llvm-project/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorConversion.cpp

1344 lines
58 KiB
C++

//===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A pass that converts sparse tensor primitives into calls into a runtime
// support library. Sparse tensor types are converted into opaque pointers
// to the underlying sparse storage schemes. The use of opaque pointers
// together with runtime support library keeps the conversion relatively
// simple, but at the expense of IR opacity, which obscures opportunities
// for subsequent optimization of the IR. An alternative is provided by
// the SparseTensorCodegen pass.
//
//===----------------------------------------------------------------------===//
#include "CodegenUtils.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SparseTensor/IR/Enums.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//
/// Maps each sparse tensor type to an opaque pointer.
static Optional<Type> convertSparseTensorTypes(Type type) {
if (getSparseTensorEncoding(type) != nullptr)
return LLVM::LLVMPointerType::get(IntegerType::get(type.getContext(), 8));
return llvm::None;
}
/// Replaces the `op` with a `CallOp` to the function reference returned
/// by `getFunc()`.
static func::CallOp replaceOpWithFuncCall(RewriterBase &rewriter, Operation *op,
StringRef name, TypeRange resultType,
ValueRange operands,
EmitCInterface emitCInterface) {
auto fn = getFunc(op->getParentOfType<ModuleOp>(), name, resultType, operands,
emitCInterface);
return rewriter.replaceOpWithNewOp<func::CallOp>(op, resultType, fn,
operands);
}
/// Generates dimension size call.
static Value genDimSizeCall(OpBuilder &builder, Location loc,
SparseTensorEncodingAttr &enc, Value src,
uint64_t idx) {
// Generate the call.
StringRef name = "sparseDimSize";
SmallVector<Value, 2> params{
src, constantIndex(builder, loc, toStoredDim(enc, idx))};
Type iTp = builder.getIndexType();
return createFuncCall(builder, loc, name, iTp, params, EmitCInterface::Off)
.getResult(0);
}
/// Compute the size from type (for static sizes) or from an already-converted
/// opaque pointer source (for dynamic sizes) at the given dimension.
static Value sizeFromPtrAtDim(OpBuilder &builder, Location loc,
SparseTensorEncodingAttr &enc, ShapedType stp,
Value src, unsigned dim) {
auto shape = stp.getShape();
if (shape[dim] == ShapedType::kDynamicSize)
return genDimSizeCall(builder, loc, enc, src, dim);
return constantIndex(builder, loc, shape[dim]);
}
/// Populates given sizes array from type (for static sizes) and from
/// an already-converted opaque pointer source (for dynamic sizes).
static void sizesFromPtr(OpBuilder &builder, SmallVector<Value, 4> &sizes,
Location loc, SparseTensorEncodingAttr &enc,
ShapedType stp, Value src) {
for (unsigned i = 0, rank = stp.getRank(); i < rank; i++)
sizes.push_back(sizeFromPtrAtDim(builder, loc, enc, stp, src, i));
}
/// Populates given sizes array from type.
static void sizesFromType(OpBuilder &builder, SmallVector<Value, 4> &sizes,
Location loc, ShapedType stp) {
auto shape = stp.getShape();
for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) {
uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i];
sizes.push_back(constantIndex(builder, loc, s));
}
}
/// Populates the given sizes array for concatenation from type (for static
/// sizes) and from an already-converted opaque pointer source (for dynamic
/// sizes).
static void concatSizesFromInputs(OpBuilder &builder,
SmallVector<Value, 4> &sizes, Location loc,
ShapedType dstTp, ValueRange srcs,
unsigned dim) {
auto dstShape = dstTp.getShape();
auto srcTp = srcs[0].getType().cast<ShapedType>();
auto srcEnc = getSparseTensorEncoding(srcTp);
// We first fills the sizes from an input tensor, and then
// compute the size of the concatenation dimension if necessary.
if (srcEnc)
// Reuses sizes from an arbitrary input tensor is fine.
sizesFromPtr(builder, sizes, loc, srcEnc, srcTp, srcs[0]);
else
sizesFromSrc(builder, sizes, loc, srcs[0]);
// Sum up on the `dim` if the dimension is dynamic.
if (dstShape[dim] != ShapedType::kDynamicSize) {
// Faithfully take the static size.
sizes[dim] = constantIndex(builder, loc, dstShape[dim]);
} else {
// Else, compute the shape dynamically.
for (size_t i = 1, sz = srcs.size(); i < sz; i++) {
auto srcTp = srcs[i].getType().cast<ShapedType>();
auto encSrc = getSparseTensorEncoding(srcTp);
Value srcSz =
encSrc ? sizeFromPtrAtDim(builder, loc, encSrc, srcTp, srcs[i], dim)
: linalg::createOrFoldDimOp(builder, loc, srcs[i], dim);
// Sum up all the sizes.
sizes[dim] = builder.create<arith::AddIOp>(loc, sizes[dim], srcSz);
}
}
}
/// Generates an uninitialized buffer of the given size and type,
/// but returns it as type `memref<? x $tp>` (rather than as type
/// `memref<$sz x $tp>`). Unlike temporary buffers on the stack,
/// this buffer must be explicitly deallocated by client.
static Value genAlloc(RewriterBase &rewriter, Location loc, Value sz, Type tp) {
auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{sz});
}
/// Generates a temporary buffer of the given type and given contents.
static Value genBuffer(OpBuilder &builder, Location loc, ValueRange values) {
unsigned sz = values.size();
assert(sz >= 1);
Value buffer = genAlloca(builder, loc, sz, values[0].getType());
for (unsigned i = 0; i < sz; i++) {
Value idx = constantIndex(builder, loc, i);
builder.create<memref::StoreOp>(loc, values[i], buffer, idx);
}
return buffer;
}
/// This class abstracts over the API of `_mlir_ciface_newSparseTensor`:
/// the "swiss army knife" method of the sparse runtime support library
/// for materializing sparse tensors into the computation. This abstraction
/// reduces the need to make modifications to client code whenever that
/// API changes.
class NewCallParams final {
public:
/// Allocates the `ValueRange` for the `func::CallOp` parameters,
/// but does not initialize them.
NewCallParams(OpBuilder &builder, Location loc)
: builder(builder), loc(loc), pTp(getOpaquePointerType(builder)) {}
/// Initializes all static parameters (i.e., those which indicate
/// type-level information such as the encoding and sizes), generating
/// MLIR buffers as needed, and returning `this` for method chaining.
/// This method does not set the action and pointer arguments, since
/// those are handled by `genNewCall` instead.
NewCallParams &genBuffers(SparseTensorEncodingAttr enc, ValueRange sizes,
ShapedType stp);
/// (Re)sets the C++ template type parameters, and returns `this`
/// for method chaining. This is already done as part of `genBuffers`,
/// but is factored out so that it can also be called independently
/// whenever subsequent `genNewCall` calls want to reuse the same
/// buffers but different type parameters.
//
// TODO: This is only ever used by sparse2sparse-viaCOO `ConvertOp`;
// is there a better way to handle that than this one-off setter method?
NewCallParams &setTemplateTypes(SparseTensorEncodingAttr enc,
ShapedType stp) {
params[kParamPtrTp] = constantPointerTypeEncoding(builder, loc, enc);
params[kParamIndTp] = constantIndexTypeEncoding(builder, loc, enc);
params[kParamValTp] =
constantPrimaryTypeEncoding(builder, loc, stp.getElementType());
return *this;
}
/// Checks whether all the static parameters have been initialized.
bool isInitialized() const {
for (unsigned i = 0; i < kNumStaticParams; ++i)
if (!params[i])
return false;
return true;
}
/// Gets the dimension-to-level mapping.
//
// TODO: This is only ever used for passing into `genAddEltCall`;
// is there a better way to encapsulate that pattern (both to avoid
// this one-off getter, and to avoid potential mixups)?
Value getDim2LvlMap() const {
assert(isInitialized() && "Must initialize before getDim2LvlMap");
return params[kParamDim2Lvl];
}
/// Generates a function call, with the current static parameters
/// and the given dynamic arguments.
Value genNewCall(Action action, Value ptr = Value()) {
assert(isInitialized() && "Must initialize before genNewCall");
StringRef name = "newSparseTensor";
params[kParamAction] = constantAction(builder, loc, action);
params[kParamPtr] = ptr ? ptr : builder.create<LLVM::NullOp>(loc, pTp);
return createFuncCall(builder, loc, name, pTp, params, EmitCInterface::On)
.getResult(0);
}
private:
static constexpr unsigned kNumStaticParams = 6;
static constexpr unsigned kNumDynamicParams = 2;
static constexpr unsigned kNumParams = kNumStaticParams + kNumDynamicParams;
static constexpr unsigned kParamLvlTypes = 0;
static constexpr unsigned kParamDimSizes = 1;
static constexpr unsigned kParamDim2Lvl = 2;
static constexpr unsigned kParamPtrTp = 3;
static constexpr unsigned kParamIndTp = 4;
static constexpr unsigned kParamValTp = 5;
static constexpr unsigned kParamAction = 6;
static constexpr unsigned kParamPtr = 7;
OpBuilder &builder;
Location loc;
Type pTp;
Value params[kNumParams];
};
// TODO: see the note at `_mlir_ciface_newSparseTensor` about how
// the meaning of the various arguments (e.g., "sizes" vs "shapes")
// is inconsistent between the different actions.
NewCallParams &NewCallParams::genBuffers(SparseTensorEncodingAttr enc,
ValueRange dimSizes, ShapedType stp) {
const unsigned lvlRank = enc.getDimLevelType().size();
const unsigned dimRank = stp.getRank();
// Sparsity annotations.
SmallVector<Value, 4> lvlTypes;
for (auto dlt : enc.getDimLevelType())
lvlTypes.push_back(constantDimLevelTypeEncoding(builder, loc, dlt));
assert(lvlTypes.size() == lvlRank && "Level-rank mismatch");
params[kParamLvlTypes] = genBuffer(builder, loc, lvlTypes);
// Dimension-sizes array of the enveloping tensor. Useful for either
// verification of external data, or for construction of internal data.
assert(dimSizes.size() == dimRank && "Dimension-rank mismatch");
params[kParamDimSizes] = genBuffer(builder, loc, dimSizes);
// The dimension-to-level mapping. We must preinitialize `dim2lvl`
// so that the true branch below can perform random-access `operator[]`
// assignment.
SmallVector<Value, 4> dim2lvl(dimRank);
auto dimOrder = enc.getDimOrdering();
if (dimOrder) {
assert(dimOrder.isPermutation());
for (unsigned l = 0; l < lvlRank; l++) {
// The `d`th source variable occurs in the `l`th result position.
uint64_t d = dimOrder.getDimPosition(l);
dim2lvl[d] = constantIndex(builder, loc, l);
}
} else {
assert(dimRank == lvlRank && "Rank mismatch");
for (unsigned i = 0; i < lvlRank; i++)
dim2lvl[i] = constantIndex(builder, loc, i);
}
params[kParamDim2Lvl] = genBuffer(builder, loc, dim2lvl);
// Secondary and primary types encoding.
setTemplateTypes(enc, stp);
// Finally, make note that initialization is complete.
assert(isInitialized() && "Initialization failed");
// And return `this` for method chaining.
return *this;
}
/// Generates a call to obtain the values array.
static Value genValuesCall(OpBuilder &builder, Location loc, ShapedType tp,
ValueRange ptr) {
SmallString<15> name{"sparseValues",
primaryTypeFunctionSuffix(tp.getElementType())};
return createFuncCall(builder, loc, name, tp, ptr, EmitCInterface::On)
.getResult(0);
}
/// Generates a call to release/delete a `SparseTensorCOO`.
static void genDelCOOCall(OpBuilder &builder, Location loc, Type elemTp,
Value coo) {
SmallString<21> name{"delSparseTensorCOO", primaryTypeFunctionSuffix(elemTp)};
createFuncCall(builder, loc, name, {}, coo, EmitCInterface::Off);
}
/// Generates a call to release/delete a `SparseTensorIterator`.
static void genDelIteratorCall(OpBuilder &builder, Location loc, Type elemTp,
Value iter) {
SmallString<26> name{"delSparseTensorIterator",
primaryTypeFunctionSuffix(elemTp)};
createFuncCall(builder, loc, name, {}, iter, EmitCInterface::Off);
}
/// Generates a call that adds one element to a coordinate scheme.
/// In particular, this generates code like the following:
/// val = a[i1,..,ik];
/// if val != 0
/// t->add(&val, [i1,..,ik], [p1,..,pk]);
static void genAddEltCall(OpBuilder &builder, Location loc, Type eltType,
Value ptr, Value valPtr, Value ind, Value perm) {
SmallString<9> name{"addElt", primaryTypeFunctionSuffix(eltType)};
SmallVector<Value, 4> params{ptr, valPtr, ind, perm};
Type pTp = getOpaquePointerType(builder);
createFuncCall(builder, loc, name, pTp, params, EmitCInterface::On);
}
/// Generates a call to `iter->getNext()`. If there is a next element,
/// then it is copied into the out-parameters `ind` and `elemPtr`,
/// and the return value is true. If there isn't a next element, then
/// the return value is false.
static Value genGetNextCall(OpBuilder &builder, Location loc, Value iter,
Value ind, Value elemPtr) {
Type elemTp = elemPtr.getType().cast<ShapedType>().getElementType();
SmallString<10> name{"getNext", primaryTypeFunctionSuffix(elemTp)};
SmallVector<Value, 3> params{iter, ind, elemPtr};
Type i1 = builder.getI1Type();
return createFuncCall(builder, loc, name, i1, params, EmitCInterface::On)
.getResult(0);
}
/// Converts a pointer to COO (from calls to iter->next()) into a vector of
/// indices, apply (optional) `offset` on `offsetDim`.
static SmallVector<Value, 4> loadIndices(OpBuilder &builder, Location loc,
unsigned rank, Value ind,
unsigned offsetDim = 0,
Value offset = Value()) {
SmallVector<Value, 4> ivs;
ivs.reserve(rank);
for (unsigned i = 0; i < rank; i++) {
Value idx = constantIndex(builder, loc, i);
idx = builder.create<memref::LoadOp>(loc, ind, idx);
if (offsetDim == i && offset)
idx = builder.create<arith::AddIOp>(loc, idx, offset);
ivs.push_back(idx);
}
return ivs;
}
/// Converts the vector indices and store it into the memory pointed by
/// `ind`, apply (optional) `offset` on `offsetDim`.
static void storeIndices(OpBuilder &builder, Location loc, unsigned rank,
Value ind, ValueRange ivs, unsigned offsetDim = 0,
Value offset = Value()) {
for (unsigned i = 0; i < rank; i++) {
Value idx = ivs[i];
if (offsetDim == i && offset)
idx = builder.create<arith::AddIOp>(loc, idx, offset);
builder.create<memref::StoreOp>(loc, idx, ind,
constantIndex(builder, loc, i));
}
}
/// Inserts a value stored in `elemPtr` into a dense tensor created by
/// allocDenseTensor().
static void insertScalarIntoDenseTensor(OpBuilder &builder, Location loc,
Value elemPtr, Value tensor,
ValueRange ivs) {
Value elemV = builder.create<memref::LoadOp>(loc, elemPtr);
builder.create<memref::StoreOp>(loc, elemV, tensor, ivs);
}
/// Determine if the runtime library supports direct conversion to the
/// given target `dimTypes`.
static bool canUseDirectConversion(ArrayRef<DimLevelType> dimTypes) {
bool alreadyCompressed = false;
for (uint64_t rank = dimTypes.size(), r = 0; r < rank; r++) {
const DimLevelType dlt = dimTypes[r];
if (isCompressedDLT(dlt)) {
if (alreadyCompressed)
return false; // Multiple compressed dimensions not yet supported.
alreadyCompressed = true;
} else if (isDenseDLT(dlt)) {
if (alreadyCompressed)
return false; // Dense after Compressed not yet supported.
} else if (isSingletonDLT(dlt)) {
// Direct conversion doesn't have any particular problems with
// singleton after compressed.
} else { // TODO: investigate
return false;
}
}
return true;
}
/// Helper method to translate indices during a reshaping operation.
/// TODO: provide as general utility to MLIR at large?
static void translateIndices(Location loc, ConversionPatternRewriter &rewriter,
ArrayRef<ReassociationIndices> reassociation,
TensorType dstTp, TensorType srcTp, Value dstIdx,
Value srcIdx, ArrayRef<Value> dstShape,
ArrayRef<Value> srcShape) {
unsigned dstRank = dstTp.getRank();
unsigned srcRank = srcTp.getRank();
SmallVector<Value, 4> srcIndices;
for (unsigned i = 0; i < srcRank; i++) {
Value idx = rewriter.create<memref::LoadOp>(
loc, srcIdx, constantIndex(rewriter, loc, i));
srcIndices.push_back(idx);
}
SmallVector<Value, 4> dstIndices;
translateIndicesArray(rewriter, loc, reassociation, srcIndices, srcShape,
dstShape, dstIndices);
for (unsigned i = 0; i < dstRank; i++)
rewriter.create<memref::StoreOp>(loc, dstIndices[i], dstIdx,
constantIndex(rewriter, loc, i));
}
/// Generate code for a general sparse to sparse reshaping operation.
/// Note that unlike dense reshaping (which can be done with a "cheap"
/// change of view), sparse reshaping is currently done with actual
/// data shuffling.
///
/// TODO: proportional to nnz, but still a lot of data movement
/// https://github.com/llvm/llvm-project/issues/56477
///
/// iter = src->toCOO();
/// coo = newSparseCOO()
/// while (elem = iter->getNext()) {
/// coo->add(reshape(elem.indices), elem.value)
/// }
/// s = newSparseTensor(coo)
template <typename ReshapeOp>
static LogicalResult
genSparse2SparseReshape(ReshapeOp op, typename ReshapeOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) {
Location loc = op.getLoc();
auto srcTp = op.getSrc().getType().template cast<RankedTensorType>();
auto dstTp = op.getResult().getType().template cast<RankedTensorType>();
auto encSrc = getSparseTensorEncoding(srcTp);
auto encDst = getSparseTensorEncoding(dstTp);
if (!encDst || !encSrc)
return failure();
unsigned srcRank = srcTp.getRank();
unsigned dstRank = dstTp.getRank();
Type elemTp = srcTp.getElementType();
assert(elemTp == dstTp.getElementType() &&
"reshape should not change element type");
// Start an iterator over the source tensor (in original index order).
auto noPerm = SparseTensorEncodingAttr::get(
op->getContext(), encSrc.getDimLevelType(), AffineMap(), AffineMap(),
encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
SmallVector<Value, 4> srcSizes;
sizesFromPtr(rewriter, srcSizes, loc, encSrc, srcTp, adaptor.getSrc());
NewCallParams params(rewriter, loc);
Value iter = params.genBuffers(noPerm, srcSizes, srcTp)
.genNewCall(Action::kToIterator, adaptor.getSrc());
// Start a new COO for the destination tensor.
SmallVector<Value, 4> dstSizes;
if (dstTp.hasStaticShape()) {
sizesFromType(rewriter, dstSizes, loc, dstTp);
} else {
ArrayRef<int64_t> dstShape = dstTp.getShape();
genReshapeDstShape(loc, rewriter, dstSizes, srcSizes, dstShape,
op.getReassociationIndices());
}
Value coo =
params.genBuffers(encDst, dstSizes, dstTp).genNewCall(Action::kEmptyCOO);
Value dstPerm = params.getDim2LvlMap();
// Construct a while loop over the iterator.
Value srcIdx = genAlloca(rewriter, loc, srcRank, rewriter.getIndexType());
Value dstIdx = genAlloca(rewriter, loc, dstRank, rewriter.getIndexType());
Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
SmallVector<Value> noArgs;
SmallVector<Type> noTypes;
auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
rewriter.setInsertionPointToEnd(before);
Value cond = genGetNextCall(rewriter, loc, iter, srcIdx, elemPtr);
rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
// Translate indices from source to target and insert. Note that we do
// not need to store the value in elemPtr, as the value is still there.
Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
rewriter.setInsertionPointToStart(after);
translateIndices(loc, rewriter, op.getReassociationIndices(), dstTp, srcTp,
dstIdx, srcIdx, dstSizes, srcSizes);
genAddEltCall(rewriter, loc, elemTp, coo, elemPtr, dstIdx, dstPerm);
rewriter.create<scf::YieldOp>(loc);
// Final call to construct sparse tensor storage and free temporary resources.
rewriter.setInsertionPointAfter(whileOp);
Value dst = params.genNewCall(Action::kFromCOO, coo);
genDelCOOCall(rewriter, loc, elemTp, coo);
genDelIteratorCall(rewriter, loc, elemTp, iter);
rewriter.replaceOp(op, dst);
return success();
}
// Generates a while loop that iterates over the COO list extracted
// from `t`, using `bodyBuilder` to build the loop body.
// while (elem = coo->getNext()) {
// bodyBuilder
// }
// TODO: It can be used by other operators (ReshapeOp, ConvertOP) conversion to
// reduce code repetition!
// TODO: rename to `genSparseIterationLoop`?
static void genSparseCOOIterationLoop(
ConversionPatternRewriter &rewriter, Location loc, Value t,
RankedTensorType tensorTp,
function_ref<void(OpBuilder &, Location, Value, Value)> bodyBuilder) {
auto enc = getSparseTensorEncoding(tensorTp);
assert(enc && "Generating Sparse Tensor COO Loop on a Dense Tensor!");
unsigned rank = tensorTp.getRank();
Type elemTp = tensorTp.getElementType();
// Start an iterator over the tensor (in original index order).
auto noPerm = SparseTensorEncodingAttr::get(
rewriter.getContext(), enc.getDimLevelType(), AffineMap(), AffineMap(),
enc.getPointerBitWidth(), enc.getIndexBitWidth());
SmallVector<Value, 4> sizes;
sizesFromPtr(rewriter, sizes, loc, noPerm, tensorTp, t);
Value iter = NewCallParams(rewriter, loc)
.genBuffers(noPerm, sizes, tensorTp)
.genNewCall(Action::kToIterator, t);
// Construct a while loop over the iterator.
Value srcIdx = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
SmallVector<Value> noArgs;
SmallVector<Type> noTypes;
auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
rewriter.setInsertionPointToEnd(before);
Value cond = genGetNextCall(rewriter, loc, iter, srcIdx, elemPtr);
rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
rewriter.setInsertionPointToStart(after);
// Callback here to build loop body.
bodyBuilder(rewriter, loc, srcIdx, elemPtr);
rewriter.create<scf::YieldOp>(loc);
// Finish generating loop.
rewriter.setInsertionPointAfter(whileOp);
// Free memory for iterator.
genDelIteratorCall(rewriter, loc, elemTp, iter);
}
// Generate loop that iterates over a dense tensor.
// for i1 in dim1
// ..
// for ik in dimk
// val = a[i1,..,ik]
// if val != 0
// bodyBuilder(v, [i1, ..., ik])
// TODO: It can be used by other operators (ReshapeOp, ConvertOP) conversion to
// reduce code repetition!
static void genDenseTensorIterationLoop(
ConversionPatternRewriter &rewriter, Location loc, Value t,
RankedTensorType tensorTp,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) {
assert(!getSparseTensorEncoding(tensorTp) &&
"Generating Dense Tensor Loop on a Sparse Tensor!");
unsigned rank = tensorTp.getRank();
Value zero = constantIndex(rewriter, loc, 0);
Value one = constantIndex(rewriter, loc, 1);
SmallVector<Value> lo;
SmallVector<Value> hi;
SmallVector<Value> st;
// Fill out loop iteration information.
for (unsigned i = 0; i < rank; i++) {
lo.push_back(zero);
hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, t, i));
st.push_back(one);
}
scf::buildLoopNest(rewriter, loc, lo, hi, st, {},
[&](OpBuilder &builder, Location loc, ValueRange ivs,
ValueRange args) -> scf::ValueVector {
// Invoke callback to build the body of the loop.
bodyBuilder(builder, loc, ivs);
return {};
});
}
//===----------------------------------------------------------------------===//
// Conversion rules.
//===----------------------------------------------------------------------===//
/// Sparse conversion rule for returns.
class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<func::ReturnOp>(op, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for dimension accesses.
class SparseTensorToDimSizeConverter
: public OpConversionPattern<tensor::DimOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only rewrite annotated DimOp with constant index.
auto enc = getSparseTensorEncoding(op.getSource().getType());
if (!enc)
return failure();
Optional<int64_t> index = op.getConstantIndex();
if (!index)
return failure();
// Generate the call.
Value src = adaptor.getOperands()[0];
int64_t idx = *index;
rewriter.replaceOp(op,
genDimSizeCall(rewriter, op->getLoc(), enc, src, idx));
return success();
}
};
/// Sparse conversion rule for trivial tensor casts.
class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only rewrite identically annotated source/dest.
auto encDst = getSparseTensorEncoding(op.getType());
auto encSrc = getSparseTensorEncoding(op.getSource().getType());
if (!encDst || encDst != encSrc)
return failure();
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for a reshape operator.
template <typename ReshapeOp>
class SparseReshapeConverter : public OpConversionPattern<ReshapeOp> {
public:
using OpAdaptor = typename OpConversionPattern<ReshapeOp>::OpAdaptor;
using OpConversionPattern<ReshapeOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ReshapeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
return genSparse2SparseReshape(op, adaptor, rewriter);
}
};
/// Sparse conversion rule for the new operator.
class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NewOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Type resType = op.getType();
auto enc = getSparseTensorEncoding(resType);
if (!enc)
return failure();
// Generate the call to construct tensor from ptr. The sizes are
// inferred from the result type of the new operator.
SmallVector<Value, 4> sizes;
ShapedType stp = resType.cast<ShapedType>();
sizesFromType(rewriter, sizes, loc, stp);
Value ptr = adaptor.getOperands()[0];
rewriter.replaceOp(op, NewCallParams(rewriter, loc)
.genBuffers(enc, sizes, stp)
.genNewCall(Action::kFromFile, ptr));
return success();
}
};
/// Sparse conversion rule for the alloc operator.
class SparseTensorAllocConverter
: public OpConversionPattern<bufferization::AllocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::AllocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (op.getCopy())
return rewriter.notifyMatchFailure(op,
"sparse tensor copy not implemented");
Location loc = op.getLoc();
RankedTensorType resType = op.getType();
auto enc = getSparseTensorEncoding(resType);
if (!enc)
return failure();
// Gather all dimension sizes as SSA values.
SmallVector<Value> sizes;
unsigned int operandCtr = 0;
for (int64_t i = 0; i < resType.getRank(); ++i) {
if (resType.isDynamicDim(i)) {
sizes.push_back(adaptor.getOperands()[operandCtr++]);
} else {
sizes.push_back(
rewriter.create<arith::ConstantIndexOp>(loc, op.getStaticSize(i)));
}
}
// Generate the call to construct empty tensor. The sizes are
// explicitly defined by the arguments to the alloc operator.
rewriter.replaceOp(op,
NewCallParams(rewriter, loc)
.genBuffers(enc, sizes, resType.cast<ShapedType>())
.genNewCall(Action::kEmpty));
return success();
}
};
/// Sparse conversion rule for the convert operator.
class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> {
public:
using OpConversionPattern::OpConversionPattern;
SparseTensorConvertConverter(MLIRContext *context,
SparseTensorConversionOptions o)
: OpConversionPattern<ConvertOp>(context), options(o) {}
SparseTensorConvertConverter(TypeConverter &typeConv, MLIRContext *context,
SparseTensorConversionOptions o)
: OpConversionPattern<ConvertOp>(typeConv, context), options(o) {}
LogicalResult
matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
Type resType = op.getType();
Type srcType = op.getSource().getType();
auto encDst = getSparseTensorEncoding(resType);
auto encSrc = getSparseTensorEncoding(srcType);
Value src = adaptor.getOperands()[0];
if (encDst && encSrc) {
// This is a sparse => sparse conversion, which is handled as follows:
// t = src->toCOO(); ; src to COO in dst order
// dst = newSparseTensor(t)
// Using the coordinate scheme as an intermediate does not always
// yield the fastest conversion but avoids the need for a full
// O(N^2) conversion matrix.
if (encDst == encSrc) {
rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast
return success();
}
SmallVector<Value, 4> sizes;
NewCallParams params(rewriter, loc);
ShapedType stp = srcType.cast<ShapedType>();
sizesFromPtr(rewriter, sizes, loc, encSrc, stp, src);
bool useDirectConversion;
switch (options.sparseToSparseStrategy) {
case SparseToSparseConversionStrategy::kViaCOO:
useDirectConversion = false;
break;
case SparseToSparseConversionStrategy::kDirect:
useDirectConversion = true;
assert(canUseDirectConversion(encDst.getDimLevelType()) &&
"Unsupported target for direct sparse-to-sparse conversion");
break;
case SparseToSparseConversionStrategy::kAuto:
useDirectConversion = canUseDirectConversion(encDst.getDimLevelType());
break;
}
if (useDirectConversion) {
rewriter.replaceOp(op, params.genBuffers(encDst, sizes, stp)
.genNewCall(Action::kSparseToSparse, src));
} else { // use via-COO conversion.
// Set up encoding with right mix of src and dst so that the two
// method calls can share most parameters, while still providing
// the correct sparsity information to either of them.
auto enc = SparseTensorEncodingAttr::get(
op->getContext(), encDst.getDimLevelType(), encDst.getDimOrdering(),
encDst.getHigherOrdering(), encSrc.getPointerBitWidth(),
encSrc.getIndexBitWidth());
// TODO: This is the only place where `kToCOO` (or `kToIterator`)
// is called with a non-identity permutation. Is there any clean
// way to push the permutation over to the `kFromCOO` side instead?
Value coo =
params.genBuffers(enc, sizes, stp).genNewCall(Action::kToCOO, src);
Value dst = params.setTemplateTypes(encDst, stp)
.genNewCall(Action::kFromCOO, coo);
genDelCOOCall(rewriter, loc, stp.getElementType(), coo);
rewriter.replaceOp(op, dst);
}
return success();
}
if (!encDst && encSrc) {
// This is sparse => dense conversion, which is handled as follows:
// dst = new Tensor(0);
// iter = new SparseTensorIterator(src);
// while (elem = iter->getNext()) {
// dst[elem.indices] = elem.value;
// }
// delete iter;
RankedTensorType dstTensorTp = resType.cast<RankedTensorType>();
RankedTensorType srcTensorTp = srcType.cast<RankedTensorType>();
unsigned rank = dstTensorTp.getRank();
Type elemTp = dstTensorTp.getElementType();
// Fabricate a no-permutation encoding for NewCallParams
// The pointer/index types must be those of `src`.
// The dimLevelTypes aren't actually used by Action::kToIterator.
encDst = SparseTensorEncodingAttr::get(
op->getContext(),
SmallVector<DimLevelType>(rank, DimLevelType::Dense), AffineMap(),
AffineMap(), encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
SmallVector<Value, 4> sizes;
sizesFromPtr(rewriter, sizes, loc, encSrc, srcTensorTp, src);
Value iter = NewCallParams(rewriter, loc)
.genBuffers(encDst, sizes, dstTensorTp)
.genNewCall(Action::kToIterator, src);
Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
Block *insertionBlock = rewriter.getInsertionBlock();
// TODO: Dense buffers should be allocated/deallocated via the callback
// in BufferizationOptions.
Value dst = allocDenseTensor(rewriter, loc, dstTensorTp, sizes);
SmallVector<Value> noArgs;
SmallVector<Type> noTypes;
auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
rewriter.setInsertionPointToEnd(before);
Value cond = genGetNextCall(rewriter, loc, iter, ind, elemPtr);
rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
rewriter.setInsertionPointToStart(after);
SmallVector<Value, 4> ivs = loadIndices(rewriter, loc, rank, ind);
insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, ivs);
rewriter.create<scf::YieldOp>(loc);
rewriter.setInsertionPointAfter(whileOp);
genDelIteratorCall(rewriter, loc, elemTp, iter);
rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, dst);
// Deallocate the buffer.
if (bufferization::allocationDoesNotEscape(op->getOpResult(0))) {
rewriter.setInsertionPoint(insertionBlock->getTerminator());
deallocDenseTensor(rewriter, loc, dst);
}
return success();
}
if (!encDst && !encSrc) {
// dense => dense
return failure();
}
// This is a dense => sparse conversion or a sparse constant in COO =>
// sparse conversion, which is handled as follows:
// t = newSparseCOO()
// ...code to fill the COO tensor t...
// s = newSparseTensor(t)
//
// To fill the COO tensor from a dense tensor:
// for i1 in dim1
// ..
// for ik in dimk
// val = a[i1,..,ik]
// if val != 0
// t->add(val, [i1,..,ik], [p1,..,pk])
//
// To fill the COO tensor from a sparse constant in COO format:
// for i in range(NNZ)
// val = values[i]
// [i1,..,ik] = indices[i]
// t->add(val, [i1,..,ik], [p1,..,pk])
//
// Note that the dense tensor traversal code is actually implemented
// using MLIR IR to avoid having to expose too much low-level
// memref traversal details to the runtime support library.
// Also note that the code below only generates the "new" ops and
// the loop-nest per se; whereas the entire body of the innermost
// loop is generated by genAddElt().
ShapedType stp = resType.cast<ShapedType>();
unsigned rank = stp.getRank();
SmallVector<Value, 4> sizes;
sizesFromSrc(rewriter, sizes, loc, src);
NewCallParams params(rewriter, loc);
Value coo =
params.genBuffers(encDst, sizes, stp).genNewCall(Action::kEmptyCOO);
Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
Value perm = params.getDim2LvlMap();
Type eltType = stp.getElementType();
Value elemPtr = genAllocaScalar(rewriter, loc, eltType);
genDenseTensorOrSparseConstantIterLoop(
rewriter, loc, src, rank,
[&](OpBuilder &builder, Location loc, Value val, ValueRange indices) {
for (unsigned i = 0; i < rank; i++) {
Value idx = constantIndex(builder, loc, i);
builder.create<memref::StoreOp>(loc, indices[i], ind, idx);
}
builder.create<memref::StoreOp>(loc, val, elemPtr);
genAddEltCall(builder, loc, eltType, coo, elemPtr, ind, perm);
});
// Final call to construct sparse tensor storage.
Value dst = params.genNewCall(Action::kFromCOO, coo);
genDelCOOCall(rewriter, loc, eltType, coo);
rewriter.replaceOp(op, dst);
return success();
}
private:
/// Options to control sparse code generation.
SparseTensorConversionOptions options;
};
/// Sparse conversion rule for the dealloc operator.
class SparseTensorDeallocConverter
: public OpConversionPattern<bufferization::DeallocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::DeallocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto enc = getSparseTensorEncoding(op.getTensor().getType());
if (!enc)
return failure();
StringRef name = "delSparseTensor";
createFuncCall(rewriter, op->getLoc(), name, {}, adaptor.getOperands(),
EmitCInterface::Off);
rewriter.eraseOp(op);
return success();
}
};
/// Sparse conversion rule for pointer accesses.
class SparseTensorToPointersConverter
: public OpConversionPattern<ToPointersOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToPointersOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type resType = op.getType();
Type ptrType = resType.cast<ShapedType>().getElementType();
SmallString<16> name{"sparsePointers", overheadTypeFunctionSuffix(ptrType)};
Value dim =
constantIndex(rewriter, op->getLoc(), op.getDimension().getZExtValue());
replaceOpWithFuncCall(rewriter, op, name, resType,
{adaptor.getTensor(), dim}, EmitCInterface::On);
return success();
}
};
/// Sparse conversion rule for index accesses.
class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type resType = op.getType();
Type indType = resType.cast<ShapedType>().getElementType();
SmallString<15> name{"sparseIndices", overheadTypeFunctionSuffix(indType)};
Value dim =
constantIndex(rewriter, op->getLoc(), op.getDimension().getZExtValue());
replaceOpWithFuncCall(rewriter, op, name, resType,
{adaptor.getTensor(), dim}, EmitCInterface::On);
return success();
}
};
/// Sparse conversion rule for value accesses.
class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto resType = op.getType().cast<ShapedType>();
rewriter.replaceOp(op, genValuesCall(rewriter, op.getLoc(), resType,
adaptor.getOperands()));
return success();
}
};
/// Sparse conversion rule for number of entries operator.
class SparseNumberOfEntriesConverter
: public OpConversionPattern<NumberOfEntriesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NumberOfEntriesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
// Query values array size for the actually stored values size.
Type eltType = op.getTensor().getType().cast<ShapedType>().getElementType();
auto resTp = MemRefType::get({ShapedType::kDynamicSize}, eltType);
Value values = genValuesCall(rewriter, loc, resTp, adaptor.getOperands());
rewriter.replaceOpWithNewOp<memref::DimOp>(op, values,
constantIndex(rewriter, loc, 0));
return success();
}
};
/// Sparse conversion rule for tensor rematerialization.
class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(LoadOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (op.getHasInserts()) {
// Finalize any pending insertions.
StringRef name = "endInsert";
createFuncCall(rewriter, op->getLoc(), name, {}, adaptor.getOperands(),
EmitCInterface::Off);
}
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for the insertion operator.
class SparseTensorInsertConverter : public OpConversionPattern<InsertOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(InsertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Note that the current regime only allows for strict lexicographic
// index order. All values are passed by reference through stack
// allocated memrefs.
Location loc = op->getLoc();
auto tp = op.getTensor().getType().cast<RankedTensorType>();
auto elemTp = tp.getElementType();
unsigned rank = tp.getRank();
auto mref = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
auto vref = genAllocaScalar(rewriter, loc, elemTp);
for (unsigned i = 0; i < rank; i++)
rewriter.create<memref::StoreOp>(loc, adaptor.getIndices()[i], mref,
constantIndex(rewriter, loc, i));
rewriter.create<memref::StoreOp>(loc, adaptor.getValue(), vref);
SmallString<12> name{"lexInsert", primaryTypeFunctionSuffix(elemTp)};
createFuncCall(rewriter, loc, name, {}, {adaptor.getTensor(), mref, vref},
EmitCInterface::On);
rewriter.replaceOp(op, adaptor.getTensor());
return success();
}
};
/// Sparse conversion rule for the expand operator.
class SparseTensorExpandConverter : public OpConversionPattern<ExpandOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
RankedTensorType srcType =
op.getTensor().getType().cast<RankedTensorType>();
Type eltType = srcType.getElementType();
Type boolType = rewriter.getIntegerType(1);
Type idxType = rewriter.getIndexType();
// All initialization should be done on entry of the loop nest.
rewriter.setInsertionPointAfter(op.getTensor().getDefiningOp());
// Determine the size for access expansion (always the innermost stored
// dimension size, translated back to original dimension).
auto enc = getSparseTensorEncoding(srcType);
unsigned innerDim = toOrigDim(srcType, srcType.getRank() - 1);
auto sz = sizeFromPtrAtDim(rewriter, loc, enc, srcType, adaptor.getTensor(),
innerDim);
// Allocate temporary buffers for values, filled-switch, and indices.
// We do not use stack buffers for this, since the expanded size may
// be rather large (as it envelops a single expanded dense dimension).
Value values = genAlloc(rewriter, loc, sz, eltType);
Value filled = genAlloc(rewriter, loc, sz, boolType);
Value indices = genAlloc(rewriter, loc, sz, idxType);
Value zero = constantZero(rewriter, loc, idxType);
// Reset the values/filled-switch to all-zero/false. Note that this
// introduces an O(N) operation into the computation, but this reset
// operation is amortized over the innermost loops for the access
// pattern expansion. As noted in the operation doc, we would like
// to amortize this setup cost even between kernels.
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, eltType)},
ValueRange{values});
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, boolType)},
ValueRange{filled});
// Replace expansion op with these buffers and initial index.
assert(op.getNumResults() == 4);
rewriter.replaceOp(op, {values, filled, indices, zero});
return success();
}
};
/// Sparse conversion rule for the compress operator.
class SparseTensorCompressConverter : public OpConversionPattern<CompressOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(CompressOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
// Note that this method call resets the values/filled-switch back to
// all-zero/false by only iterating over the set elements, so the
// complexity remains proportional to the sparsity of the expanded
// access pattern.
Value values = adaptor.getValues();
Value filled = adaptor.getFilled();
Value added = adaptor.getAdded();
Value count = adaptor.getCount();
Value tensor = adaptor.getTensor();
auto tp = op.getTensor().getType().cast<RankedTensorType>();
Type elemTp = tp.getElementType();
unsigned rank = tp.getRank();
auto mref = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
for (unsigned i = 0; i < rank - 1; i++)
rewriter.create<memref::StoreOp>(loc, adaptor.getIndices()[i], mref,
constantIndex(rewriter, loc, i));
SmallString<12> name{"expInsert", primaryTypeFunctionSuffix(elemTp)};
createFuncCall(rewriter, loc, name, {},
{tensor, mref, values, filled, added, count},
EmitCInterface::On);
rewriter.replaceOp(op, adaptor.getTensor());
// Deallocate the buffers on exit of the loop nest.
Operation *parent = getTop(op);
rewriter.setInsertionPointAfter(parent);
rewriter.create<memref::DeallocOp>(loc, values);
rewriter.create<memref::DeallocOp>(loc, filled);
rewriter.create<memref::DeallocOp>(loc, added);
return success();
}
};
/// Sparse conversion rule for the concatenate operator.
class SparseTensorConcatConverter : public OpConversionPattern<ConcatenateOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ConcatenateOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// The conversion works as follow:
// (1). When output is sparse, and mix of inputs:
// a_sparse = concat (b_dense, c_sparse, ....)
// =>
// coo_for_a = newSparseCOO(shapeOf(a))
// for i, j, k // dense input
// coo->add(adjustForOffset(i,j,k), b[i,j,k])
//
// for elem in sparse_input
// coo->add(adjustForOffset(elem.indices), elem.value)
// ...
// a = newSparseTensor(coo_for_a)
// return a
//
// (2). When output is dense, and mix of inputs:
// a_dense = concat (b_dense, c_sparse, ....)
// =>
// a = malloc(shapeOf(a))
// for i, j, k // dense input
// a[ adjustForOffset(i,j,k) ] = b[i,j,k]
//
// for elem in sparse_input
// a[ adjustForOffset(elem.indices) ] = elem.value
// return a
Location loc = op.getLoc();
auto dstTp = op.getType().cast<RankedTensorType>();
auto encDst = getSparseTensorEncoding(dstTp);
Type elemTp = dstTp.getElementType();
uint64_t concatDim = op.getDimension().getZExtValue();
unsigned rank = dstTp.getRank();
Value dst; // destination tensor
Value dstPerm; // destination tensor permutation (if sparse out)
// A pointer to the value being inserted (if dense => sparse)
Value elemPtr;
// Memory that holds the COO for destination tensor (if sparse out)
Value dstIdx;
// The offset applied to the dimenstion to be concated (starting from 0)
Value offset = constantIndex(rewriter, loc, 0);
SmallVector<Value, 4> sizes;
NewCallParams params(rewriter, loc);
concatSizesFromInputs(rewriter, sizes, loc, dstTp, op.getInputs(),
concatDim);
if (encDst) {
// Start a new COO for the destination tensor.
dst =
params.genBuffers(encDst, sizes, dstTp).genNewCall(Action::kEmptyCOO);
dstPerm = params.getDim2LvlMap();
elemPtr = genAllocaScalar(rewriter, loc, elemTp);
dstIdx = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
} else {
// TODO: Dense buffers should be allocated/deallocated via the callback
// in BufferizationOptions.
dst = allocDenseTensor(rewriter, loc, dstTp, sizes);
}
for (auto it : llvm::zip(op.getInputs(), adaptor.getInputs())) {
Value orignalOp = std::get<0>(it); // Input (with encoding) from Op
Value adaptedOp = std::get<1>(it); // Input (type converted) from adaptor
RankedTensorType srcTp = orignalOp.getType().cast<RankedTensorType>();
auto encSrc = getSparseTensorEncoding(srcTp);
if (encSrc) {
genSparseCOOIterationLoop(
rewriter, loc, adaptedOp, srcTp,
[&](OpBuilder &builder, Location loc, Value idx,
Value elemPtr) -> void {
auto indVec =
loadIndices(builder, loc, rank, idx, concatDim, offset);
if (encDst) {
// Case: sparse => sparse
storeIndices(builder, loc, rank, dstIdx, indVec);
genAddEltCall(builder, loc, elemTp, dst, elemPtr, dstIdx,
dstPerm);
} else {
// Case: sparse => dense
insertScalarIntoDenseTensor(builder, loc, elemPtr, dst, indVec);
}
});
} else {
genDenseTensorIterationLoop(
rewriter, loc, adaptedOp, srcTp,
[&](OpBuilder &builder, Location loc, ValueRange idx) -> void {
if (encDst) {
// Case: dense => sparse
storeIndices(builder, loc, rank, dstIdx, idx, concatDim,
offset);
Value val = genValueForDense(builder, loc, adaptedOp, idx);
builder.create<memref::StoreOp>(loc, val, elemPtr);
genAddEltCall(builder, loc, elemTp, dst, elemPtr, dstIdx,
dstPerm);
} else {
// Case: dense => dense
Value val = genValueForDense(builder, loc, adaptedOp, idx);
SmallVector<Value, 4> indVec(idx);
// Apply offset.
indVec[concatDim] = builder.create<arith::AddIOp>(
loc, indVec[concatDim], offset);
builder.create<memref::StoreOp>(loc, val, dst, indVec);
}
});
}
// Accumulate offset.
// TODO: avoid calling sparseDimSize multiple times by caching the result!
Value curDim = encSrc ? sizeFromPtrAtDim(rewriter, loc, encSrc, srcTp,
adaptedOp, concatDim)
: linalg::createOrFoldDimOp(rewriter, loc,
adaptedOp, concatDim);
offset = rewriter.create<arith::AddIOp>(loc, offset, curDim);
}
if (encDst) {
// In sparse output case, the destination holds the COO.
Value coo = dst;
dst = params.genNewCall(Action::kFromCOO, coo);
// Release resources.
genDelCOOCall(rewriter, loc, elemTp, coo);
rewriter.replaceOp(op, dst);
} else {
rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, dstTp, dst);
}
return success();
}
};
/// Sparse conversion rule for the output operator.
class SparseTensorOutConverter : public OpConversionPattern<OutOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(OutOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
ShapedType srcType = op.getTensor().getType().cast<ShapedType>();
// Convert to default permuted COO.
Value src = adaptor.getOperands()[0];
auto encSrc = getSparseTensorEncoding(srcType);
SmallVector<Value, 4> sizes;
sizesFromPtr(rewriter, sizes, loc, encSrc, srcType, src);
auto enc = SparseTensorEncodingAttr::get(
op->getContext(), encSrc.getDimLevelType(), AffineMap(), AffineMap(),
encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
Value coo = NewCallParams(rewriter, loc)
.genBuffers(enc, sizes, srcType)
.genNewCall(Action::kToCOO, src);
// Then output the tensor to external file with indices in the externally
// visible lexicographic index order. A sort is required if the source was
// not in that order yet (note that the sort can be dropped altogether if
// external format does not care about the order at all, but here we assume
// it does).
Value sort = constantI1(rewriter, loc,
encSrc.getDimOrdering() &&
!encSrc.getDimOrdering().isIdentity());
SmallVector<Value, 3> outParams{coo, adaptor.getOperands()[1], sort};
Type eltType = srcType.getElementType();
SmallString<18> name{"outSparseTensor", primaryTypeFunctionSuffix(eltType)};
createFuncCall(rewriter, loc, name, {}, outParams, EmitCInterface::Off);
genDelCOOCall(rewriter, loc, eltType, coo);
rewriter.eraseOp(op);
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Sparse tensor type conversion into opaque pointer.
//===----------------------------------------------------------------------===//
mlir::SparseTensorTypeToPtrConverter::SparseTensorTypeToPtrConverter() {
addConversion([](Type type) { return type; });
addConversion(convertSparseTensorTypes);
}
//===----------------------------------------------------------------------===//
// Public method for populating conversion rules.
//===----------------------------------------------------------------------===//
/// Populates the given patterns list with conversion rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparseTensorConversionPatterns(
TypeConverter &typeConverter, RewritePatternSet &patterns,
const SparseTensorConversionOptions &options) {
patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter,
SparseCastConverter, SparseTensorNewConverter,
SparseReshapeConverter<tensor::ExpandShapeOp>,
SparseReshapeConverter<tensor::CollapseShapeOp>,
SparseTensorConcatConverter, SparseTensorAllocConverter,
SparseTensorDeallocConverter, SparseTensorToPointersConverter,
SparseTensorToIndicesConverter, SparseTensorToValuesConverter,
SparseNumberOfEntriesConverter, SparseTensorLoadConverter,
SparseTensorInsertConverter, SparseTensorExpandConverter,
SparseTensorCompressConverter, SparseTensorOutConverter>(
typeConverter, patterns.getContext());
patterns.add<SparseTensorConvertConverter>(typeConverter,
patterns.getContext(), options);
}