339 lines
11 KiB
C++
339 lines
11 KiB
C++
//===- Verifier.cpp - MLIR Verifier Implementation ------------------------===//
|
|
//
|
|
// Copyright 2019 The MLIR Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// =============================================================================
|
|
//
|
|
// This file implements the verify() methods on the various IR types, performing
|
|
// (potentially expensive) checks on the holistic structure of the code. This
|
|
// can be used for detecting bugs in compiler transformations and hand written
|
|
// .mlir files.
|
|
//
|
|
// The checks in this file are only for things that can occur as part of IR
|
|
// transformations: e.g. violation of dominance information, malformed operation
|
|
// attributes, etc. MLIR supports transformations moving IR through locally
|
|
// invalid states (e.g. unlinking an instruction from an instruction before
|
|
// re-inserting it in a new place), but each transformation must complete with
|
|
// the IR in a valid form.
|
|
//
|
|
// This should not check for things that are always wrong by construction (e.g.
|
|
// affine maps or other immutable structures that are incorrect), because those
|
|
// are not mutable and can be checked at time of construction.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Analysis/Dominance.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/Function.h"
|
|
#include "mlir/IR/Instructions.h"
|
|
#include "mlir/IR/Module.h"
|
|
#include "llvm/Support/PrettyStackTrace.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace mlir;
|
|
|
|
namespace {
|
|
/// This class encapsulates all the state used to verify a function body. It is
|
|
/// a pervasive truth that this file treats "true" as an error that needs to be
|
|
/// recovered from, and "false" as success.
|
|
///
|
|
class FuncVerifier {
|
|
public:
|
|
bool failure(const Twine &message, const OperationInst &value) {
|
|
return value.emitError(message);
|
|
}
|
|
|
|
bool failure(const Twine &message, const Function &fn) {
|
|
return fn.emitError(message);
|
|
}
|
|
|
|
bool failure(const Twine &message, const Block &bb) {
|
|
// Take the location information for the first instruction in the block.
|
|
if (!bb.empty())
|
|
if (auto *op = dyn_cast<OperationInst>(&bb.front()))
|
|
return failure(message, *op);
|
|
|
|
// Worst case, fall back to using the function's location.
|
|
return failure(message, fn);
|
|
}
|
|
|
|
bool verifyAttribute(Attribute attr, const OperationInst &op);
|
|
|
|
bool verify();
|
|
bool verifyBlock(const Block &block, bool isTopLevel);
|
|
bool verifyOperation(const OperationInst &op);
|
|
bool verifyForInst(const ForInst &forInst);
|
|
bool verifyIfInst(const IfInst &ifInst);
|
|
bool verifyDominance(const Block &block);
|
|
bool verifyInstDominance(const Instruction &inst);
|
|
|
|
explicit FuncVerifier(const Function &fn) : fn(fn) {}
|
|
|
|
private:
|
|
/// The function being checked.
|
|
const Function &fn;
|
|
|
|
/// Dominance information for this function, when checking dominance.
|
|
DominanceInfo *domInfo = nullptr;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
bool FuncVerifier::verify() {
|
|
llvm::PrettyStackTraceFormat fmt("MLIR Verifier: func @%s",
|
|
fn.getName().c_str());
|
|
|
|
// External functions have nothing more to check.
|
|
if (fn.empty())
|
|
return false;
|
|
|
|
// Verify the first block has no predecessors.
|
|
auto *firstBB = &fn.front();
|
|
if (!firstBB->hasNoPredecessors())
|
|
return failure("entry block of function may not have predecessors", fn);
|
|
|
|
// Verify that the argument list of the function and the arg list of the first
|
|
// block line up.
|
|
auto fnInputTypes = fn.getType().getInputs();
|
|
if (fnInputTypes.size() != firstBB->getNumArguments())
|
|
return failure("first block of function must have " +
|
|
Twine(fnInputTypes.size()) +
|
|
" arguments to match function signature",
|
|
fn);
|
|
for (unsigned i = 0, e = firstBB->getNumArguments(); i != e; ++i)
|
|
if (fnInputTypes[i] != firstBB->getArgument(i)->getType())
|
|
return failure(
|
|
"type of argument #" + Twine(i) +
|
|
" must match corresponding argument in function signature",
|
|
fn);
|
|
|
|
for (auto &block : fn) {
|
|
if (verifyBlock(block, /*isTopLevel*/ true))
|
|
return true;
|
|
}
|
|
|
|
// Since everything looks structurally ok to this point, we do a dominance
|
|
// check. We do this as a second pass since malformed CFG's can cause
|
|
// dominator analysis constructure to crash and we want the verifier to be
|
|
// resilient to malformed code.
|
|
DominanceInfo theDomInfo(const_cast<Function *>(&fn));
|
|
domInfo = &theDomInfo;
|
|
for (auto &block : fn) {
|
|
if (verifyDominance(block))
|
|
return true;
|
|
}
|
|
|
|
domInfo = nullptr;
|
|
return false;
|
|
}
|
|
|
|
// Check that function attributes are all well formed.
|
|
bool FuncVerifier::verifyAttribute(Attribute attr, const OperationInst &op) {
|
|
if (!attr.isOrContainsFunction())
|
|
return false;
|
|
|
|
// If we have a function attribute, check that it is non-null and in the
|
|
// same module as the operation that refers to it.
|
|
if (auto fnAttr = attr.dyn_cast<FunctionAttr>()) {
|
|
if (!fnAttr.getValue())
|
|
return failure("attribute refers to deallocated function!", op);
|
|
|
|
if (fnAttr.getValue()->getModule() != fn.getModule())
|
|
return failure("attribute refers to function '" +
|
|
Twine(fnAttr.getValue()->getName()) +
|
|
"' defined in another module!",
|
|
op);
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, we must have an array attribute, remap the elements.
|
|
for (auto elt : attr.cast<ArrayAttr>().getValue()) {
|
|
if (verifyAttribute(elt, op))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool FuncVerifier::verifyBlock(const Block &block, bool isTopLevel) {
|
|
for (auto *arg : block.getArguments()) {
|
|
if (arg->getOwner() != &block)
|
|
return failure("block argument not owned by block", block);
|
|
}
|
|
|
|
for (auto &inst : block) {
|
|
switch (inst.getKind()) {
|
|
case Instruction::Kind::OperationInst:
|
|
if (verifyOperation(cast<OperationInst>(inst)))
|
|
return true;
|
|
break;
|
|
case Instruction::Kind::For:
|
|
if (verifyForInst(cast<ForInst>(inst)))
|
|
return true;
|
|
break;
|
|
case Instruction::Kind::If:
|
|
if (verifyIfInst(cast<IfInst>(inst)))
|
|
return true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If this block is at the function level, then verify that it has a
|
|
// terminator.
|
|
if (isTopLevel) {
|
|
if (!block.getTerminator())
|
|
return failure("block with no terminator", block);
|
|
|
|
// Verify that this block is not branching to a block of a different
|
|
// region.
|
|
for (const Block *successor : block.getSuccessors())
|
|
if (successor->getParent() != block.getParent())
|
|
return failure("branching to a block of a different region",
|
|
*block.getTerminator());
|
|
} else if (block.getTerminator()) {
|
|
// TODO(riverriddle) Blocks in an IfInst/ForInst aren't allowed to have
|
|
// terminators.
|
|
return failure("non function block with terminator", block);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Check the invariants of the specified operation.
|
|
bool FuncVerifier::verifyOperation(const OperationInst &op) {
|
|
if (op.getFunction() != &fn)
|
|
return failure("operation in the wrong function", op);
|
|
|
|
// Check that operands are non-nil and structurally ok.
|
|
for (const auto *operand : op.getOperands()) {
|
|
if (!operand)
|
|
return failure("null operand found", op);
|
|
|
|
if (operand->getFunction() != &fn)
|
|
return failure("reference to operand defined in another function", op);
|
|
}
|
|
|
|
// Verify all attributes are ok. We need to check Function attributes, since
|
|
// they are actually mutable (the function they refer to can be deleted), and
|
|
// we have to check array attributes that can refer to them.
|
|
for (auto attr : op.getAttrs()) {
|
|
if (verifyAttribute(attr.second, op))
|
|
return true;
|
|
}
|
|
|
|
// If we can get operation info for this, check the custom hook.
|
|
if (auto *opInfo = op.getAbstractOperation()) {
|
|
if (opInfo->verifyInvariants(&op))
|
|
return true;
|
|
}
|
|
|
|
// Verify that all child blocks are ok.
|
|
for (auto &blockList : op.getBlockLists())
|
|
for (auto &b : blockList)
|
|
if (verifyBlock(b, /*isTopLevel=*/false))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool FuncVerifier::verifyForInst(const ForInst &forInst) {
|
|
// TODO: check that loop bounds are properly formed.
|
|
return verifyBlock(*forInst.getBody(), /*isTopLevel=*/false);
|
|
}
|
|
|
|
bool FuncVerifier::verifyIfInst(const IfInst &ifInst) {
|
|
// TODO: check that if conditions are properly formed.
|
|
if (verifyBlock(*ifInst.getThen(), /*isTopLevel*/ false))
|
|
return true;
|
|
|
|
if (auto *elseClause = ifInst.getElse())
|
|
if (verifyBlock(*elseClause, /*isTopLevel*/ false))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool FuncVerifier::verifyDominance(const Block &block) {
|
|
for (auto &inst : block) {
|
|
// Check that all operands on the instruction are ok.
|
|
if (verifyInstDominance(inst))
|
|
return true;
|
|
|
|
switch (inst.getKind()) {
|
|
case Instruction::Kind::OperationInst: {
|
|
auto &opInst = cast<OperationInst>(inst);
|
|
if (verifyOperation(opInst))
|
|
return true;
|
|
for (auto &blockList : opInst.getBlockLists())
|
|
for (auto &block : blockList)
|
|
if (verifyDominance(block))
|
|
return true;
|
|
break;
|
|
}
|
|
case Instruction::Kind::For:
|
|
if (verifyDominance(*cast<ForInst>(inst).getBody()))
|
|
return true;
|
|
break;
|
|
case Instruction::Kind::If:
|
|
auto &ifInst = cast<IfInst>(inst);
|
|
if (verifyDominance(*ifInst.getThen()))
|
|
return true;
|
|
if (auto *elseClause = ifInst.getElse())
|
|
if (verifyDominance(*elseClause))
|
|
return true;
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool FuncVerifier::verifyInstDominance(const Instruction &inst) {
|
|
// Check that operands properly dominate this use.
|
|
for (unsigned operandNo = 0, e = inst.getNumOperands(); operandNo != e;
|
|
++operandNo) {
|
|
auto *op = inst.getOperand(operandNo);
|
|
if (domInfo->properlyDominates(op, &inst))
|
|
continue;
|
|
|
|
inst.emitError("operand #" + Twine(operandNo) +
|
|
" does not dominate this use");
|
|
if (auto *useInst = op->getDefiningInst())
|
|
useInst->emitNote("operand defined here");
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Entrypoints
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Perform (potentially expensive) checks of invariants, used to detect
|
|
/// compiler bugs. On error, this reports the error through the MLIRContext and
|
|
/// returns true.
|
|
bool Function::verify() const { return FuncVerifier(*this).verify(); }
|
|
|
|
/// Perform (potentially expensive) checks of invariants, used to detect
|
|
/// compiler bugs. On error, this reports the error through the MLIRContext and
|
|
/// returns true.
|
|
bool Module::verify() const {
|
|
|
|
/// Check that each function is correct.
|
|
for (auto &fn : *this) {
|
|
if (fn.verify())
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|