bool TrueIsExit = !L->contains(BI->getSuccessor(0));
|
|
if (( TrueIsExit && FalseWeight < TrueWeight) ||
|
|
(!TrueIsExit && FalseWeight > TrueWeight))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If an exit block has a PHI that accesses a TLS variable as one of the
|
|
// incoming values from the loop, we cannot produce a CTR loop because the
|
|
// address for that value will be computed in the loop.
|
|
SmallVector<BasicBlock *, 4> ExitBlocks;
|
|
L->getExitBlocks(ExitBlocks);
|
|
SmallPtrSet<const Value *, 4> Visited;
|
|
for (auto &BB : ExitBlocks) {
|
|
for (auto &PHI : BB->phis()) {
|
|
for (int Idx = 0, EndIdx = PHI.getNumIncomingValues(); Idx < EndIdx;
|
|
Idx++) {
|
|
const BasicBlock *IncomingBB = PHI.getIncomingBlock(Idx);
|
|
const Value *IncomingValue = PHI.getIncomingValue(Idx);
|
|
if (L->contains(IncomingBB) &&
|
|
memAddrUsesCTR(IncomingValue, TM, Visited))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
LLVMContext &C = L->getHeader()->getContext();
|
|
HWLoopInfo.CountType = TM.isPPC64() ?
|
|
Type::getInt64Ty(C) : Type::getInt32Ty(C);
|
|
HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
|
|
return true;
|
|
}
|
|
|
|
void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::UnrollingPreferences &UP,
|
|
OptimizationRemarkEmitter *ORE) {
|
|
if (ST->getCPUDirective() == PPC::DIR_A2) {
|
|
// The A2 is in-order with a deep pipeline, and concatenation unrolling
|
|
// helps expose latency-hiding opportunities to the instruction scheduler.
|
|
UP.Partial = UP.Runtime = true;
|
|
|
|
// We unroll a lot on the A2 (hundreds of instructions), and the benefits
|
|
// often outweigh the cost of a division to compute the trip count.
|
|
UP.AllowExpensiveTripCount = true;
|
|
}
|
|
|
|
BaseT::getUnrollingPreferences(L, SE, UP, ORE);
|
|
}
|
|
|
|
void PPCTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::PeelingPreferences &PP) {
|
|
BaseT::getPeelingPreferences(L, SE, PP);
|
|
}
|
|
// This function returns true to allow using coldcc calling convention.
|
|
// Returning true results in coldcc being used for functions which are cold at
|
|
// all call sites when the callers of the functions are not calling any other
|
|
// non coldcc functions.
|
|
bool PPCTTIImpl::useColdCCForColdCall(Function &F) {
|
|
return EnablePPCColdCC;
|
|
}
|
|
|
|
bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
|
|
// On the A2, always unroll aggressively.
|
|
if (ST->getCPUDirective() == PPC::DIR_A2)
|
|
return true;
|
|
|
|
return LoopHasReductions;
|
|
}
|
|
|
|
PPCTTIImpl::TTI::MemCmpExpansionOptions
|
|
PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
|
|
TTI::MemCmpExpansionOptions Options;
|
|
Options.LoadSizes = {8, 4, 2, 1};
|
|
Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
|
|
return Options;
|
|
}
|
|
|
|
bool PPCTTIImpl::enableInterleavedAccessVectorization() {
|
|
return true;
|
|
}
|
|
|
|
unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
|
|
assert(ClassID == GPRRC || ClassID == FPRRC ||
|
|
ClassID == VRRC || ClassID == VSXRC);
|
|
if (ST->hasVSX()) {
|
|
assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC);
|
|
return ClassID == VSXRC ? 64 : 32;
|
|
}
|
|
assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC);
|
|
return 32;
|
|
}
|
|
|
|
unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const {
|
|
if (Vector)
|
|
return ST->hasVSX() ? VSXRC : VRRC;
|
|
else if (Ty && (Ty->getScalarType()->isFloatTy() ||
|
|
Ty->getScalarType()->isDoubleTy()))
|
|
return ST->hasVSX() ? VSXRC : FPRRC;
|
|
else if (Ty && (Ty->getScalarType()->isFP128Ty() ||
|
|
Ty->getScalarType()->isPPC_FP128Ty()))
|
|
return VRRC;
|
|
else if (Ty && Ty->getScalarType()->isHalfTy())
|
|
return VSXRC;
|
|
else
|
|
return GPRRC;
|
|
}
|
|
|
|
const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const {
|
|
|
|
switch (ClassID) {
|
|
default:
|
|
llvm_unreachable("unknown register class");
|
|
return "PPC::unknown register class";
|
|
case GPRRC: return "PPC::GPRRC";
|
|
case FPRRC: return "PPC::FPRRC";
|
|
case VRRC: return "PPC::VRRC";
|
|
case VSXRC: return "PPC::VSXRC";
|
|
}
|
|
}
|
|
|
|
TypeSize
|
|
PPCTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
|
|
switch (K) {
|
|
case TargetTransformInfo::RGK_Scalar:
|
|
return TypeSize::getFixed(ST->isPPC64() ? 64 : 32);
|
|
case TargetTransformInfo::RGK_FixedWidthVector:
|
|
return TypeSize::getFixed(ST->hasAltivec() ? 128 : 0);
|
|
case TargetTransformInfo::RGK_ScalableVector:
|
|
return TypeSize::getScalable(0);
|
|
}
|
|
|
|
llvm_unreachable("Unsupported register kind");
|
|
}
|
|
|
|
unsigned PPCTTIImpl::getCacheLineSize() const {
|
|
// Starting with P7 we have a cache line size of 128.
|
|
unsigned Directive = ST->getCPUDirective();
|
|
// Assume that Future CPU has the same cache line size as the others.
|
|
if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
|
|
Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
|
|
Directive == PPC::DIR_PWR_FUTURE)
|
|
return 128;
|
|
|
|
// On other processors return a default of 64 bytes.
|
|
return 64;
|
|
}
|
|
|
|
unsigned PPCTTIImpl::getPrefetchDistance() const {
|
|
return 300;
|
|
}
|
|
|
|
unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
|
|
unsigned Directive = ST->getCPUDirective();
|
|
// The 440 has no SIMD support, but floating-point instructions
|
|
// have a 5-cycle latency, so unroll by 5x for latency hiding.
|
|
if (Directive == PPC::DIR_440)
|
|
return 5;
|
|
|
|
// The A2 has no SIMD support, but floating-point instructions
|
|
// have a 6-cycle latency, so unroll by 6x for latency hiding.
|
|
if (Directive == PPC::DIR_A2)
|
|
return 6;
|
|
|
|
// FIXME: For lack of any better information, do no harm...
|
|
if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
|
|
return 1;
|
|
|
|
// For P7 and P8, floating-point instructions have a 6-cycle latency and
|
|
// there are two execution units, so unroll by 12x for latency hiding.
|
|
// FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
|
|
// FIXME: the same for P10 as previous gen until POWER10 scheduling is ready
|
|
// Assume that future is the same as the others.
|
|
if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
|
|
Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
|
|
Directive == PPC::DIR_PWR_FUTURE)
|
|
return 12;
|
|
|
|
// For most things, modern systems have two execution units (and
|
|
// out-of-order execution).
|
|
return 2;
|
|
}
|
|
|
|
// Returns a cost adjustment factor to adjust the cost of vector instructions
|
|
// on targets which there is overlap between the vector and scalar units,
|
|
// thereby reducing the overall throughput of vector code wrt. scalar code.
|
|
// An invalid instruction cost is returned if the type is an MMA vector type.
|
|
InstructionCost PPCTTIImpl::vectorCostAdjustmentFactor(unsigned Opcode,
|
|
Type *Ty1, Type *Ty2) {
|
|
// If the vector type is of an MMA type (v256i1, v512i1), an invalid
|
|
// instruction cost is returned. This is to signify to other cost computing
|
|
// functions to return the maximum instruction cost in order to prevent any
|
|
// opportunities for the optimizer to produce MMA types within the IR.
|
|
if (isMMAType(Ty1))
|
|
return InstructionCost::getInvalid();
|
|
|
|
if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy())
|
|
return InstructionCost(1);
|
|
|
|
std::pair<InstructionCost, MVT> LT1 = getTypeLegalizationCost(Ty1);
|
|
// If type legalization involves splitting the vector, we don't want to
|
|
// double the cost at every step - only the last step.
|
|
if (LT1.first != 1 || !LT1.second.isVector())
|
|
return InstructionCost(1);
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
if (TLI->isOperationExpand(ISD, LT1.second))
|
|
return InstructionCost(1);
|
|
|
|
if (Ty2) {
|
|
std::pair<InstructionCost, MVT> LT2 = getTypeLegalizationCost(Ty2);
|
|
if (LT2.first != 1 || !LT2.second.isVector())
|
|
return InstructionCost(1);
|
|
}
|
|
|
|
return InstructionCost(2);
|
|
}
|
|
|
|
InstructionCost PPCTTIImpl::getArithmeticInstrCost(
|
|
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
|
|
TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
|
|
ArrayRef<const Value *> Args,
|
|
const Instruction *CxtI) {
|
|
assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
|
|
|
|
InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Ty, nullptr);
|
|
if (!CostFactor.isValid())
|
|
return InstructionCost::getMax();
|
|
|
|
// TODO: Handle more cost kinds.
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
|
|
Op2Info, Args, CxtI);
|
|
|
|
// Fallback to the default implementation.
|
|
InstructionCost Cost = BaseT::getArithmeticInstrCost(
|
|
Opcode, Ty, CostKind, Op1Info, Op2Info);
|
|
return Cost * CostFactor;
|
|
}
|
|
|
|
InstructionCost PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
|
|
ArrayRef<int> Mask,
|
|
TTI::TargetCostKind CostKind,
|
|
int Index, Type *SubTp,
|
|
ArrayRef<const Value *> Args) {
|
|
|
|
InstructionCost CostFactor =
|
|
vectorCostAdjustmentFactor(Instruction::ShuffleVector, Tp, nullptr);
|
|
if (!CostFactor.isValid())
|
|
return InstructionCost::getMax();
|
|
|
|
// Legalize the type.
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
|
|
|
|
// PPC, for both Altivec/VSX, support cheap arbitrary permutations
|
|
// (at least in the sense that there need only be one non-loop-invariant
|
|
// instruction). We need one such shuffle instruction for each actual
|
|
// register (this is not true for arbitrary shuffles, but is true for the
|
|
// structured types of shuffles covered by TTI::ShuffleKind).
|
|
return LT.first * CostFactor;
|
|
}
|
|
|
|
InstructionCost PPCTTIImpl::getCFInstrCost(unsigned Opcode,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) {
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return Opcode == Instruction::PHI ? 0 : 1;
|
|
// Branches are assumed to be predicted.
|
|
return 0;
|
|
}
|
|
|
|
InstructionCost PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
|
|
Type *Src,
|
|
TTI::CastContextHint CCH,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) {
|
|
assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
|
|
|
|
InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Dst, Src);
|
|
if (!CostFactor.isValid())
|
|
return InstructionCost::getMax();
|
|
|
|
InstructionCost Cost =
|
|
BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
|
|
Cost *= CostFactor;
|
|
// TODO: Allow non-throughput costs that aren't binary.
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return Cost == 0 ? 0 : 1;
|
|
return Cost;
|
|
}
|
|
|
|
InstructionCost PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
Type *CondTy,
|
|
CmpInst::Predicate VecPred,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) {
|
|
InstructionCost CostFactor =
|
|
vectorCostAdjustmentFactor(Opcode, ValTy, nullptr);
|
|
if (!CostFactor.isValid())
|
|
return InstructionCost::getMax();
|
|
|
|
InstructionCost Cost =
|
|
BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
|
|
// TODO: Handle other cost kinds.
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return Cost;
|
|
return Cost * CostFactor;
|
|
}
|
|
|
|
InstructionCost PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
|
|
unsigned Index) {
|
|
assert(Val->isVectorTy() && "This must be a vector type");
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Val, nullptr);
|
|
if (!CostFactor.isValid())
|
|
return InstructionCost::getMax();
|
|
|
|
InstructionCost Cost = BaseT::getVectorInstrCost(Opcode, Val, Index);
|
|
Cost *= CostFactor;
|
|
|
|
if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
|
|
// Double-precision scalars are already located in index #0 (or #1 if LE).
|
|
if (ISD == ISD::EXTRACT_VECTOR_ELT &&
|
|
Index == (ST->isLittleEndian() ? 1 : 0))
|
|
return 0;
|
|
|
|
return Cost;
|
|
|
|
} else if (Val->getScalarType()->isIntegerTy() && Index != -1U) {
|
|
if (ST->hasP9Altivec()) {
|
|
if (ISD == ISD::INSERT_VECTOR_ELT)
|
|
// A move-to VSR and a permute/insert. Assume vector operation cost
|
|
// for both (cost will be 2x on P9).
|
|
return 2 * CostFactor;
|
|
|
|
// It's an extract. Maybe we can do a cheap move-from VSR.
|
|
unsigned EltSize = Val->getScalarSizeInBits();
|
|
if (EltSize == 64) {
|
|
unsigned MfvsrdIndex = ST->isLittleEndian() ? 1 : 0;
|
|
if (Index == MfvsrdIndex)
|
|
return 1;
|
|
} else if (EltSize == 32) {
|
|
unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1;
|
|
if (Index == MfvsrwzIndex)
|
|
return 1;
|
|
}
|
|
|
|
// We need a vector extract (or mfvsrld). Assume vector operation cost.
|
|
// The cost of the load constant for a vector extract is disregarded
|
|
// (invariant, easily schedulable).
|
|
return CostFactor;
|
|
|
|
} else if (ST->hasDirectMove())
|
|
// Assume permute has standard cost.
|
|
// Assume move-to/move-from VSR have 2x standard cost.
|
|
return 3;
|
|
}
|
|
|
|
// Estimated cost of a load-hit-store delay. This was obtained
|
|
// experimentally as a minimum needed to prevent unprofitable
|
|
// vectorization for the paq8p benchmark. It may need to be
|
|
// raised further if other unprofitable cases remain.
|
|
unsigned LHSPenalty = 2;
|
|
if (ISD == ISD::INSERT_VECTOR_ELT)
|
|
LHSPenalty += 7;
|
|
|
|
// Vector element insert/extract with Altivec is very expensive,
|
|
// because they require store and reload with the attendant
|
|
// processor stall for load-hit-store. Until VSX is available,
|
|
// these need to be estimated as very costly.
|
|
if (ISD == ISD::EXTRACT_VECTOR_ELT ||
|
|
ISD == ISD::INSERT_VECTOR_ELT)
|
|
return LHSPenalty + Cost;
|
|
|
|
return Cost;
|
|
}
|
|
|
|
InstructionCost PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
|
|
MaybeAlign Alignment,
|
|
unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind,
|
|
TTI::OperandValueInfo OpInfo,
|
|
const Instruction *I) {
|
|
|
|
InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Src, nullptr);
|
|
if (!CostFactor.isValid())
|
|
return InstructionCost::getMax();
|
|
|
|
if (TLI->getValueType(DL, Src, true) == MVT::Other)
|
|
return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
|
|
CostKind);
|
|
// Legalize the type.
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
|
|
assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
|
|
"Invalid Opcode");
|
|
|
|
InstructionCost Cost =
|
|
BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
|
|
// TODO: Handle other cost kinds.
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return Cost;
|
|
|
|
Cost *= CostFactor;
|
|
|
|
bool IsAltivecType = ST->hasAltivec() &&
|
|
(LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
|
|
LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
|
|
bool IsVSXType = ST->hasVSX() &&
|
|
(LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
|
|
|
|
// VSX has 32b/64b load instructions. Legalization can handle loading of
|
|
// 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
|
|
// PPCTargetLowering can't compute the cost appropriately. So here we
|
|
// explicitly check this case.
|
|
unsigned MemBytes = Src->getPrimitiveSizeInBits();
|
|
if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
|
|
(MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
|
|
return 1;
|
|
|
|
// Aligned loads and stores are easy.
|
|
unsigned SrcBytes = LT.second.getStoreSize();
|
|
if (!SrcBytes || !Alignment || *Alignment >= SrcBytes)
|
|
return Cost;
|
|
|
|
// If we can use the permutation-based load sequence, then this is also
|
|
// relatively cheap (not counting loop-invariant instructions): one load plus
|
|
// one permute (the last load in a series has extra cost, but we're
|
|
// neglecting that here). Note that on the P7, we could do unaligned loads
|
|
// for Altivec types using the VSX instructions, but that's more expensive
|
|
// than using the permutation-based load sequence. On the P8, that's no
|
|
// longer true.
|
|
if (Opcode == Instruction::Load && (!ST->hasP8Vector() && IsAltivecType) &&
|
|
*Alignment >= LT.second.getScalarType().getStoreSize())
|
|
return Cost + LT.first; // Add the cost of the permutations.
|
|
|
|
// For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
|
|
// P7, unaligned vector loads are more expensive than the permutation-based
|
|
// load sequence, so that might be used instead, but regardless, the net cost
|
|
// is about the same (not counting loop-invariant instructions).
|
|
if (IsVSXType || (ST->hasVSX() && IsAltivecType))
|
|
return Cost;
|
|
|
|
// Newer PPC supports unaligned memory access.
|
|
if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
|
|
return Cost;
|
|
|
|
// PPC in general does not support unaligned loads and stores. They'll need
|
|
// to be decomposed based on the alignment factor.
|
|
|
|
// Add the cost of each scalar load or store.
|
|
assert(Alignment);
|
|
Cost += LT.first * ((SrcBytes / Alignment->value()) - 1);
|
|
|
|
// For a vector type, there is also scalarization overhead (only for
|
|
// stores, loads are expanded using the vector-load + permutation sequence,
|
|
// which is much less expensive).
|
|
if (Src->isVectorTy() && Opcode == Instruction::Store)
|
|
for (int i = 0, e = cast<FixedVectorType>(Src)->getNumElements(); i < e;
|
|
++i)
|
|
Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
|
|
|
|
return Cost;
|
|
}
|
|
|
|
InstructionCost PPCTTIImpl::getInterleavedMemoryOpCost(
|
|
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
|
|
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
|
|
bool UseMaskForCond, bool UseMaskForGaps) {
|
|
InstructionCost CostFactor =
|
|
vectorCostAdjustmentFactor(Opcode, VecTy, nullptr);
|
|
if (!CostFactor.isValid())
|
|
return InstructionCost::getMax();
|
|
|
|
if (UseMaskForCond || UseMaskForGaps)
|
|
return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
|
|
Alignment, AddressSpace, CostKind,
|
|
UseMaskForCond, UseMaskForGaps);
|
|
|
|
assert(isa<VectorType>(VecTy) &&
|
|
"Expect a vector type for interleaved memory op");
|
|
|
|
// Legalize the type.
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VecTy);
|
|
|
|
// Firstly, the cost of load/store operation.
|
|
InstructionCost Cost = getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment),
|
|
AddressSpace, CostKind);
|
|
|
|
// PPC, for both Altivec/VSX, support cheap arbitrary permutations
|
|
// (at least in the sense that there need only be one non-loop-invariant
|
|
// instruction). For each result vector, we need one shuffle per incoming
|
|
// vector (except that the first shuffle can take two incoming vectors
|
|
// because it does not need to take itself).
|
|
Cost += Factor*(LT.first-1);
|
|
|
|
return Cost;
|
|
}
|
|
|
|
InstructionCost
|
|
PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
|
|
TTI::TargetCostKind CostKind) {
|
|
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
|
|
}
|
|
|
|
bool PPCTTIImpl::areTypesABICompatible(const Function *Caller,
|
|
const Function *Callee,
|
|
const ArrayRef<Type *> &Types) const {
|
|
|
|
// We need to ensure that argument promotion does not
|
|
// attempt to promote pointers to MMA types (__vector_pair
|
|
// and __vector_quad) since these types explicitly cannot be
|
|
// passed as arguments. Both of these types are larger than
|
|
// the 128-bit Altivec vectors and have a scalar size of 1 bit.
|
|
if (!BaseT::areTypesABICompatible(Caller, Callee, Types))
|
|
return false;
|
|
|
|
return llvm::none_of(Types, [](Type *Ty) {
|
|
if (Ty->isSized())
|
|
return Ty->isIntOrIntVectorTy(1) && Ty->getPrimitiveSizeInBits() > 128;
|
|
return false;
|
|
});
|
|
}
|
|
|
|
bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
|
|
LoopInfo *LI, DominatorTree *DT,
|
|
AssumptionCache *AC, TargetLibraryInfo *LibInfo) {
|
|
// Process nested loops first.
|
|
for (Loop *I : *L)
|
|
if (canSaveCmp(I, BI, SE, LI, DT, AC, LibInfo))
|
|
return false; // Stop search.
|
|
|
|
HardwareLoopInfo HWLoopInfo(L);
|
|
|
|
if (!HWLoopInfo.canAnalyze(*LI))
|
|
return false;
|
|
|
|
if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo))
|
|
return false;
|
|
|
|
if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT))
|
|
return false;
|
|
|
|
*BI = HWLoopInfo.ExitBranch;
|
|
return true;
|
|
}
|
|
|
|
bool PPCTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
|
|
const TargetTransformInfo::LSRCost &C2) {
|
|
// PowerPC default behaviour here is "instruction number 1st priority".
|
|
// If LsrNoInsnsCost is set, call default implementation.
|
|
if (!LsrNoInsnsCost)
|
|
return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls,
|
|
C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
|
|
std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls,
|
|
C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost);
|
|
else
|
|
return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
|
|
}
|
|
|
|
bool PPCTTIImpl::isNumRegsMajorCostOfLSR() {
|
|
return false;
|
|
}
|
|
|
|
bool PPCTTIImpl::shouldBuildRelLookupTables() const {
|
|
const PPCTargetMachine &TM = ST->getTargetMachine();
|
|
// XCOFF hasn't implemented lowerRelativeReference, disable non-ELF for now.
|
|
if (!TM.isELFv2ABI())
|
|
return false;
|
|
return BaseT::shouldBuildRelLookupTables();
|
|
}
|
|
|
|
bool PPCTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
|
|
MemIntrinsicInfo &Info) {
|
|
switch (Inst->getIntrinsicID()) {
|
|
case Intrinsic::ppc_altivec_lvx:
|
|
case Intrinsic::ppc_altivec_lvxl:
|
|
case Intrinsic::ppc_altivec_lvebx:
|
|
case Intrinsic::ppc_altivec_lvehx:
|
|
case Intrinsic::ppc_altivec_lvewx:
|
|
case Intrinsic::ppc_vsx_lxvd2x:
|
|
case Intrinsic::ppc_vsx_lxvw4x:
|
|
case Intrinsic::ppc_vsx_lxvd2x_be:
|
|
case Intrinsic::ppc_vsx_lxvw4x_be:
|
|
case Intrinsic::ppc_vsx_lxvl:
|
|
case Intrinsic::ppc_vsx_lxvll:
|
|
case Intrinsic::ppc_vsx_lxvp: {
|
|
Info.PtrVal = Inst->getArgOperand(0);
|
|
Info.ReadMem = true;
|
|
Info.WriteMem = false;
|
|
return true;
|
|
}
|
|
case Intrinsic::ppc_altivec_stvx:
|
|
case Intrinsic::ppc_altivec_stvxl:
|
|
case Intrinsic::ppc_altivec_stvebx:
|
|
case Intrinsic::ppc_altivec_stvehx:
|
|
case Intrinsic::ppc_altivec_stvewx:
|
|
case Intrinsic::ppc_vsx_stxvd2x:
|
|
case Intrinsic::ppc_vsx_stxvw4x:
|
|
case Intrinsic::ppc_vsx_stxvd2x_be:
|
|
case Intrinsic::ppc_vsx_stxvw4x_be:
|
|
case Intrinsic::ppc_vsx_stxvl:
|
|
case Intrinsic::ppc_vsx_stxvll:
|
|
case Intrinsic::ppc_vsx_stxvp: {
|
|
Info.PtrVal = Inst->getArgOperand(1);
|
|
Info.ReadMem = false;
|
|
Info.WriteMem = true;
|
|
return true;
|
|
}
|
|
case Intrinsic::ppc_stbcx:
|
|
case Intrinsic::ppc_sthcx:
|
|
case Intrinsic::ppc_stdcx:
|
|
case Intrinsic::ppc_stwcx: {
|
|
Info.PtrVal = Inst->getArgOperand(0);
|
|
Info.ReadMem = false;
|
|
Info.WriteMem = true;
|
|
return true;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool PPCTTIImpl::hasActiveVectorLength(unsigned Opcode, Type *DataType,
|
|
Align Alignment) const {
|
|
// Only load and stores instructions can have variable vector length on Power.
|
|
if (Opcode != Instruction::Load && Opcode != Instruction::Store)
|
|
return false;
|
|
// Loads/stores with length instructions use bits 0-7 of the GPR operand and
|
|
// therefore cannot be used in 32-bit mode.
|
|
if ((!ST->hasP9Vector() && !ST->hasP10Vector()) || !ST->isPPC64())
|
|
return false;
|
|
if (isa<FixedVectorType>(DataType)) {
|
|
unsigned VecWidth = DataType->getPrimitiveSizeInBits();
|
|
return VecWidth == 128;
|
|
}
|
|
Type *ScalarTy = DataType->getScalarType();
|
|
|
|
if (ScalarTy->isPointerTy())
|
|
return true;
|
|
|
|
if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
|
|
return true;
|
|
|
|
if (!ScalarTy->isIntegerTy())
|
|
return false;
|
|
|
|
unsigned IntWidth = ScalarTy->getIntegerBitWidth();
|
|
return IntWidth == 8 || IntWidth == 16 || IntWidth == 32 || IntWidth == 64;
|
|
}
|
|
|
|
InstructionCost PPCTTIImpl::getVPMemoryOpCost(unsigned Opcode, Type *Src,
|
|
Align Alignment,
|
|
unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) {
|
|
InstructionCost Cost = BaseT::getVPMemoryOpCost(Opcode, Src, Alignment,
|
|
AddressSpace, CostKind, I);
|
|
if (TLI->getValueType(DL, Src, true) == MVT::Other)
|
|
return Cost;
|
|
// TODO: Handle other cost kinds.
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return Cost;
|
|
|
|
assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
|
|
"Invalid Opcode");
|
|
|
|
auto *SrcVTy = dyn_cast<FixedVectorType>(Src);
|
|
assert(SrcVTy && "Expected a vector type for VP memory operations");
|
|
|
|
if (hasActiveVectorLength(Opcode, Src, Alignment)) {
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(SrcVTy);
|
|
|
|
InstructionCost CostFactor =
|
|
vectorCostAdjustmentFactor(Opcode, Src, nullptr);
|
|
if (!CostFactor.isValid())
|
|
return InstructionCost::getMax();
|
|
|
|
InstructionCost Cost = LT.first * CostFactor;
|
|
assert(Cost.isValid() && "Expected valid cost");
|
|
|
|
// On P9 but not on P10, if the op is misaligned then it will cause a
|
|
// pipeline flush. Otherwise the VSX masked memops cost the same as unmasked
|
|
// ones.
|
|
const Align DesiredAlignment(16);
|
|
if (Alignment >= DesiredAlignment || ST->getCPUDirective() != PPC::DIR_PWR9)
|
|
return Cost;
|
|
|
|
// Since alignment may be under estimated, we try to compute the probability
|
|
// that the actual address is aligned to the desired boundary. For example
|
|
// an 8-byte aligned load is assumed to be actually 16-byte aligned half the
|
|
// time, while a 4-byte aligned load has a 25% chance of being 16-byte
|
|
// aligned.
|
|
float AlignmentProb = ((float)Alignment.value()) / DesiredAlignment.value();
|
|
float MisalignmentProb = 1.0 - AlignmentProb;
|
|
return (MisalignmentProb * P9PipelineFlushEstimate) +
|
|
(AlignmentProb * *Cost.getValue());
|
|
}
|
|
|
|
// Usually we should not get to this point, but the following is an attempt to
|
|
// model the cost of legalization. Currently we can only lower intrinsics with
|
|
// evl but no mask, on Power 9/10. Otherwise, we must scalarize.
|
|
return getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
|
|
}
|
|
|
|
bool PPCTTIImpl::supportsTailCallFor(const CallBase *CB) const {
|
|
// Subtargets using PC-Relative addressing supported.
|
|
if (ST->isUsingPCRelativeCalls())
|
|
return true;
|
|
|
|
const Function *Callee = CB->getCalledFunction();
|
|
// Indirect calls and variadic argument functions not supported.
|
|
if (!Callee || Callee->isVarArg())
|
|
return false;
|
|
|
|
const Function *Caller = CB->getCaller();
|
|
// Support if we can share TOC base.
|
|
return ST->getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(),
|
|
Callee);
|
|
}
|