801 lines
31 KiB
C++
801 lines
31 KiB
C++
//===- SparseBufferRewriting.cpp - Sparse buffer rewriting rules ----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements rewriting rules that are specific to sparse tensor
|
|
// primitives with memref operands.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodegenUtils.h"
|
|
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/SCF/IR/SCF.h"
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
|
|
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::sparse_tensor;
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
// Helper methods for the actual rewriting rules.
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
static constexpr uint64_t loIdx = 0;
|
|
static constexpr uint64_t hiIdx = 1;
|
|
static constexpr uint64_t xStartIdx = 2;
|
|
|
|
static constexpr const char kLessThanFuncNamePrefix[] = "_sparse_less_than_";
|
|
static constexpr const char kCompareEqFuncNamePrefix[] = "_sparse_compare_eq_";
|
|
static constexpr const char kPartitionFuncNamePrefix[] = "_sparse_partition_";
|
|
static constexpr const char kBinarySearchFuncNamePrefix[] =
|
|
"_sparse_binary_search_";
|
|
static constexpr const char kSortNonstableFuncNamePrefix[] =
|
|
"_sparse_sort_nonstable_";
|
|
static constexpr const char kSortStableFuncNamePrefix[] =
|
|
"_sparse_sort_stable_";
|
|
|
|
using FuncGeneratorType =
|
|
function_ref<void(OpBuilder &, ModuleOp, func::FuncOp, size_t)>;
|
|
|
|
/// Constructs a function name with this format to facilitate quick sort:
|
|
/// <namePrefix><dim>_<x type>_<y0 type>..._<yn type>
|
|
static void getMangledSortHelperFuncName(llvm::raw_svector_ostream &nameOstream,
|
|
StringRef namePrefix, size_t dim,
|
|
ValueRange operands) {
|
|
nameOstream
|
|
<< namePrefix << dim << "_"
|
|
<< operands[xStartIdx].getType().cast<MemRefType>().getElementType();
|
|
|
|
for (Value v : operands.drop_front(xStartIdx + dim))
|
|
nameOstream << "_" << v.getType().cast<MemRefType>().getElementType();
|
|
}
|
|
|
|
/// Looks up a function that is appropriate for the given operands being
|
|
/// sorted, and creates such a function if it doesn't exist yet.
|
|
static FlatSymbolRefAttr
|
|
getMangledSortHelperFunc(OpBuilder &builder, func::FuncOp insertPoint,
|
|
TypeRange resultTypes, StringRef namePrefix,
|
|
size_t dim, ValueRange operands,
|
|
FuncGeneratorType createFunc) {
|
|
SmallString<32> nameBuffer;
|
|
llvm::raw_svector_ostream nameOstream(nameBuffer);
|
|
getMangledSortHelperFuncName(nameOstream, namePrefix, dim, operands);
|
|
|
|
ModuleOp module = insertPoint->getParentOfType<ModuleOp>();
|
|
MLIRContext *context = module.getContext();
|
|
auto result = SymbolRefAttr::get(context, nameOstream.str());
|
|
auto func = module.lookupSymbol<func::FuncOp>(result.getAttr());
|
|
|
|
if (!func) {
|
|
// Create the function.
|
|
OpBuilder::InsertionGuard insertionGuard(builder);
|
|
builder.setInsertionPoint(insertPoint);
|
|
Location loc = insertPoint.getLoc();
|
|
func = builder.create<func::FuncOp>(
|
|
loc, nameOstream.str(),
|
|
FunctionType::get(context, operands.getTypes(), resultTypes));
|
|
func.setPrivate();
|
|
createFunc(builder, module, func, dim);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Creates a code block for swapping the values in index i and j for all the
|
|
/// buffers.
|
|
//
|
|
// The generated IR corresponds to this C like algorithm:
|
|
// swap(x0[i], x0[j]);
|
|
// swap(x1[i], x1[j]);
|
|
// ...
|
|
// swap(xn[i], xn[j]);
|
|
// swap(y0[i], y0[j]);
|
|
// ...
|
|
// swap(yn[i], yn[j]);
|
|
static void createSwap(OpBuilder &builder, Location loc, ValueRange args) {
|
|
Value i = args[0];
|
|
Value j = args[1];
|
|
for (auto arg : args.drop_front(xStartIdx)) {
|
|
Value vi = builder.create<memref::LoadOp>(loc, arg, i);
|
|
Value vj = builder.create<memref::LoadOp>(loc, arg, j);
|
|
builder.create<memref::StoreOp>(loc, vj, arg, i);
|
|
builder.create<memref::StoreOp>(loc, vi, arg, j);
|
|
}
|
|
}
|
|
|
|
/// Creates a function to compare all the (xs[i], xs[j]) pairs. The method to
|
|
/// compare each pair is create via `compareBuilder`.
|
|
static void createCompareFuncImplementation(
|
|
OpBuilder &builder, ModuleOp unused, func::FuncOp func, size_t dim,
|
|
function_ref<scf::IfOp(OpBuilder &, Location, Value, Value, Value, bool)>
|
|
compareBuilder) {
|
|
OpBuilder::InsertionGuard insertionGuard(builder);
|
|
|
|
Block *entryBlock = func.addEntryBlock();
|
|
builder.setInsertionPointToStart(entryBlock);
|
|
Location loc = func.getLoc();
|
|
ValueRange args = entryBlock->getArguments();
|
|
|
|
scf::IfOp topIfOp;
|
|
for (const auto &item : llvm::enumerate(args.slice(xStartIdx, dim))) {
|
|
scf::IfOp ifOp = compareBuilder(builder, loc, args[0], args[1],
|
|
item.value(), (item.index() == dim - 1));
|
|
if (item.index() == 0) {
|
|
topIfOp = ifOp;
|
|
} else {
|
|
OpBuilder::InsertionGuard insertionGuard(builder);
|
|
builder.setInsertionPointAfter(ifOp);
|
|
builder.create<scf::YieldOp>(loc, ifOp.getResult(0));
|
|
}
|
|
}
|
|
|
|
builder.setInsertionPointAfter(topIfOp);
|
|
builder.create<func::ReturnOp>(loc, topIfOp.getResult(0));
|
|
}
|
|
|
|
/// Generates an if-statement to compare whether x[i] is equal to x[j].
|
|
static scf::IfOp createEqCompare(OpBuilder &builder, Location loc, Value i,
|
|
Value j, Value x, bool isLastDim) {
|
|
Value f = constantI1(builder, loc, false);
|
|
Value t = constantI1(builder, loc, true);
|
|
Value vi = builder.create<memref::LoadOp>(loc, x, i);
|
|
Value vj = builder.create<memref::LoadOp>(loc, x, j);
|
|
|
|
Value cond =
|
|
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, vi, vj);
|
|
scf::IfOp ifOp =
|
|
builder.create<scf::IfOp>(loc, f.getType(), cond, /*else=*/true);
|
|
|
|
// x[1] != x[j]:
|
|
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
|
|
builder.create<scf::YieldOp>(loc, f);
|
|
|
|
// x[i] == x[j]:
|
|
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
if (isLastDim == 1) {
|
|
// Finish checking all dimensions.
|
|
builder.create<scf::YieldOp>(loc, t);
|
|
}
|
|
|
|
return ifOp;
|
|
}
|
|
|
|
/// Creates a function to compare whether xs[i] is equal to xs[j].
|
|
//
|
|
// The generate IR corresponds to this C like algorithm:
|
|
// if (x0[i] != x0[j])
|
|
// return false;
|
|
// else
|
|
// if (x1[i] != x1[j])
|
|
// return false;
|
|
// else if (x2[2] != x2[j]))
|
|
// and so on ...
|
|
static void createEqCompareFunc(OpBuilder &builder, ModuleOp unused,
|
|
func::FuncOp func, size_t dim) {
|
|
createCompareFuncImplementation(builder, unused, func, dim, createEqCompare);
|
|
}
|
|
|
|
/// Generates an if-statement to compare whether x[i] is less than x[j].
|
|
static scf::IfOp createLessThanCompare(OpBuilder &builder, Location loc,
|
|
Value i, Value j, Value x,
|
|
bool isLastDim) {
|
|
Value f = constantI1(builder, loc, false);
|
|
Value t = constantI1(builder, loc, true);
|
|
Value vi = builder.create<memref::LoadOp>(loc, x, i);
|
|
Value vj = builder.create<memref::LoadOp>(loc, x, j);
|
|
|
|
Value cond =
|
|
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, vi, vj);
|
|
scf::IfOp ifOp =
|
|
builder.create<scf::IfOp>(loc, f.getType(), cond, /*else=*/true);
|
|
// If (x[i] < x[j]).
|
|
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
builder.create<scf::YieldOp>(loc, t);
|
|
|
|
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
|
|
if (isLastDim == 1) {
|
|
// Finish checking all dimensions.
|
|
builder.create<scf::YieldOp>(loc, f);
|
|
} else {
|
|
cond =
|
|
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, vj, vi);
|
|
scf::IfOp ifOp2 =
|
|
builder.create<scf::IfOp>(loc, f.getType(), cond, /*else=*/true);
|
|
// Otherwise if (x[j] < x[i]).
|
|
builder.setInsertionPointToStart(&ifOp2.getThenRegion().front());
|
|
builder.create<scf::YieldOp>(loc, f);
|
|
|
|
// Otherwise check the remaining dimensions.
|
|
builder.setInsertionPointAfter(ifOp2);
|
|
builder.create<scf::YieldOp>(loc, ifOp2.getResult(0));
|
|
// Set up the insertion point for the nested if-stmt that checks the
|
|
// remaining dimensions.
|
|
builder.setInsertionPointToStart(&ifOp2.getElseRegion().front());
|
|
}
|
|
|
|
return ifOp;
|
|
}
|
|
|
|
/// Creates a function to compare whether xs[i] is less than xs[j].
|
|
//
|
|
// The generate IR corresponds to this C like algorithm:
|
|
// if (x0[i] < x0[j])
|
|
// return true;
|
|
// else if (x0[j] < x0[i])
|
|
// return false;
|
|
// else
|
|
// if (x1[i] < x1[j])
|
|
// return true;
|
|
// else if (x1[j] < x1[i]))
|
|
// and so on ...
|
|
static void createLessThanFunc(OpBuilder &builder, ModuleOp unused,
|
|
func::FuncOp func, size_t dim) {
|
|
createCompareFuncImplementation(builder, unused, func, dim,
|
|
createLessThanCompare);
|
|
}
|
|
|
|
/// Creates a function to use a binary search to find the insertion point for
|
|
/// inserting xs[hi] to the sorted values xs[lo..hi).
|
|
//
|
|
// The generate IR corresponds to this C like algorithm:
|
|
// p = hi
|
|
// while (lo < hi)
|
|
// mid = (lo + hi) >> 1
|
|
// if (xs[p] < xs[mid])
|
|
// hi = mid
|
|
// else
|
|
// lo = mid - 1
|
|
// return lo;
|
|
//
|
|
static void createBinarySearchFunc(OpBuilder &builder, ModuleOp module,
|
|
func::FuncOp func, size_t dim) {
|
|
OpBuilder::InsertionGuard insertionGuard(builder);
|
|
Block *entryBlock = func.addEntryBlock();
|
|
builder.setInsertionPointToStart(entryBlock);
|
|
|
|
Location loc = func.getLoc();
|
|
ValueRange args = entryBlock->getArguments();
|
|
Value p = args[hiIdx];
|
|
SmallVector<Type, 2> types(2, p.getType());
|
|
scf::WhileOp whileOp = builder.create<scf::WhileOp>(
|
|
loc, types, SmallVector<Value, 2>{args[loIdx], args[hiIdx]});
|
|
|
|
// The before-region of the WhileOp.
|
|
Block *before =
|
|
builder.createBlock(&whileOp.getBefore(), {}, types, {loc, loc});
|
|
builder.setInsertionPointToEnd(before);
|
|
Value cond1 = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
|
|
before->getArgument(0),
|
|
before->getArgument(1));
|
|
builder.create<scf::ConditionOp>(loc, cond1, before->getArguments());
|
|
|
|
// The after-region of the WhileOp.
|
|
Block *after =
|
|
builder.createBlock(&whileOp.getAfter(), {}, types, {loc, loc});
|
|
builder.setInsertionPointToEnd(after);
|
|
Value lo = after->getArgument(0);
|
|
Value hi = after->getArgument(1);
|
|
// Compute mid = (lo + hi) >> 1.
|
|
Value c1 = constantIndex(builder, loc, 1);
|
|
Value mid = builder.create<arith::ShRUIOp>(
|
|
loc, builder.create<arith::AddIOp>(loc, lo, hi), c1);
|
|
Value midp1 = builder.create<arith::AddIOp>(loc, mid, c1);
|
|
|
|
// Compare xs[p] < xs[mid].
|
|
SmallVector<Value, 6> compareOperands{p, mid};
|
|
compareOperands.append(args.begin() + xStartIdx,
|
|
args.begin() + xStartIdx + dim);
|
|
Type i1Type = IntegerType::get(module.getContext(), 1, IntegerType::Signless);
|
|
FlatSymbolRefAttr lessThanFunc =
|
|
getMangledSortHelperFunc(builder, func, {i1Type}, kLessThanFuncNamePrefix,
|
|
dim, compareOperands, createLessThanFunc);
|
|
Value cond2 = builder
|
|
.create<func::CallOp>(loc, lessThanFunc, TypeRange{i1Type},
|
|
compareOperands)
|
|
.getResult(0);
|
|
|
|
// Update lo and hi for the WhileOp as follows:
|
|
// if (xs[p] < xs[mid]))
|
|
// hi = mid;
|
|
// else
|
|
// lo = mid + 1;
|
|
Value newLo = builder.create<arith::SelectOp>(loc, cond2, lo, midp1);
|
|
Value newHi = builder.create<arith::SelectOp>(loc, cond2, mid, hi);
|
|
builder.create<scf::YieldOp>(loc, ValueRange{newLo, newHi});
|
|
|
|
builder.setInsertionPointAfter(whileOp);
|
|
builder.create<func::ReturnOp>(loc, whileOp.getResult(0));
|
|
}
|
|
|
|
/// Creates code to advance i in a loop based on xs[p] as follows:
|
|
/// while (xs[i] < xs[p]) i += step (step > 0)
|
|
/// or
|
|
/// while (xs[i] > xs[p]) i += step (step < 0)
|
|
/// The routine returns i as well as a boolean value to indicate whether
|
|
/// xs[i] == xs[p].
|
|
static std::pair<Value, Value>
|
|
createScanLoop(OpBuilder &builder, ModuleOp module, func::FuncOp func,
|
|
ValueRange xs, Value i, Value p, size_t dim, int step) {
|
|
Location loc = func.getLoc();
|
|
scf::WhileOp whileOp =
|
|
builder.create<scf::WhileOp>(loc, TypeRange{i.getType()}, ValueRange{i});
|
|
|
|
Block *before =
|
|
builder.createBlock(&whileOp.getBefore(), {}, {i.getType()}, {loc});
|
|
builder.setInsertionPointToEnd(before);
|
|
SmallVector<Value, 6> compareOperands;
|
|
if (step > 0) {
|
|
compareOperands.push_back(before->getArgument(0));
|
|
compareOperands.push_back(p);
|
|
} else {
|
|
assert(step < 0);
|
|
compareOperands.push_back(p);
|
|
compareOperands.push_back(before->getArgument(0));
|
|
}
|
|
compareOperands.append(xs.begin(), xs.end());
|
|
MLIRContext *context = module.getContext();
|
|
Type i1Type = IntegerType::get(context, 1, IntegerType::Signless);
|
|
FlatSymbolRefAttr lessThanFunc =
|
|
getMangledSortHelperFunc(builder, func, {i1Type}, kLessThanFuncNamePrefix,
|
|
dim, compareOperands, createLessThanFunc);
|
|
Value cond = builder
|
|
.create<func::CallOp>(loc, lessThanFunc, TypeRange{i1Type},
|
|
compareOperands)
|
|
.getResult(0);
|
|
builder.create<scf::ConditionOp>(loc, cond, before->getArguments());
|
|
|
|
Block *after =
|
|
builder.createBlock(&whileOp.getAfter(), {}, {i.getType()}, {loc});
|
|
builder.setInsertionPointToEnd(after);
|
|
Value cs = constantIndex(builder, loc, step);
|
|
i = builder.create<arith::AddIOp>(loc, after->getArgument(0), cs);
|
|
builder.create<scf::YieldOp>(loc, ValueRange{i});
|
|
i = whileOp.getResult(0);
|
|
|
|
builder.setInsertionPointAfter(whileOp);
|
|
compareOperands[0] = i;
|
|
compareOperands[1] = p;
|
|
FlatSymbolRefAttr compareEqFunc = getMangledSortHelperFunc(
|
|
builder, func, {i1Type}, kCompareEqFuncNamePrefix, dim, compareOperands,
|
|
createEqCompareFunc);
|
|
Value compareEq =
|
|
builder
|
|
.create<func::CallOp>(loc, compareEqFunc, TypeRange{i1Type},
|
|
compareOperands)
|
|
.getResult(0);
|
|
|
|
return std::make_pair(whileOp.getResult(0), compareEq);
|
|
}
|
|
|
|
/// Creates a function to perform quick sort partition on the values in the
|
|
/// range of index [lo, hi), assuming lo < hi.
|
|
//
|
|
// The generated IR corresponds to this C like algorithm:
|
|
// int partition(lo, hi, xs) {
|
|
// p = (lo+hi)/2 // pivot index
|
|
// i = lo
|
|
// j = hi-1
|
|
// while (i < j) do {
|
|
// while (xs[i] < xs[p]) i ++;
|
|
// i_eq = (xs[i] == xs[p]);
|
|
// while (xs[j] > xs[p]) j --;
|
|
// j_eq = (xs[j] == xs[p]);
|
|
// if (i < j) {
|
|
// swap(xs[i], xs[j])
|
|
// if (i == p) {
|
|
// p = j;
|
|
// } else if (j == p) {
|
|
// p = i;
|
|
// }
|
|
// if (i_eq && j_eq) {
|
|
// ++i;
|
|
// --j;
|
|
// }
|
|
// }
|
|
// }
|
|
// return p
|
|
// }
|
|
static void createPartitionFunc(OpBuilder &builder, ModuleOp module,
|
|
func::FuncOp func, size_t dim) {
|
|
OpBuilder::InsertionGuard insertionGuard(builder);
|
|
|
|
Block *entryBlock = func.addEntryBlock();
|
|
builder.setInsertionPointToStart(entryBlock);
|
|
|
|
Location loc = func.getLoc();
|
|
ValueRange args = entryBlock->getArguments();
|
|
Value lo = args[loIdx];
|
|
Value hi = args[hiIdx];
|
|
Value sum = builder.create<arith::AddIOp>(loc, lo, hi);
|
|
Value c1 = constantIndex(builder, loc, 1);
|
|
Value p = builder.create<arith::ShRUIOp>(loc, sum, c1);
|
|
|
|
Value i = lo;
|
|
Value j = builder.create<arith::SubIOp>(loc, hi, c1);
|
|
SmallVector<Value, 4> operands{i, j, p};
|
|
SmallVector<Type, 4> types{i.getType(), j.getType(), p.getType()};
|
|
scf::WhileOp whileOp = builder.create<scf::WhileOp>(loc, types, operands);
|
|
|
|
// The before-region of the WhileOp.
|
|
Block *before =
|
|
builder.createBlock(&whileOp.getBefore(), {}, types, {loc, loc, loc});
|
|
builder.setInsertionPointToEnd(before);
|
|
Value cond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
|
|
before->getArgument(0),
|
|
before->getArgument(1));
|
|
builder.create<scf::ConditionOp>(loc, cond, before->getArguments());
|
|
|
|
// The after-region of the WhileOp.
|
|
Block *after =
|
|
builder.createBlock(&whileOp.getAfter(), {}, types, {loc, loc, loc});
|
|
builder.setInsertionPointToEnd(after);
|
|
i = after->getArgument(0);
|
|
j = after->getArgument(1);
|
|
p = after->getArgument(2);
|
|
|
|
auto [iresult, iCompareEq] = createScanLoop(
|
|
builder, module, func, args.slice(xStartIdx, dim), i, p, dim, 1);
|
|
i = iresult;
|
|
auto [jresult, jCompareEq] = createScanLoop(
|
|
builder, module, func, args.slice(xStartIdx, dim), j, p, dim, -1);
|
|
j = jresult;
|
|
|
|
// If i < j:
|
|
cond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, i, j);
|
|
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, types, cond, /*else=*/true);
|
|
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
SmallVector<Value, 6> swapOperands{i, j};
|
|
swapOperands.append(args.begin() + xStartIdx, args.end());
|
|
createSwap(builder, loc, swapOperands);
|
|
// If the pivot is moved, update p with the new pivot.
|
|
Value icond =
|
|
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, i, p);
|
|
scf::IfOp ifOpI = builder.create<scf::IfOp>(loc, TypeRange{p.getType()},
|
|
icond, /*else=*/true);
|
|
builder.setInsertionPointToStart(&ifOpI.getThenRegion().front());
|
|
builder.create<scf::YieldOp>(loc, ValueRange{j});
|
|
builder.setInsertionPointToStart(&ifOpI.getElseRegion().front());
|
|
Value jcond =
|
|
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, j, p);
|
|
scf::IfOp ifOpJ = builder.create<scf::IfOp>(loc, TypeRange{p.getType()},
|
|
jcond, /*else=*/true);
|
|
builder.setInsertionPointToStart(&ifOpJ.getThenRegion().front());
|
|
builder.create<scf::YieldOp>(loc, ValueRange{i});
|
|
builder.setInsertionPointToStart(&ifOpJ.getElseRegion().front());
|
|
builder.create<scf::YieldOp>(loc, ValueRange{p});
|
|
builder.setInsertionPointAfter(ifOpJ);
|
|
builder.create<scf::YieldOp>(loc, ifOpJ.getResults());
|
|
builder.setInsertionPointAfter(ifOpI);
|
|
Value compareEqIJ =
|
|
builder.create<arith::AndIOp>(loc, iCompareEq, jCompareEq);
|
|
scf::IfOp ifOp2 = builder.create<scf::IfOp>(
|
|
loc, TypeRange{i.getType(), j.getType()}, compareEqIJ, /*else=*/true);
|
|
builder.setInsertionPointToStart(&ifOp2.getThenRegion().front());
|
|
Value i2 = builder.create<arith::AddIOp>(loc, i, c1);
|
|
Value j2 = builder.create<arith::SubIOp>(loc, j, c1);
|
|
builder.create<scf::YieldOp>(loc, ValueRange{i2, j2});
|
|
builder.setInsertionPointToStart(&ifOp2.getElseRegion().front());
|
|
builder.create<scf::YieldOp>(loc, ValueRange{i, j});
|
|
builder.setInsertionPointAfter(ifOp2);
|
|
builder.create<scf::YieldOp>(
|
|
loc,
|
|
ValueRange{ifOp2.getResult(0), ifOp2.getResult(1), ifOpI.getResult(0)});
|
|
|
|
// False branch for if i < j:
|
|
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
|
|
builder.create<scf::YieldOp>(loc, ValueRange{i, j, p});
|
|
|
|
// Return for the whileOp.
|
|
builder.setInsertionPointAfter(ifOp);
|
|
builder.create<scf::YieldOp>(loc, ifOp.getResults());
|
|
|
|
// Return for the function.
|
|
builder.setInsertionPointAfter(whileOp);
|
|
builder.create<func::ReturnOp>(loc, whileOp.getResult(2));
|
|
}
|
|
|
|
/// Creates a function to perform quick sort on the value in the range of
|
|
/// index [lo, hi).
|
|
//
|
|
// The generate IR corresponds to this C like algorithm:
|
|
// void quickSort(lo, hi, data) {
|
|
// if (lo < hi) {
|
|
// p = partition(low, high, data);
|
|
// quickSort(lo, p, data);
|
|
// quickSort(p + 1, hi, data);
|
|
// }
|
|
// }
|
|
static void createSortNonstableFunc(OpBuilder &builder, ModuleOp module,
|
|
func::FuncOp func, size_t dim) {
|
|
OpBuilder::InsertionGuard insertionGuard(builder);
|
|
Block *entryBlock = func.addEntryBlock();
|
|
builder.setInsertionPointToStart(entryBlock);
|
|
|
|
MLIRContext *context = module.getContext();
|
|
Location loc = func.getLoc();
|
|
ValueRange args = entryBlock->getArguments();
|
|
Value lo = args[loIdx];
|
|
Value hi = args[hiIdx];
|
|
Value cond =
|
|
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, lo, hi);
|
|
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, cond, /*else=*/false);
|
|
|
|
// The if-stmt true branch.
|
|
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
FlatSymbolRefAttr partitionFunc = getMangledSortHelperFunc(
|
|
builder, func, {IndexType::get(context)}, kPartitionFuncNamePrefix, dim,
|
|
args, createPartitionFunc);
|
|
auto p = builder.create<func::CallOp>(
|
|
loc, partitionFunc, TypeRange{IndexType::get(context)}, ValueRange(args));
|
|
|
|
SmallVector<Value, 6> lowOperands{lo, p.getResult(0)};
|
|
lowOperands.append(args.begin() + xStartIdx, args.end());
|
|
builder.create<func::CallOp>(loc, func, lowOperands);
|
|
|
|
SmallVector<Value, 6> highOperands{
|
|
builder.create<arith::AddIOp>(loc, p.getResult(0),
|
|
constantIndex(builder, loc, 1)),
|
|
hi};
|
|
highOperands.append(args.begin() + xStartIdx, args.end());
|
|
builder.create<func::CallOp>(loc, func, highOperands);
|
|
|
|
// After the if-stmt.
|
|
builder.setInsertionPointAfter(ifOp);
|
|
builder.create<func::ReturnOp>(loc);
|
|
}
|
|
|
|
/// Creates a function to perform insertion sort on the values in the range of
|
|
/// index [lo, hi).
|
|
//
|
|
// The generate IR corresponds to this C like algorithm:
|
|
// void insertionSort(lo, hi, data) {
|
|
// for (i = lo+1; i < hi; i++) {
|
|
// d = data[i];
|
|
// p = binarySearch(lo, i-1, data)
|
|
// for (j = 0; j > i - p; j++)
|
|
// data[i-j] = data[i-j-1]
|
|
// data[p] = d
|
|
// }
|
|
// }
|
|
static void createSortStableFunc(OpBuilder &builder, ModuleOp module,
|
|
func::FuncOp func, size_t dim) {
|
|
OpBuilder::InsertionGuard insertionGuard(builder);
|
|
Block *entryBlock = func.addEntryBlock();
|
|
builder.setInsertionPointToStart(entryBlock);
|
|
|
|
MLIRContext *context = module.getContext();
|
|
Location loc = func.getLoc();
|
|
ValueRange args = entryBlock->getArguments();
|
|
Value c1 = constantIndex(builder, loc, 1);
|
|
Value lo = args[loIdx];
|
|
Value hi = args[hiIdx];
|
|
Value lop1 = builder.create<arith::AddIOp>(loc, lo, c1);
|
|
|
|
// Start the outer for-stmt with induction variable i.
|
|
scf::ForOp forOpI = builder.create<scf::ForOp>(loc, lop1, hi, c1);
|
|
builder.setInsertionPointToStart(forOpI.getBody());
|
|
Value i = forOpI.getInductionVar();
|
|
|
|
// Binary search to find the insertion point p.
|
|
SmallVector<Value, 6> operands{lo, i};
|
|
operands.append(args.begin() + xStartIdx, args.begin() + xStartIdx + dim);
|
|
FlatSymbolRefAttr searchFunc = getMangledSortHelperFunc(
|
|
builder, func, {IndexType::get(context)}, kBinarySearchFuncNamePrefix,
|
|
dim, operands, createBinarySearchFunc);
|
|
Value p = builder
|
|
.create<func::CallOp>(loc, searchFunc, TypeRange{c1.getType()},
|
|
operands)
|
|
.getResult(0);
|
|
|
|
// Move the value at data[i] to a temporary location.
|
|
ValueRange data = args.drop_front(xStartIdx);
|
|
SmallVector<Value, 6> d;
|
|
for (Value v : data)
|
|
d.push_back(builder.create<memref::LoadOp>(loc, v, i));
|
|
|
|
// Start the inner for-stmt with induction variable j, for moving data[p..i)
|
|
// to data[p+1..i+1).
|
|
Value imp = builder.create<arith::SubIOp>(loc, i, p);
|
|
Value c0 = constantIndex(builder, loc, 0);
|
|
scf::ForOp forOpJ = builder.create<scf::ForOp>(loc, c0, imp, c1);
|
|
builder.setInsertionPointToStart(forOpJ.getBody());
|
|
Value j = forOpJ.getInductionVar();
|
|
Value imj = builder.create<arith::SubIOp>(loc, i, j);
|
|
Value imjm1 = builder.create<arith::SubIOp>(loc, imj, c1);
|
|
for (Value v : data) {
|
|
Value t = builder.create<memref::LoadOp>(loc, v, imjm1);
|
|
builder.create<memref::StoreOp>(loc, t, v, imj);
|
|
}
|
|
|
|
// Store the value at data[i] to data[p].
|
|
builder.setInsertionPointAfter(forOpJ);
|
|
for (auto it : llvm::zip(d, data))
|
|
builder.create<memref::StoreOp>(loc, std::get<0>(it), std::get<1>(it), p);
|
|
|
|
builder.setInsertionPointAfter(forOpI);
|
|
builder.create<func::ReturnOp>(loc);
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
// The actual sparse buffer rewriting rules.
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// Sparse rewriting rule for the push_back operator.
|
|
struct PushBackRewriter : OpRewritePattern<PushBackOp> {
|
|
public:
|
|
using OpRewritePattern<PushBackOp>::OpRewritePattern;
|
|
PushBackRewriter(MLIRContext *context, bool enableInit)
|
|
: OpRewritePattern(context), enableBufferInitialization(enableInit) {}
|
|
LogicalResult matchAndRewrite(PushBackOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
// Rewrite push_back(buffer, value, n) to:
|
|
// new_size = size(buffer) + n
|
|
// if (new_size > capacity(buffer))
|
|
// while new_size > new_capacity
|
|
// new_capacity = new_capacity*2
|
|
// new_buffer = realloc(buffer, new_capacity)
|
|
// buffer = new_buffer
|
|
// subBuffer = subviewof(buffer)
|
|
// linalg.fill subBuffer value
|
|
//
|
|
// size(buffer) += n
|
|
//
|
|
// The capacity check is skipped when the attribute inbounds is presented.
|
|
Location loc = op->getLoc();
|
|
Value c0 = constantIndex(rewriter, loc, 0);
|
|
Value buffer = op.getInBuffer();
|
|
Value capacity = rewriter.create<memref::DimOp>(loc, buffer, c0);
|
|
Value idx = constantIndex(rewriter, loc, op.getIdx().getZExtValue());
|
|
Value bufferSizes = op.getBufferSizes();
|
|
Value size = rewriter.create<memref::LoadOp>(loc, bufferSizes, idx);
|
|
Value value = op.getValue();
|
|
|
|
Value n = op.getN() ? op.getN() : constantIndex(rewriter, loc, 1);
|
|
Value newSize = rewriter.create<arith::AddIOp>(loc, size, n);
|
|
auto nValue = dyn_cast_or_null<arith::ConstantIndexOp>(n.getDefiningOp());
|
|
bool nIsOne = (nValue && nValue.value() == 1);
|
|
|
|
if (!op.getInbounds()) {
|
|
Value cond = rewriter.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::ugt, newSize, capacity);
|
|
|
|
Value c2 = constantIndex(rewriter, loc, 2);
|
|
auto bufferType =
|
|
MemRefType::get({ShapedType::kDynamicSize}, value.getType());
|
|
scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, bufferType, cond,
|
|
/*else=*/true);
|
|
// True branch.
|
|
rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
if (nIsOne) {
|
|
capacity = rewriter.create<arith::MulIOp>(loc, capacity, c2);
|
|
} else {
|
|
// Use a do-while loop to calculate the new capacity as follows:
|
|
// do { new_capacity *= 2 } while (size > new_capacity)
|
|
scf::WhileOp whileOp =
|
|
rewriter.create<scf::WhileOp>(loc, capacity.getType(), capacity);
|
|
|
|
// The before-region of the WhileOp.
|
|
Block *before = rewriter.createBlock(&whileOp.getBefore(), {},
|
|
{capacity.getType()}, {loc});
|
|
rewriter.setInsertionPointToEnd(before);
|
|
|
|
capacity =
|
|
rewriter.create<arith::MulIOp>(loc, before->getArgument(0), c2);
|
|
cond = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ugt,
|
|
newSize, capacity);
|
|
rewriter.create<scf::ConditionOp>(loc, cond, ValueRange{capacity});
|
|
// The after-region of the WhileOp.
|
|
Block *after = rewriter.createBlock(&whileOp.getAfter(), {},
|
|
{capacity.getType()}, {loc});
|
|
rewriter.setInsertionPointToEnd(after);
|
|
rewriter.create<scf::YieldOp>(loc, after->getArguments());
|
|
|
|
rewriter.setInsertionPointAfter(whileOp);
|
|
capacity = whileOp.getResult(0);
|
|
}
|
|
|
|
Value newBuffer =
|
|
rewriter.create<memref::ReallocOp>(loc, bufferType, buffer, capacity);
|
|
if (enableBufferInitialization) {
|
|
Value fillSize = rewriter.create<arith::SubIOp>(loc, capacity, newSize);
|
|
Value fillValue = rewriter.create<arith::ConstantOp>(
|
|
loc, value.getType(), rewriter.getZeroAttr(value.getType()));
|
|
Value subBuffer = rewriter.create<memref::SubViewOp>(
|
|
loc, newBuffer, /*offset=*/ValueRange{newSize},
|
|
/*size=*/ValueRange{fillSize},
|
|
/*step=*/ValueRange{constantIndex(rewriter, loc, 1)});
|
|
rewriter.create<linalg::FillOp>(loc, fillValue, subBuffer);
|
|
}
|
|
rewriter.create<scf::YieldOp>(loc, newBuffer);
|
|
|
|
// False branch.
|
|
rewriter.setInsertionPointToStart(&ifOp.getElseRegion().front());
|
|
rewriter.create<scf::YieldOp>(loc, buffer);
|
|
|
|
// Prepare for adding the value to the end of the buffer.
|
|
rewriter.setInsertionPointAfter(ifOp);
|
|
buffer = ifOp.getResult(0);
|
|
}
|
|
|
|
// Add the value to the end of the buffer.
|
|
if (nIsOne) {
|
|
rewriter.create<memref::StoreOp>(loc, value, buffer, size);
|
|
} else {
|
|
Value subBuffer = rewriter.create<memref::SubViewOp>(
|
|
loc, buffer, /*offset=*/ValueRange{size}, /*size=*/ValueRange{n},
|
|
/*step=*/ValueRange{constantIndex(rewriter, loc, 1)});
|
|
rewriter.create<linalg::FillOp>(loc, value, subBuffer);
|
|
}
|
|
|
|
// Update the buffer size.
|
|
rewriter.create<memref::StoreOp>(loc, newSize, bufferSizes, idx);
|
|
rewriter.replaceOp(op, buffer);
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
bool enableBufferInitialization;
|
|
};
|
|
|
|
/// Sparse rewriting rule for the sort operator.
|
|
struct SortRewriter : public OpRewritePattern<SortOp> {
|
|
public:
|
|
using OpRewritePattern<SortOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(SortOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
SmallVector<Value, 6> operands{constantIndex(rewriter, loc, 0), op.getN()};
|
|
|
|
// Convert `values` to have dynamic shape and append them to `operands`.
|
|
auto addValues = [&](ValueRange values) {
|
|
for (Value v : values) {
|
|
auto mtp = v.getType().cast<MemRefType>();
|
|
if (!mtp.isDynamicDim(0)) {
|
|
auto newMtp =
|
|
MemRefType::get({ShapedType::kDynamicSize}, mtp.getElementType());
|
|
v = rewriter.create<memref::CastOp>(loc, newMtp, v);
|
|
}
|
|
operands.push_back(v);
|
|
}
|
|
};
|
|
ValueRange xs = op.getXs();
|
|
addValues(xs);
|
|
addValues(op.getYs());
|
|
auto insertPoint = op->getParentOfType<func::FuncOp>();
|
|
SmallString<32> funcName(op.getStable() ? kSortStableFuncNamePrefix
|
|
: kSortNonstableFuncNamePrefix);
|
|
FuncGeneratorType funcGenerator =
|
|
op.getStable() ? createSortStableFunc : createSortNonstableFunc;
|
|
FlatSymbolRefAttr func =
|
|
getMangledSortHelperFunc(rewriter, insertPoint, TypeRange(), funcName,
|
|
xs.size(), operands, funcGenerator);
|
|
rewriter.replaceOpWithNewOp<func::CallOp>(op, func, TypeRange(), operands);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
// Methods that add patterns described in this file to a pattern list.
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
void mlir::populateSparseBufferRewriting(RewritePatternSet &patterns,
|
|
bool enableBufferInitialization) {
|
|
patterns.add<PushBackRewriter>(patterns.getContext(),
|
|
enableBufferInitialization);
|
|
patterns.add<SortRewriter>(patterns.getContext());
|
|
}
|