1073 lines
37 KiB
C++
1073 lines
37 KiB
C++
//===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Eliminate conditions based on constraints collected from dominating
|
|
// conditions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/ConstraintElimination.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/ConstraintSystem.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/DebugCounter.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
|
|
#include <cmath>
|
|
#include <string>
|
|
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
|
|
#define DEBUG_TYPE "constraint-elimination"
|
|
|
|
STATISTIC(NumCondsRemoved, "Number of instructions removed");
|
|
DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
|
|
"Controls which conditions are eliminated");
|
|
|
|
static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
|
|
static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
|
|
|
|
// A helper to multiply 2 signed integers where overflowing is allowed.
|
|
static int64_t multiplyWithOverflow(int64_t A, int64_t B) {
|
|
int64_t Result;
|
|
MulOverflow(A, B, Result);
|
|
return Result;
|
|
}
|
|
|
|
// A helper to add 2 signed integers where overflowing is allowed.
|
|
static int64_t addWithOverflow(int64_t A, int64_t B) {
|
|
int64_t Result;
|
|
AddOverflow(A, B, Result);
|
|
return Result;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class ConstraintInfo;
|
|
|
|
struct StackEntry {
|
|
unsigned NumIn;
|
|
unsigned NumOut;
|
|
bool IsSigned = false;
|
|
/// Variables that can be removed from the system once the stack entry gets
|
|
/// removed.
|
|
SmallVector<Value *, 2> ValuesToRelease;
|
|
|
|
StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
|
|
SmallVector<Value *, 2> ValuesToRelease)
|
|
: NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
|
|
ValuesToRelease(ValuesToRelease) {}
|
|
};
|
|
|
|
/// Struct to express a pre-condition of the form %Op0 Pred %Op1.
|
|
struct PreconditionTy {
|
|
CmpInst::Predicate Pred;
|
|
Value *Op0;
|
|
Value *Op1;
|
|
|
|
PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
|
|
: Pred(Pred), Op0(Op0), Op1(Op1) {}
|
|
};
|
|
|
|
struct ConstraintTy {
|
|
SmallVector<int64_t, 8> Coefficients;
|
|
SmallVector<PreconditionTy, 2> Preconditions;
|
|
|
|
SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
|
|
|
|
bool IsSigned = false;
|
|
bool IsEq = false;
|
|
|
|
ConstraintTy() = default;
|
|
|
|
ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
|
|
: Coefficients(Coefficients), IsSigned(IsSigned) {}
|
|
|
|
unsigned size() const { return Coefficients.size(); }
|
|
|
|
unsigned empty() const { return Coefficients.empty(); }
|
|
|
|
/// Returns true if all preconditions for this list of constraints are
|
|
/// satisfied given \p CS and the corresponding \p Value2Index mapping.
|
|
bool isValid(const ConstraintInfo &Info) const;
|
|
};
|
|
|
|
/// Wrapper encapsulating separate constraint systems and corresponding value
|
|
/// mappings for both unsigned and signed information. Facts are added to and
|
|
/// conditions are checked against the corresponding system depending on the
|
|
/// signed-ness of their predicates. While the information is kept separate
|
|
/// based on signed-ness, certain conditions can be transferred between the two
|
|
/// systems.
|
|
class ConstraintInfo {
|
|
DenseMap<Value *, unsigned> UnsignedValue2Index;
|
|
DenseMap<Value *, unsigned> SignedValue2Index;
|
|
|
|
ConstraintSystem UnsignedCS;
|
|
ConstraintSystem SignedCS;
|
|
|
|
const DataLayout &DL;
|
|
|
|
public:
|
|
ConstraintInfo(const DataLayout &DL) : DL(DL) {}
|
|
|
|
DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
|
|
return Signed ? SignedValue2Index : UnsignedValue2Index;
|
|
}
|
|
const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
|
|
return Signed ? SignedValue2Index : UnsignedValue2Index;
|
|
}
|
|
|
|
ConstraintSystem &getCS(bool Signed) {
|
|
return Signed ? SignedCS : UnsignedCS;
|
|
}
|
|
const ConstraintSystem &getCS(bool Signed) const {
|
|
return Signed ? SignedCS : UnsignedCS;
|
|
}
|
|
|
|
void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
|
|
void popLastNVariables(bool Signed, unsigned N) {
|
|
getCS(Signed).popLastNVariables(N);
|
|
}
|
|
|
|
bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
|
|
|
|
void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
|
|
unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
|
|
|
|
/// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
|
|
/// constraints, using indices from the corresponding constraint system.
|
|
/// New variables that need to be added to the system are collected in
|
|
/// \p NewVariables.
|
|
ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
|
|
SmallVectorImpl<Value *> &NewVariables) const;
|
|
|
|
/// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
|
|
/// constraints using getConstraint. Returns an empty constraint if the result
|
|
/// cannot be used to query the existing constraint system, e.g. because it
|
|
/// would require adding new variables. Also tries to convert signed
|
|
/// predicates to unsigned ones if possible to allow using the unsigned system
|
|
/// which increases the effectiveness of the signed <-> unsigned transfer
|
|
/// logic.
|
|
ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
|
|
Value *Op1) const;
|
|
|
|
/// Try to add information from \p A \p Pred \p B to the unsigned/signed
|
|
/// system if \p Pred is signed/unsigned.
|
|
void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
|
|
unsigned NumIn, unsigned NumOut,
|
|
SmallVectorImpl<StackEntry> &DFSInStack);
|
|
};
|
|
|
|
/// Represents a (Coefficient * Variable) entry after IR decomposition.
|
|
struct DecompEntry {
|
|
int64_t Coefficient;
|
|
Value *Variable;
|
|
/// True if the variable is known positive in the current constraint.
|
|
bool IsKnownPositive;
|
|
|
|
DecompEntry(int64_t Coefficient, Value *Variable,
|
|
bool IsKnownPositive = false)
|
|
: Coefficient(Coefficient), Variable(Variable),
|
|
IsKnownPositive(IsKnownPositive) {}
|
|
};
|
|
|
|
/// Represents an Offset + Coefficient1 * Variable1 + ... decomposition.
|
|
struct Decomposition {
|
|
int64_t Offset = 0;
|
|
SmallVector<DecompEntry, 3> Vars;
|
|
|
|
Decomposition(int64_t Offset) : Offset(Offset) {}
|
|
Decomposition(Value *V, bool IsKnownPositive = false) {
|
|
Vars.emplace_back(1, V, IsKnownPositive);
|
|
}
|
|
Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars)
|
|
: Offset(Offset), Vars(Vars) {}
|
|
|
|
void add(int64_t OtherOffset) {
|
|
Offset = addWithOverflow(Offset, OtherOffset);
|
|
}
|
|
|
|
void add(const Decomposition &Other) {
|
|
add(Other.Offset);
|
|
append_range(Vars, Other.Vars);
|
|
}
|
|
|
|
void mul(int64_t Factor) {
|
|
Offset = multiplyWithOverflow(Offset, Factor);
|
|
for (auto &Var : Vars)
|
|
Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor);
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
static Decomposition decompose(Value *V,
|
|
SmallVectorImpl<PreconditionTy> &Preconditions,
|
|
bool IsSigned, const DataLayout &DL);
|
|
|
|
static bool canUseSExt(ConstantInt *CI) {
|
|
const APInt &Val = CI->getValue();
|
|
return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
|
|
}
|
|
|
|
static Decomposition
|
|
decomposeGEP(GetElementPtrInst &GEP,
|
|
SmallVectorImpl<PreconditionTy> &Preconditions, bool IsSigned,
|
|
const DataLayout &DL) {
|
|
// Do not reason about pointers where the index size is larger than 64 bits,
|
|
// as the coefficients used to encode constraints are 64 bit integers.
|
|
if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64)
|
|
return &GEP;
|
|
|
|
if (!GEP.isInBounds())
|
|
return &GEP;
|
|
|
|
Type *PtrTy = GEP.getType()->getScalarType();
|
|
unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy);
|
|
MapVector<Value *, APInt> VariableOffsets;
|
|
APInt ConstantOffset(BitWidth, 0);
|
|
if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
|
|
return &GEP;
|
|
|
|
// Handle the (gep (gep ....), C) case by incrementing the constant
|
|
// coefficient of the inner GEP, if C is a constant.
|
|
auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP.getPointerOperand());
|
|
if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) {
|
|
auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL);
|
|
Result.add(ConstantOffset.getSExtValue());
|
|
|
|
if (ConstantOffset.isNegative()) {
|
|
unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType());
|
|
int64_t ConstantOffsetI = ConstantOffset.getSExtValue();
|
|
if (ConstantOffsetI % Scale != 0)
|
|
return &GEP;
|
|
// Add pre-condition ensuring the GEP is increasing monotonically and
|
|
// can be de-composed.
|
|
// Both sides are normalized by being divided by Scale.
|
|
Preconditions.emplace_back(
|
|
CmpInst::ICMP_SGE, InnerGEP->getOperand(1),
|
|
ConstantInt::get(InnerGEP->getOperand(1)->getType(),
|
|
-1 * (ConstantOffsetI / Scale)));
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
Decomposition Result(ConstantOffset.getSExtValue(),
|
|
DecompEntry(1, GEP.getPointerOperand()));
|
|
for (auto [Index, Scale] : VariableOffsets) {
|
|
auto IdxResult = decompose(Index, Preconditions, IsSigned, DL);
|
|
IdxResult.mul(Scale.getSExtValue());
|
|
Result.add(IdxResult);
|
|
|
|
// If Op0 is signed non-negative, the GEP is increasing monotonically and
|
|
// can be de-composed.
|
|
if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
|
|
Preconditions.emplace_back(CmpInst::ICMP_SGE, Index,
|
|
ConstantInt::get(Index->getType(), 0));
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
// Decomposes \p V into a vector of entries of the form { Coefficient, Variable
|
|
// } where Coefficient * Variable. The sum of the pairs equals \p V. The first
|
|
// pair is the constant-factor and X must be nullptr. If the expression cannot
|
|
// be decomposed, returns an empty vector.
|
|
static Decomposition decompose(Value *V,
|
|
SmallVectorImpl<PreconditionTy> &Preconditions,
|
|
bool IsSigned, const DataLayout &DL) {
|
|
|
|
auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B,
|
|
bool IsSignedB) {
|
|
auto ResA = decompose(A, Preconditions, IsSigned, DL);
|
|
auto ResB = decompose(B, Preconditions, IsSignedB, DL);
|
|
ResA.add(ResB);
|
|
return ResA;
|
|
};
|
|
|
|
// Decompose \p V used with a signed predicate.
|
|
if (IsSigned) {
|
|
if (auto *CI = dyn_cast<ConstantInt>(V)) {
|
|
if (canUseSExt(CI))
|
|
return CI->getSExtValue();
|
|
}
|
|
Value *Op0;
|
|
Value *Op1;
|
|
if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1))))
|
|
return MergeResults(Op0, Op1, IsSigned);
|
|
|
|
return V;
|
|
}
|
|
|
|
if (auto *CI = dyn_cast<ConstantInt>(V)) {
|
|
if (CI->uge(MaxConstraintValue))
|
|
return V;
|
|
return int64_t(CI->getZExtValue());
|
|
}
|
|
|
|
if (auto *GEP = dyn_cast<GetElementPtrInst>(V))
|
|
return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
|
|
|
|
Value *Op0;
|
|
bool IsKnownPositive = false;
|
|
if (match(V, m_ZExt(m_Value(Op0)))) {
|
|
IsKnownPositive = true;
|
|
V = Op0;
|
|
}
|
|
|
|
Value *Op1;
|
|
ConstantInt *CI;
|
|
if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
|
|
return MergeResults(Op0, Op1, IsSigned);
|
|
}
|
|
if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
|
|
if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
|
|
Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
|
|
ConstantInt::get(Op0->getType(), 0));
|
|
if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
|
|
Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1,
|
|
ConstantInt::get(Op1->getType(), 0));
|
|
|
|
return MergeResults(Op0, Op1, IsSigned);
|
|
}
|
|
|
|
if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
|
|
canUseSExt(CI)) {
|
|
Preconditions.emplace_back(
|
|
CmpInst::ICMP_UGE, Op0,
|
|
ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
|
|
return MergeResults(Op0, CI, true);
|
|
}
|
|
|
|
if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) {
|
|
int64_t Mult = int64_t(std::pow(int64_t(2), CI->getSExtValue()));
|
|
auto Result = decompose(Op1, Preconditions, IsSigned, DL);
|
|
Result.mul(Mult);
|
|
return Result;
|
|
}
|
|
|
|
if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) &&
|
|
(!CI->isNegative())) {
|
|
auto Result = decompose(Op1, Preconditions, IsSigned, DL);
|
|
Result.mul(CI->getSExtValue());
|
|
return Result;
|
|
}
|
|
|
|
if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI))
|
|
return {-1 * CI->getSExtValue(), {{1, Op0}}};
|
|
if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
|
|
return {0, {{1, Op0}, {-1, Op1}}};
|
|
|
|
return {V, IsKnownPositive};
|
|
}
|
|
|
|
ConstraintTy
|
|
ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
|
|
SmallVectorImpl<Value *> &NewVariables) const {
|
|
assert(NewVariables.empty() && "NewVariables must be empty when passed in");
|
|
bool IsEq = false;
|
|
// Try to convert Pred to one of ULE/SLT/SLE/SLT.
|
|
switch (Pred) {
|
|
case CmpInst::ICMP_UGT:
|
|
case CmpInst::ICMP_UGE:
|
|
case CmpInst::ICMP_SGT:
|
|
case CmpInst::ICMP_SGE: {
|
|
Pred = CmpInst::getSwappedPredicate(Pred);
|
|
std::swap(Op0, Op1);
|
|
break;
|
|
}
|
|
case CmpInst::ICMP_EQ:
|
|
if (match(Op1, m_Zero())) {
|
|
Pred = CmpInst::ICMP_ULE;
|
|
} else {
|
|
IsEq = true;
|
|
Pred = CmpInst::ICMP_ULE;
|
|
}
|
|
break;
|
|
case CmpInst::ICMP_NE:
|
|
if (!match(Op1, m_Zero()))
|
|
return {};
|
|
Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
|
|
std::swap(Op0, Op1);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Only ULE and ULT predicates are supported at the moment.
|
|
if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
|
|
Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
|
|
return {};
|
|
|
|
SmallVector<PreconditionTy, 4> Preconditions;
|
|
bool IsSigned = CmpInst::isSigned(Pred);
|
|
auto &Value2Index = getValue2Index(IsSigned);
|
|
auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
|
|
Preconditions, IsSigned, DL);
|
|
auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
|
|
Preconditions, IsSigned, DL);
|
|
int64_t Offset1 = ADec.Offset;
|
|
int64_t Offset2 = BDec.Offset;
|
|
Offset1 *= -1;
|
|
|
|
auto &VariablesA = ADec.Vars;
|
|
auto &VariablesB = BDec.Vars;
|
|
|
|
// First try to look up \p V in Value2Index and NewVariables. Otherwise add a
|
|
// new entry to NewVariables.
|
|
DenseMap<Value *, unsigned> NewIndexMap;
|
|
auto GetOrAddIndex = [&Value2Index, &NewVariables,
|
|
&NewIndexMap](Value *V) -> unsigned {
|
|
auto V2I = Value2Index.find(V);
|
|
if (V2I != Value2Index.end())
|
|
return V2I->second;
|
|
auto Insert =
|
|
NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
|
|
if (Insert.second)
|
|
NewVariables.push_back(V);
|
|
return Insert.first->second;
|
|
};
|
|
|
|
// Make sure all variables have entries in Value2Index or NewVariables.
|
|
for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
|
|
GetOrAddIndex(KV.Variable);
|
|
|
|
// Build result constraint, by first adding all coefficients from A and then
|
|
// subtracting all coefficients from B.
|
|
ConstraintTy Res(
|
|
SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
|
|
IsSigned);
|
|
// Collect variables that are known to be positive in all uses in the
|
|
// constraint.
|
|
DenseMap<Value *, bool> KnownPositiveVariables;
|
|
Res.IsEq = IsEq;
|
|
auto &R = Res.Coefficients;
|
|
for (const auto &KV : VariablesA) {
|
|
R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
|
|
auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive});
|
|
I.first->second &= KV.IsKnownPositive;
|
|
}
|
|
|
|
for (const auto &KV : VariablesB) {
|
|
R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient;
|
|
auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive});
|
|
I.first->second &= KV.IsKnownPositive;
|
|
}
|
|
|
|
int64_t OffsetSum;
|
|
if (AddOverflow(Offset1, Offset2, OffsetSum))
|
|
return {};
|
|
if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
|
|
if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
|
|
return {};
|
|
R[0] = OffsetSum;
|
|
Res.Preconditions = std::move(Preconditions);
|
|
|
|
// Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
|
|
// variables.
|
|
while (!NewVariables.empty()) {
|
|
int64_t Last = R.back();
|
|
if (Last != 0)
|
|
break;
|
|
R.pop_back();
|
|
Value *RemovedV = NewVariables.pop_back_val();
|
|
NewIndexMap.erase(RemovedV);
|
|
}
|
|
|
|
// Add extra constraints for variables that are known positive.
|
|
for (auto &KV : KnownPositiveVariables) {
|
|
if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() &&
|
|
NewIndexMap.find(KV.first) == NewIndexMap.end()))
|
|
continue;
|
|
SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
|
|
C[GetOrAddIndex(KV.first)] = -1;
|
|
Res.ExtraInfo.push_back(C);
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
|
|
Value *Op0,
|
|
Value *Op1) const {
|
|
// If both operands are known to be non-negative, change signed predicates to
|
|
// unsigned ones. This increases the reasoning effectiveness in combination
|
|
// with the signed <-> unsigned transfer logic.
|
|
if (CmpInst::isSigned(Pred) &&
|
|
isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
|
|
isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
|
|
Pred = CmpInst::getUnsignedPredicate(Pred);
|
|
|
|
SmallVector<Value *> NewVariables;
|
|
ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
|
|
if (R.IsEq || !NewVariables.empty())
|
|
return {};
|
|
return R;
|
|
}
|
|
|
|
bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
|
|
return Coefficients.size() > 0 &&
|
|
all_of(Preconditions, [&Info](const PreconditionTy &C) {
|
|
return Info.doesHold(C.Pred, C.Op0, C.Op1);
|
|
});
|
|
}
|
|
|
|
bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
|
|
Value *B) const {
|
|
auto R = getConstraintForSolving(Pred, A, B);
|
|
return R.Preconditions.empty() && !R.empty() &&
|
|
getCS(R.IsSigned).isConditionImplied(R.Coefficients);
|
|
}
|
|
|
|
void ConstraintInfo::transferToOtherSystem(
|
|
CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
|
|
unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
|
|
// Check if we can combine facts from the signed and unsigned systems to
|
|
// derive additional facts.
|
|
if (!A->getType()->isIntegerTy())
|
|
return;
|
|
// FIXME: This currently depends on the order we add facts. Ideally we
|
|
// would first add all known facts and only then try to add additional
|
|
// facts.
|
|
switch (Pred) {
|
|
default:
|
|
break;
|
|
case CmpInst::ICMP_ULT:
|
|
// If B is a signed positive constant, A >=s 0 and A <s B.
|
|
if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
|
|
addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
|
|
NumOut, DFSInStack);
|
|
addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack);
|
|
}
|
|
break;
|
|
case CmpInst::ICMP_SLT:
|
|
if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0)))
|
|
addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
|
|
break;
|
|
case CmpInst::ICMP_SGT:
|
|
if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
|
|
addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
|
|
NumOut, DFSInStack);
|
|
break;
|
|
case CmpInst::ICMP_SGE:
|
|
if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
|
|
addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
/// Represents either a condition that holds on entry to a block or a basic
|
|
/// block, with their respective Dominator DFS in and out numbers.
|
|
struct ConstraintOrBlock {
|
|
unsigned NumIn;
|
|
unsigned NumOut;
|
|
bool IsBlock;
|
|
bool Not;
|
|
union {
|
|
BasicBlock *BB;
|
|
CmpInst *Condition;
|
|
};
|
|
|
|
ConstraintOrBlock(DomTreeNode *DTN)
|
|
: NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
|
|
BB(DTN->getBlock()) {}
|
|
ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
|
|
: NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
|
|
Not(Not), Condition(Condition) {}
|
|
};
|
|
|
|
/// Keep state required to build worklist.
|
|
struct State {
|
|
DominatorTree &DT;
|
|
SmallVector<ConstraintOrBlock, 64> WorkList;
|
|
|
|
State(DominatorTree &DT) : DT(DT) {}
|
|
|
|
/// Process block \p BB and add known facts to work-list.
|
|
void addInfoFor(BasicBlock &BB);
|
|
|
|
/// Returns true if we can add a known condition from BB to its successor
|
|
/// block Succ. Each predecessor of Succ can either be BB or be dominated
|
|
/// by Succ (e.g. the case when adding a condition from a pre-header to a
|
|
/// loop header).
|
|
bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
|
|
if (BB.getSingleSuccessor()) {
|
|
assert(BB.getSingleSuccessor() == Succ);
|
|
return DT.properlyDominates(&BB, Succ);
|
|
}
|
|
return any_of(successors(&BB),
|
|
[Succ](const BasicBlock *S) { return S != Succ; }) &&
|
|
all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) {
|
|
return Pred == &BB || DT.dominates(Succ, Pred);
|
|
});
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
#ifndef NDEBUG
|
|
static void dumpWithNames(const ConstraintSystem &CS,
|
|
DenseMap<Value *, unsigned> &Value2Index) {
|
|
SmallVector<std::string> Names(Value2Index.size(), "");
|
|
for (auto &KV : Value2Index) {
|
|
Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
|
|
}
|
|
CS.dump(Names);
|
|
}
|
|
|
|
static void dumpWithNames(ArrayRef<int64_t> C,
|
|
DenseMap<Value *, unsigned> &Value2Index) {
|
|
ConstraintSystem CS;
|
|
CS.addVariableRowFill(C);
|
|
dumpWithNames(CS, Value2Index);
|
|
}
|
|
#endif
|
|
|
|
void State::addInfoFor(BasicBlock &BB) {
|
|
WorkList.emplace_back(DT.getNode(&BB));
|
|
|
|
// True as long as long as the current instruction is guaranteed to execute.
|
|
bool GuaranteedToExecute = true;
|
|
// Scan BB for assume calls.
|
|
// TODO: also use this scan to queue conditions to simplify, so we can
|
|
// interleave facts from assumes and conditions to simplify in a single
|
|
// basic block. And to skip another traversal of each basic block when
|
|
// simplifying.
|
|
for (Instruction &I : BB) {
|
|
Value *Cond;
|
|
// For now, just handle assumes with a single compare as condition.
|
|
if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
|
|
isa<ICmpInst>(Cond)) {
|
|
if (GuaranteedToExecute) {
|
|
// The assume is guaranteed to execute when BB is entered, hence Cond
|
|
// holds on entry to BB.
|
|
WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false);
|
|
} else {
|
|
// Otherwise the condition only holds in the successors.
|
|
for (BasicBlock *Succ : successors(&BB)) {
|
|
if (!canAddSuccessor(BB, Succ))
|
|
continue;
|
|
WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false);
|
|
}
|
|
}
|
|
}
|
|
GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
|
|
}
|
|
|
|
auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
|
|
if (!Br || !Br->isConditional())
|
|
return;
|
|
|
|
Value *Cond = Br->getCondition();
|
|
|
|
// If the condition is a chain of ORs/AND and the successor only has the
|
|
// current block as predecessor, queue conditions for the successor.
|
|
Value *Op0, *Op1;
|
|
if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
|
|
match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
|
|
bool IsOr = match(Cond, m_LogicalOr());
|
|
bool IsAnd = match(Cond, m_LogicalAnd());
|
|
// If there's a select that matches both AND and OR, we need to commit to
|
|
// one of the options. Arbitrarily pick OR.
|
|
if (IsOr && IsAnd)
|
|
IsAnd = false;
|
|
|
|
BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
|
|
if (canAddSuccessor(BB, Successor)) {
|
|
SmallVector<Value *> CondWorkList;
|
|
SmallPtrSet<Value *, 8> SeenCond;
|
|
auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
|
|
if (SeenCond.insert(V).second)
|
|
CondWorkList.push_back(V);
|
|
};
|
|
QueueValue(Op1);
|
|
QueueValue(Op0);
|
|
while (!CondWorkList.empty()) {
|
|
Value *Cur = CondWorkList.pop_back_val();
|
|
if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
|
|
WorkList.emplace_back(DT.getNode(Successor), Cmp, IsOr);
|
|
continue;
|
|
}
|
|
if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
|
|
QueueValue(Op1);
|
|
QueueValue(Op0);
|
|
continue;
|
|
}
|
|
if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
|
|
QueueValue(Op1);
|
|
QueueValue(Op0);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
|
|
if (!CmpI)
|
|
return;
|
|
if (canAddSuccessor(BB, Br->getSuccessor(0)))
|
|
WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
|
|
if (canAddSuccessor(BB, Br->getSuccessor(1)))
|
|
WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
|
|
}
|
|
|
|
static bool checkAndReplaceCondition(CmpInst *Cmp, ConstraintInfo &Info) {
|
|
LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n");
|
|
|
|
CmpInst::Predicate Pred = Cmp->getPredicate();
|
|
Value *A = Cmp->getOperand(0);
|
|
Value *B = Cmp->getOperand(1);
|
|
|
|
auto R = Info.getConstraintForSolving(Pred, A, B);
|
|
if (R.empty() || !R.isValid(Info)){
|
|
LLVM_DEBUG(dbgs() << " failed to decompose condition\n");
|
|
return false;
|
|
}
|
|
|
|
auto &CSToUse = Info.getCS(R.IsSigned);
|
|
|
|
// If there was extra information collected during decomposition, apply
|
|
// it now and remove it immediately once we are done with reasoning
|
|
// about the constraint.
|
|
for (auto &Row : R.ExtraInfo)
|
|
CSToUse.addVariableRow(Row);
|
|
auto InfoRestorer = make_scope_exit([&]() {
|
|
for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
|
|
CSToUse.popLastConstraint();
|
|
});
|
|
|
|
bool Changed = false;
|
|
if (CSToUse.isConditionImplied(R.Coefficients)) {
|
|
if (!DebugCounter::shouldExecute(EliminatedCounter))
|
|
return false;
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << "Condition " << *Cmp << " implied by dominating constraints\n";
|
|
dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
|
|
});
|
|
Constant *TrueC =
|
|
ConstantInt::getTrue(CmpInst::makeCmpResultType(Cmp->getType()));
|
|
Cmp->replaceUsesWithIf(TrueC, [](Use &U) {
|
|
// Conditions in an assume trivially simplify to true. Skip uses
|
|
// in assume calls to not destroy the available information.
|
|
auto *II = dyn_cast<IntrinsicInst>(U.getUser());
|
|
return !II || II->getIntrinsicID() != Intrinsic::assume;
|
|
});
|
|
NumCondsRemoved++;
|
|
Changed = true;
|
|
}
|
|
if (CSToUse.isConditionImplied(ConstraintSystem::negate(R.Coefficients))) {
|
|
if (!DebugCounter::shouldExecute(EliminatedCounter))
|
|
return false;
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << "Condition !" << *Cmp << " implied by dominating constraints\n";
|
|
dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
|
|
});
|
|
Constant *FalseC =
|
|
ConstantInt::getFalse(CmpInst::makeCmpResultType(Cmp->getType()));
|
|
Cmp->replaceAllUsesWith(FalseC);
|
|
NumCondsRemoved++;
|
|
Changed = true;
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
|
|
unsigned NumIn, unsigned NumOut,
|
|
SmallVectorImpl<StackEntry> &DFSInStack) {
|
|
// If the constraint has a pre-condition, skip the constraint if it does not
|
|
// hold.
|
|
SmallVector<Value *> NewVariables;
|
|
auto R = getConstraint(Pred, A, B, NewVariables);
|
|
if (!R.isValid(*this))
|
|
return;
|
|
|
|
LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " ";
|
|
A->printAsOperand(dbgs(), false); dbgs() << ", ";
|
|
B->printAsOperand(dbgs(), false); dbgs() << "'\n");
|
|
bool Added = false;
|
|
auto &CSToUse = getCS(R.IsSigned);
|
|
if (R.Coefficients.empty())
|
|
return;
|
|
|
|
Added |= CSToUse.addVariableRowFill(R.Coefficients);
|
|
|
|
// If R has been added to the system, add the new variables and queue it for
|
|
// removal once it goes out-of-scope.
|
|
if (Added) {
|
|
SmallVector<Value *, 2> ValuesToRelease;
|
|
auto &Value2Index = getValue2Index(R.IsSigned);
|
|
for (Value *V : NewVariables) {
|
|
Value2Index.insert({V, Value2Index.size() + 1});
|
|
ValuesToRelease.push_back(V);
|
|
}
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << " constraint: ";
|
|
dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned));
|
|
dbgs() << "\n";
|
|
});
|
|
|
|
DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, ValuesToRelease);
|
|
|
|
if (R.IsEq) {
|
|
// Also add the inverted constraint for equality constraints.
|
|
for (auto &Coeff : R.Coefficients)
|
|
Coeff *= -1;
|
|
CSToUse.addVariableRowFill(R.Coefficients);
|
|
|
|
DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
|
|
SmallVector<Value *, 2>());
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B,
|
|
SmallVectorImpl<Instruction *> &ToRemove) {
|
|
bool Changed = false;
|
|
IRBuilder<> Builder(II->getParent(), II->getIterator());
|
|
Value *Sub = nullptr;
|
|
for (User *U : make_early_inc_range(II->users())) {
|
|
if (match(U, m_ExtractValue<0>(m_Value()))) {
|
|
if (!Sub)
|
|
Sub = Builder.CreateSub(A, B);
|
|
U->replaceAllUsesWith(Sub);
|
|
Changed = true;
|
|
} else if (match(U, m_ExtractValue<1>(m_Value()))) {
|
|
U->replaceAllUsesWith(Builder.getFalse());
|
|
Changed = true;
|
|
} else
|
|
continue;
|
|
|
|
if (U->use_empty()) {
|
|
auto *I = cast<Instruction>(U);
|
|
ToRemove.push_back(I);
|
|
I->setOperand(0, PoisonValue::get(II->getType()));
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
if (II->use_empty()) {
|
|
II->eraseFromParent();
|
|
Changed = true;
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
static bool
|
|
tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
|
|
SmallVectorImpl<Instruction *> &ToRemove) {
|
|
auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
|
|
ConstraintInfo &Info) {
|
|
auto R = Info.getConstraintForSolving(Pred, A, B);
|
|
if (R.size() < 2 || !R.isValid(Info))
|
|
return false;
|
|
|
|
auto &CSToUse = Info.getCS(R.IsSigned);
|
|
return CSToUse.isConditionImplied(R.Coefficients);
|
|
};
|
|
|
|
bool Changed = false;
|
|
if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
|
|
// If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
|
|
// can be simplified to a regular sub.
|
|
Value *A = II->getArgOperand(0);
|
|
Value *B = II->getArgOperand(1);
|
|
if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
|
|
!DoesConditionHold(CmpInst::ICMP_SGE, B,
|
|
ConstantInt::get(A->getType(), 0), Info))
|
|
return false;
|
|
Changed = replaceSubOverflowUses(II, A, B, ToRemove);
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
static bool eliminateConstraints(Function &F, DominatorTree &DT) {
|
|
bool Changed = false;
|
|
DT.updateDFSNumbers();
|
|
|
|
ConstraintInfo Info(F.getParent()->getDataLayout());
|
|
State S(DT);
|
|
|
|
// First, collect conditions implied by branches and blocks with their
|
|
// Dominator DFS in and out numbers.
|
|
for (BasicBlock &BB : F) {
|
|
if (!DT.getNode(&BB))
|
|
continue;
|
|
S.addInfoFor(BB);
|
|
}
|
|
|
|
// Next, sort worklist by dominance, so that dominating blocks and conditions
|
|
// come before blocks and conditions dominated by them. If a block and a
|
|
// condition have the same numbers, the condition comes before the block, as
|
|
// it holds on entry to the block. Also make sure conditions with constant
|
|
// operands come before conditions without constant operands. This increases
|
|
// the effectiveness of the current signed <-> unsigned fact transfer logic.
|
|
stable_sort(
|
|
S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
|
|
auto HasNoConstOp = [](const ConstraintOrBlock &B) {
|
|
return !B.IsBlock && !isa<ConstantInt>(B.Condition->getOperand(0)) &&
|
|
!isa<ConstantInt>(B.Condition->getOperand(1));
|
|
};
|
|
bool NoConstOpA = HasNoConstOp(A);
|
|
bool NoConstOpB = HasNoConstOp(B);
|
|
return std::tie(A.NumIn, A.IsBlock, NoConstOpA) <
|
|
std::tie(B.NumIn, B.IsBlock, NoConstOpB);
|
|
});
|
|
|
|
SmallVector<Instruction *> ToRemove;
|
|
|
|
// Finally, process ordered worklist and eliminate implied conditions.
|
|
SmallVector<StackEntry, 16> DFSInStack;
|
|
for (ConstraintOrBlock &CB : S.WorkList) {
|
|
// First, pop entries from the stack that are out-of-scope for CB. Remove
|
|
// the corresponding entry from the constraint system.
|
|
while (!DFSInStack.empty()) {
|
|
auto &E = DFSInStack.back();
|
|
LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
|
|
<< "\n");
|
|
LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
|
|
assert(E.NumIn <= CB.NumIn);
|
|
if (CB.NumOut <= E.NumOut)
|
|
break;
|
|
LLVM_DEBUG({
|
|
dbgs() << "Removing ";
|
|
dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(),
|
|
Info.getValue2Index(E.IsSigned));
|
|
dbgs() << "\n";
|
|
});
|
|
|
|
Info.popLastConstraint(E.IsSigned);
|
|
// Remove variables in the system that went out of scope.
|
|
auto &Mapping = Info.getValue2Index(E.IsSigned);
|
|
for (Value *V : E.ValuesToRelease)
|
|
Mapping.erase(V);
|
|
Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
|
|
DFSInStack.pop_back();
|
|
}
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << "Processing ";
|
|
if (CB.IsBlock)
|
|
dbgs() << *CB.BB;
|
|
else
|
|
dbgs() << *CB.Condition;
|
|
dbgs() << "\n";
|
|
});
|
|
|
|
// For a block, check if any CmpInsts become known based on the current set
|
|
// of constraints.
|
|
if (CB.IsBlock) {
|
|
for (Instruction &I : make_early_inc_range(*CB.BB)) {
|
|
if (auto *II = dyn_cast<WithOverflowInst>(&I)) {
|
|
Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
|
|
continue;
|
|
}
|
|
auto *Cmp = dyn_cast<ICmpInst>(&I);
|
|
if (!Cmp)
|
|
continue;
|
|
|
|
Changed |= checkAndReplaceCondition(Cmp, Info);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
ICmpInst::Predicate Pred;
|
|
Value *A, *B;
|
|
if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
|
|
// Use the inverse predicate if required.
|
|
if (CB.Not)
|
|
Pred = CmpInst::getInversePredicate(Pred);
|
|
|
|
Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
|
|
Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
unsigned SignedEntries =
|
|
count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
|
|
assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
|
|
"updates to CS and DFSInStack are out of sync");
|
|
assert(Info.getCS(true).size() == SignedEntries &&
|
|
"updates to CS and DFSInStack are out of sync");
|
|
#endif
|
|
|
|
for (Instruction *I : ToRemove)
|
|
I->eraseFromParent();
|
|
return Changed;
|
|
}
|
|
|
|
PreservedAnalyses ConstraintEliminationPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
if (!eliminateConstraints(F, DT))
|
|
return PreservedAnalyses::all();
|
|
|
|
PreservedAnalyses PA;
|
|
PA.preserve<DominatorTreeAnalysis>();
|
|
PA.preserveSet<CFGAnalyses>();
|
|
return PA;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class ConstraintElimination : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
ConstraintElimination() : FunctionPass(ID) {
|
|
initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
return eliminateConstraints(F, DT);
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char ConstraintElimination::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
|
|
"Constraint Elimination", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
|
|
INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
|
|
"Constraint Elimination", false, false)
|
|
|
|
FunctionPass *llvm::createConstraintEliminationPass() {
|
|
return new ConstraintElimination();
|
|
}
|