601 lines
23 KiB
C++
601 lines
23 KiB
C++
//===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Dead Loop Deletion Pass. This pass is responsible
|
|
// for eliminating loops with non-infinite computable trip counts that have no
|
|
// side effects or volatile instructions, and do not contribute to the
|
|
// computation of the function's return value.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/LoopDeletion.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/LoopIterator.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/MemorySSA.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Scalar/LoopPassManager.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "loop-delete"
|
|
|
|
STATISTIC(NumDeleted, "Number of loops deleted");
|
|
STATISTIC(NumBackedgesBroken,
|
|
"Number of loops for which we managed to break the backedge");
|
|
|
|
static cl::opt<bool> EnableSymbolicExecution(
|
|
"loop-deletion-enable-symbolic-execution", cl::Hidden, cl::init(true),
|
|
cl::desc("Break backedge through symbolic execution of 1st iteration "
|
|
"attempting to prove that the backedge is never taken"));
|
|
|
|
enum class LoopDeletionResult {
|
|
Unmodified,
|
|
Modified,
|
|
Deleted,
|
|
};
|
|
|
|
static LoopDeletionResult merge(LoopDeletionResult A, LoopDeletionResult B) {
|
|
if (A == LoopDeletionResult::Deleted || B == LoopDeletionResult::Deleted)
|
|
return LoopDeletionResult::Deleted;
|
|
if (A == LoopDeletionResult::Modified || B == LoopDeletionResult::Modified)
|
|
return LoopDeletionResult::Modified;
|
|
return LoopDeletionResult::Unmodified;
|
|
}
|
|
|
|
/// Determines if a loop is dead.
|
|
///
|
|
/// This assumes that we've already checked for unique exit and exiting blocks,
|
|
/// and that the code is in LCSSA form.
|
|
static bool isLoopDead(Loop *L, ScalarEvolution &SE,
|
|
SmallVectorImpl<BasicBlock *> &ExitingBlocks,
|
|
BasicBlock *ExitBlock, bool &Changed,
|
|
BasicBlock *Preheader, LoopInfo &LI) {
|
|
// Make sure that all PHI entries coming from the loop are loop invariant.
|
|
// Because the code is in LCSSA form, any values used outside of the loop
|
|
// must pass through a PHI in the exit block, meaning that this check is
|
|
// sufficient to guarantee that no loop-variant values are used outside
|
|
// of the loop.
|
|
bool AllEntriesInvariant = true;
|
|
bool AllOutgoingValuesSame = true;
|
|
if (!L->hasNoExitBlocks()) {
|
|
for (PHINode &P : ExitBlock->phis()) {
|
|
Value *incoming = P.getIncomingValueForBlock(ExitingBlocks[0]);
|
|
|
|
// Make sure all exiting blocks produce the same incoming value for the
|
|
// block. If there are different incoming values for different exiting
|
|
// blocks, then it is impossible to statically determine which value
|
|
// should be used.
|
|
AllOutgoingValuesSame =
|
|
all_of(makeArrayRef(ExitingBlocks).slice(1), [&](BasicBlock *BB) {
|
|
return incoming == P.getIncomingValueForBlock(BB);
|
|
});
|
|
|
|
if (!AllOutgoingValuesSame)
|
|
break;
|
|
|
|
if (Instruction *I = dyn_cast<Instruction>(incoming)) {
|
|
if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator(),
|
|
/*MSSAU=*/nullptr, &SE)) {
|
|
AllEntriesInvariant = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!AllEntriesInvariant || !AllOutgoingValuesSame)
|
|
return false;
|
|
|
|
// Make sure that no instructions in the block have potential side-effects.
|
|
// This includes instructions that could write to memory, and loads that are
|
|
// marked volatile.
|
|
for (const auto &I : L->blocks())
|
|
if (any_of(*I, [](Instruction &I) {
|
|
return I.mayHaveSideEffects() && !I.isDroppable();
|
|
}))
|
|
return false;
|
|
|
|
// The loop or any of its sub-loops looping infinitely is legal. The loop can
|
|
// only be considered dead if either
|
|
// a. the function is mustprogress.
|
|
// b. all (sub-)loops are mustprogress or have a known trip-count.
|
|
if (L->getHeader()->getParent()->mustProgress())
|
|
return true;
|
|
|
|
LoopBlocksRPO RPOT(L);
|
|
RPOT.perform(&LI);
|
|
// If the loop contains an irreducible cycle, it may loop infinitely.
|
|
if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
|
|
return false;
|
|
|
|
SmallVector<Loop *, 8> WorkList;
|
|
WorkList.push_back(L);
|
|
while (!WorkList.empty()) {
|
|
Loop *Current = WorkList.pop_back_val();
|
|
if (hasMustProgress(Current))
|
|
continue;
|
|
|
|
const SCEV *S = SE.getConstantMaxBackedgeTakenCount(Current);
|
|
if (isa<SCEVCouldNotCompute>(S)) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Could not compute SCEV MaxBackedgeTakenCount and was "
|
|
"not required to make progress.\n");
|
|
return false;
|
|
}
|
|
WorkList.append(Current->begin(), Current->end());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// This function returns true if there is no viable path from the
|
|
/// entry block to the header of \p L. Right now, it only does
|
|
/// a local search to save compile time.
|
|
static bool isLoopNeverExecuted(Loop *L) {
|
|
using namespace PatternMatch;
|
|
|
|
auto *Preheader = L->getLoopPreheader();
|
|
// TODO: We can relax this constraint, since we just need a loop
|
|
// predecessor.
|
|
assert(Preheader && "Needs preheader!");
|
|
|
|
if (Preheader->isEntryBlock())
|
|
return false;
|
|
// All predecessors of the preheader should have a constant conditional
|
|
// branch, with the loop's preheader as not-taken.
|
|
for (auto *Pred: predecessors(Preheader)) {
|
|
BasicBlock *Taken, *NotTaken;
|
|
ConstantInt *Cond;
|
|
if (!match(Pred->getTerminator(),
|
|
m_Br(m_ConstantInt(Cond), Taken, NotTaken)))
|
|
return false;
|
|
if (!Cond->getZExtValue())
|
|
std::swap(Taken, NotTaken);
|
|
if (Taken == Preheader)
|
|
return false;
|
|
}
|
|
assert(!pred_empty(Preheader) &&
|
|
"Preheader should have predecessors at this point!");
|
|
// All the predecessors have the loop preheader as not-taken target.
|
|
return true;
|
|
}
|
|
|
|
static Value *
|
|
getValueOnFirstIteration(Value *V, DenseMap<Value *, Value *> &FirstIterValue,
|
|
const SimplifyQuery &SQ) {
|
|
// Quick hack: do not flood cache with non-instruction values.
|
|
if (!isa<Instruction>(V))
|
|
return V;
|
|
// Do we already know cached result?
|
|
auto Existing = FirstIterValue.find(V);
|
|
if (Existing != FirstIterValue.end())
|
|
return Existing->second;
|
|
Value *FirstIterV = nullptr;
|
|
if (auto *BO = dyn_cast<BinaryOperator>(V)) {
|
|
Value *LHS =
|
|
getValueOnFirstIteration(BO->getOperand(0), FirstIterValue, SQ);
|
|
Value *RHS =
|
|
getValueOnFirstIteration(BO->getOperand(1), FirstIterValue, SQ);
|
|
FirstIterV = simplifyBinOp(BO->getOpcode(), LHS, RHS, SQ);
|
|
} else if (auto *Cmp = dyn_cast<ICmpInst>(V)) {
|
|
Value *LHS =
|
|
getValueOnFirstIteration(Cmp->getOperand(0), FirstIterValue, SQ);
|
|
Value *RHS =
|
|
getValueOnFirstIteration(Cmp->getOperand(1), FirstIterValue, SQ);
|
|
FirstIterV = simplifyICmpInst(Cmp->getPredicate(), LHS, RHS, SQ);
|
|
} else if (auto *Select = dyn_cast<SelectInst>(V)) {
|
|
Value *Cond =
|
|
getValueOnFirstIteration(Select->getCondition(), FirstIterValue, SQ);
|
|
if (auto *C = dyn_cast<ConstantInt>(Cond)) {
|
|
auto *Selected = C->isAllOnesValue() ? Select->getTrueValue()
|
|
: Select->getFalseValue();
|
|
FirstIterV = getValueOnFirstIteration(Selected, FirstIterValue, SQ);
|
|
}
|
|
}
|
|
if (!FirstIterV)
|
|
FirstIterV = V;
|
|
FirstIterValue[V] = FirstIterV;
|
|
return FirstIterV;
|
|
}
|
|
|
|
// Try to prove that one of conditions that dominates the latch must exit on 1st
|
|
// iteration.
|
|
static bool canProveExitOnFirstIteration(Loop *L, DominatorTree &DT,
|
|
LoopInfo &LI) {
|
|
// Disabled by option.
|
|
if (!EnableSymbolicExecution)
|
|
return false;
|
|
|
|
BasicBlock *Predecessor = L->getLoopPredecessor();
|
|
BasicBlock *Latch = L->getLoopLatch();
|
|
|
|
if (!Predecessor || !Latch)
|
|
return false;
|
|
|
|
LoopBlocksRPO RPOT(L);
|
|
RPOT.perform(&LI);
|
|
|
|
// For the optimization to be correct, we need RPOT to have a property that
|
|
// each block is processed after all its predecessors, which may only be
|
|
// violated for headers of the current loop and all nested loops. Irreducible
|
|
// CFG provides multiple ways to break this assumption, so we do not want to
|
|
// deal with it.
|
|
if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
|
|
return false;
|
|
|
|
BasicBlock *Header = L->getHeader();
|
|
// Blocks that are reachable on the 1st iteration.
|
|
SmallPtrSet<BasicBlock *, 4> LiveBlocks;
|
|
// Edges that are reachable on the 1st iteration.
|
|
DenseSet<BasicBlockEdge> LiveEdges;
|
|
LiveBlocks.insert(Header);
|
|
|
|
SmallPtrSet<BasicBlock *, 4> Visited;
|
|
auto MarkLiveEdge = [&](BasicBlock *From, BasicBlock *To) {
|
|
assert(LiveBlocks.count(From) && "Must be live!");
|
|
assert((LI.isLoopHeader(To) || !Visited.count(To)) &&
|
|
"Only canonical backedges are allowed. Irreducible CFG?");
|
|
assert((LiveBlocks.count(To) || !Visited.count(To)) &&
|
|
"We already discarded this block as dead!");
|
|
LiveBlocks.insert(To);
|
|
LiveEdges.insert({ From, To });
|
|
};
|
|
|
|
auto MarkAllSuccessorsLive = [&](BasicBlock *BB) {
|
|
for (auto *Succ : successors(BB))
|
|
MarkLiveEdge(BB, Succ);
|
|
};
|
|
|
|
// Check if there is only one value coming from all live predecessor blocks.
|
|
// Note that because we iterate in RPOT, we have already visited all its
|
|
// (non-latch) predecessors.
|
|
auto GetSoleInputOnFirstIteration = [&](PHINode & PN)->Value * {
|
|
BasicBlock *BB = PN.getParent();
|
|
bool HasLivePreds = false;
|
|
(void)HasLivePreds;
|
|
if (BB == Header)
|
|
return PN.getIncomingValueForBlock(Predecessor);
|
|
Value *OnlyInput = nullptr;
|
|
for (auto *Pred : predecessors(BB))
|
|
if (LiveEdges.count({ Pred, BB })) {
|
|
HasLivePreds = true;
|
|
Value *Incoming = PN.getIncomingValueForBlock(Pred);
|
|
// Skip undefs. If they are present, we can assume they are equal to
|
|
// the non-undef input.
|
|
if (isa<UndefValue>(Incoming))
|
|
continue;
|
|
// Two inputs.
|
|
if (OnlyInput && OnlyInput != Incoming)
|
|
return nullptr;
|
|
OnlyInput = Incoming;
|
|
}
|
|
|
|
assert(HasLivePreds && "No live predecessors?");
|
|
// If all incoming live value were undefs, return undef.
|
|
return OnlyInput ? OnlyInput : UndefValue::get(PN.getType());
|
|
};
|
|
DenseMap<Value *, Value *> FirstIterValue;
|
|
|
|
// Use the following algorithm to prove we never take the latch on the 1st
|
|
// iteration:
|
|
// 1. Traverse in topological order, so that whenever we visit a block, all
|
|
// its predecessors are already visited.
|
|
// 2. If we can prove that the block may have only 1 predecessor on the 1st
|
|
// iteration, map all its phis onto input from this predecessor.
|
|
// 3a. If we can prove which successor of out block is taken on the 1st
|
|
// iteration, mark this successor live.
|
|
// 3b. If we cannot prove it, conservatively assume that all successors are
|
|
// live.
|
|
auto &DL = Header->getModule()->getDataLayout();
|
|
const SimplifyQuery SQ(DL);
|
|
for (auto *BB : RPOT) {
|
|
Visited.insert(BB);
|
|
|
|
// This block is not reachable on the 1st iterations.
|
|
if (!LiveBlocks.count(BB))
|
|
continue;
|
|
|
|
// Skip inner loops.
|
|
if (LI.getLoopFor(BB) != L) {
|
|
MarkAllSuccessorsLive(BB);
|
|
continue;
|
|
}
|
|
|
|
// If Phi has only one input from all live input blocks, use it.
|
|
for (auto &PN : BB->phis()) {
|
|
if (!PN.getType()->isIntegerTy())
|
|
continue;
|
|
auto *Incoming = GetSoleInputOnFirstIteration(PN);
|
|
if (Incoming && DT.dominates(Incoming, BB->getTerminator())) {
|
|
Value *FirstIterV =
|
|
getValueOnFirstIteration(Incoming, FirstIterValue, SQ);
|
|
FirstIterValue[&PN] = FirstIterV;
|
|
}
|
|
}
|
|
|
|
using namespace PatternMatch;
|
|
Value *Cond;
|
|
BasicBlock *IfTrue, *IfFalse;
|
|
auto *Term = BB->getTerminator();
|
|
if (match(Term, m_Br(m_Value(Cond),
|
|
m_BasicBlock(IfTrue), m_BasicBlock(IfFalse)))) {
|
|
auto *ICmp = dyn_cast<ICmpInst>(Cond);
|
|
if (!ICmp || !ICmp->getType()->isIntegerTy()) {
|
|
MarkAllSuccessorsLive(BB);
|
|
continue;
|
|
}
|
|
|
|
// Can we prove constant true or false for this condition?
|
|
auto *KnownCondition = getValueOnFirstIteration(ICmp, FirstIterValue, SQ);
|
|
if (KnownCondition == ICmp) {
|
|
// Failed to simplify.
|
|
MarkAllSuccessorsLive(BB);
|
|
continue;
|
|
}
|
|
if (isa<UndefValue>(KnownCondition)) {
|
|
// TODO: According to langref, branching by undef is undefined behavior.
|
|
// It means that, theoretically, we should be able to just continue
|
|
// without marking any successors as live. However, we are not certain
|
|
// how correct our compiler is at handling such cases. So we are being
|
|
// very conservative here.
|
|
//
|
|
// If there is a non-loop successor, always assume this branch leaves the
|
|
// loop. Otherwise, arbitrarily take IfTrue.
|
|
//
|
|
// Once we are certain that branching by undef is handled correctly by
|
|
// other transforms, we should not mark any successors live here.
|
|
if (L->contains(IfTrue) && L->contains(IfFalse))
|
|
MarkLiveEdge(BB, IfTrue);
|
|
continue;
|
|
}
|
|
auto *ConstCondition = dyn_cast<ConstantInt>(KnownCondition);
|
|
if (!ConstCondition) {
|
|
// Non-constant condition, cannot analyze any further.
|
|
MarkAllSuccessorsLive(BB);
|
|
continue;
|
|
}
|
|
if (ConstCondition->isAllOnesValue())
|
|
MarkLiveEdge(BB, IfTrue);
|
|
else
|
|
MarkLiveEdge(BB, IfFalse);
|
|
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
|
|
auto *SwitchValue = SI->getCondition();
|
|
auto *SwitchValueOnFirstIter =
|
|
getValueOnFirstIteration(SwitchValue, FirstIterValue, SQ);
|
|
auto *ConstSwitchValue = dyn_cast<ConstantInt>(SwitchValueOnFirstIter);
|
|
if (!ConstSwitchValue) {
|
|
MarkAllSuccessorsLive(BB);
|
|
continue;
|
|
}
|
|
auto CaseIterator = SI->findCaseValue(ConstSwitchValue);
|
|
MarkLiveEdge(BB, CaseIterator->getCaseSuccessor());
|
|
} else {
|
|
MarkAllSuccessorsLive(BB);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// We can break the latch if it wasn't live.
|
|
return !LiveEdges.count({ Latch, Header });
|
|
}
|
|
|
|
/// If we can prove the backedge is untaken, remove it. This destroys the
|
|
/// loop, but leaves the (now trivially loop invariant) control flow and
|
|
/// side effects (if any) in place.
|
|
static LoopDeletionResult
|
|
breakBackedgeIfNotTaken(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
|
|
LoopInfo &LI, MemorySSA *MSSA,
|
|
OptimizationRemarkEmitter &ORE) {
|
|
assert(L->isLCSSAForm(DT) && "Expected LCSSA!");
|
|
|
|
if (!L->getLoopLatch())
|
|
return LoopDeletionResult::Unmodified;
|
|
|
|
auto *BTCMax = SE.getConstantMaxBackedgeTakenCount(L);
|
|
if (!BTCMax->isZero()) {
|
|
auto *BTC = SE.getBackedgeTakenCount(L);
|
|
if (!BTC->isZero()) {
|
|
if (!isa<SCEVCouldNotCompute>(BTC) && SE.isKnownNonZero(BTC))
|
|
return LoopDeletionResult::Unmodified;
|
|
if (!canProveExitOnFirstIteration(L, DT, LI))
|
|
return LoopDeletionResult::Unmodified;
|
|
}
|
|
}
|
|
++NumBackedgesBroken;
|
|
breakLoopBackedge(L, DT, SE, LI, MSSA);
|
|
return LoopDeletionResult::Deleted;
|
|
}
|
|
|
|
/// Remove a loop if it is dead.
|
|
///
|
|
/// A loop is considered dead either if it does not impact the observable
|
|
/// behavior of the program other than finite running time, or if it is
|
|
/// required to make progress by an attribute such as 'mustprogress' or
|
|
/// 'llvm.loop.mustprogress' and does not make any. This may remove
|
|
/// infinite loops that have been required to make progress.
|
|
///
|
|
/// This entire process relies pretty heavily on LoopSimplify form and LCSSA in
|
|
/// order to make various safety checks work.
|
|
///
|
|
/// \returns true if any changes were made. This may mutate the loop even if it
|
|
/// is unable to delete it due to hoisting trivially loop invariant
|
|
/// instructions out of the loop.
|
|
static LoopDeletionResult deleteLoopIfDead(Loop *L, DominatorTree &DT,
|
|
ScalarEvolution &SE, LoopInfo &LI,
|
|
MemorySSA *MSSA,
|
|
OptimizationRemarkEmitter &ORE) {
|
|
assert(L->isLCSSAForm(DT) && "Expected LCSSA!");
|
|
|
|
// We can only remove the loop if there is a preheader that we can branch from
|
|
// after removing it. Also, if LoopSimplify form is not available, stay out
|
|
// of trouble.
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
if (!Preheader || !L->hasDedicatedExits()) {
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "Deletion requires Loop with preheader and dedicated exits.\n");
|
|
return LoopDeletionResult::Unmodified;
|
|
}
|
|
|
|
BasicBlock *ExitBlock = L->getUniqueExitBlock();
|
|
|
|
if (ExitBlock && isLoopNeverExecuted(L)) {
|
|
LLVM_DEBUG(dbgs() << "Loop is proven to never execute, delete it!\n");
|
|
// We need to forget the loop before setting the incoming values of the exit
|
|
// phis to poison, so we properly invalidate the SCEV expressions for those
|
|
// phis.
|
|
SE.forgetLoop(L);
|
|
// Set incoming value to poison for phi nodes in the exit block.
|
|
for (PHINode &P : ExitBlock->phis()) {
|
|
std::fill(P.incoming_values().begin(), P.incoming_values().end(),
|
|
PoisonValue::get(P.getType()));
|
|
}
|
|
ORE.emit([&]() {
|
|
return OptimizationRemark(DEBUG_TYPE, "NeverExecutes", L->getStartLoc(),
|
|
L->getHeader())
|
|
<< "Loop deleted because it never executes";
|
|
});
|
|
deleteDeadLoop(L, &DT, &SE, &LI, MSSA);
|
|
++NumDeleted;
|
|
return LoopDeletionResult::Deleted;
|
|
}
|
|
|
|
// The remaining checks below are for a loop being dead because all statements
|
|
// in the loop are invariant.
|
|
SmallVector<BasicBlock *, 4> ExitingBlocks;
|
|
L->getExitingBlocks(ExitingBlocks);
|
|
|
|
// We require that the loop has at most one exit block. Otherwise, we'd be in
|
|
// the situation of needing to be able to solve statically which exit block
|
|
// will be branched to, or trying to preserve the branching logic in a loop
|
|
// invariant manner.
|
|
if (!ExitBlock && !L->hasNoExitBlocks()) {
|
|
LLVM_DEBUG(dbgs() << "Deletion requires at most one exit block.\n");
|
|
return LoopDeletionResult::Unmodified;
|
|
}
|
|
// Finally, we have to check that the loop really is dead.
|
|
bool Changed = false;
|
|
if (!isLoopDead(L, SE, ExitingBlocks, ExitBlock, Changed, Preheader, LI)) {
|
|
LLVM_DEBUG(dbgs() << "Loop is not invariant, cannot delete.\n");
|
|
return Changed ? LoopDeletionResult::Modified
|
|
: LoopDeletionResult::Unmodified;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Loop is invariant, delete it!\n");
|
|
ORE.emit([&]() {
|
|
return OptimizationRemark(DEBUG_TYPE, "Invariant", L->getStartLoc(),
|
|
L->getHeader())
|
|
<< "Loop deleted because it is invariant";
|
|
});
|
|
deleteDeadLoop(L, &DT, &SE, &LI, MSSA);
|
|
++NumDeleted;
|
|
|
|
return LoopDeletionResult::Deleted;
|
|
}
|
|
|
|
PreservedAnalyses LoopDeletionPass::run(Loop &L, LoopAnalysisManager &AM,
|
|
LoopStandardAnalysisResults &AR,
|
|
LPMUpdater &Updater) {
|
|
|
|
LLVM_DEBUG(dbgs() << "Analyzing Loop for deletion: ");
|
|
LLVM_DEBUG(L.dump());
|
|
std::string LoopName = std::string(L.getName());
|
|
// For the new PM, we can't use OptimizationRemarkEmitter as an analysis
|
|
// pass. Function analyses need to be preserved across loop transformations
|
|
// but ORE cannot be preserved (see comment before the pass definition).
|
|
OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
|
|
auto Result = deleteLoopIfDead(&L, AR.DT, AR.SE, AR.LI, AR.MSSA, ORE);
|
|
|
|
// If we can prove the backedge isn't taken, just break it and be done. This
|
|
// leaves the loop structure in place which means it can handle dispatching
|
|
// to the right exit based on whatever loop invariant structure remains.
|
|
if (Result != LoopDeletionResult::Deleted)
|
|
Result = merge(Result, breakBackedgeIfNotTaken(&L, AR.DT, AR.SE, AR.LI,
|
|
AR.MSSA, ORE));
|
|
|
|
if (Result == LoopDeletionResult::Unmodified)
|
|
return PreservedAnalyses::all();
|
|
|
|
if (Result == LoopDeletionResult::Deleted)
|
|
Updater.markLoopAsDeleted(L, LoopName);
|
|
|
|
auto PA = getLoopPassPreservedAnalyses();
|
|
if (AR.MSSA)
|
|
PA.preserve<MemorySSAAnalysis>();
|
|
return PA;
|
|
}
|
|
|
|
namespace {
|
|
class LoopDeletionLegacyPass : public LoopPass {
|
|
public:
|
|
static char ID; // Pass ID, replacement for typeid
|
|
LoopDeletionLegacyPass() : LoopPass(ID) {
|
|
initializeLoopDeletionLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
// Possibly eliminate loop L if it is dead.
|
|
bool runOnLoop(Loop *L, LPPassManager &) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addPreserved<MemorySSAWrapperPass>();
|
|
getLoopAnalysisUsage(AU);
|
|
}
|
|
};
|
|
}
|
|
|
|
char LoopDeletionLegacyPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(LoopDeletionLegacyPass, "loop-deletion",
|
|
"Delete dead loops", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopPass)
|
|
INITIALIZE_PASS_END(LoopDeletionLegacyPass, "loop-deletion",
|
|
"Delete dead loops", false, false)
|
|
|
|
Pass *llvm::createLoopDeletionPass() { return new LoopDeletionLegacyPass(); }
|
|
|
|
bool LoopDeletionLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
|
|
if (skipLoop(L))
|
|
return false;
|
|
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
|
|
MemorySSA *MSSA = nullptr;
|
|
if (MSSAAnalysis)
|
|
MSSA = &MSSAAnalysis->getMSSA();
|
|
// For the old PM, we can't use OptimizationRemarkEmitter as an analysis
|
|
// pass. Function analyses need to be preserved across loop transformations
|
|
// but ORE cannot be preserved (see comment before the pass definition).
|
|
OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
|
|
|
|
LLVM_DEBUG(dbgs() << "Analyzing Loop for deletion: ");
|
|
LLVM_DEBUG(L->dump());
|
|
|
|
LoopDeletionResult Result = deleteLoopIfDead(L, DT, SE, LI, MSSA, ORE);
|
|
|
|
// If we can prove the backedge isn't taken, just break it and be done. This
|
|
// leaves the loop structure in place which means it can handle dispatching
|
|
// to the right exit based on whatever loop invariant structure remains.
|
|
if (Result != LoopDeletionResult::Deleted)
|
|
Result = merge(Result, breakBackedgeIfNotTaken(L, DT, SE, LI, MSSA, ORE));
|
|
|
|
if (Result == LoopDeletionResult::Deleted)
|
|
LPM.markLoopAsDeleted(*L);
|
|
|
|
return Result != LoopDeletionResult::Unmodified;
|
|
}
|