llvm-project/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp

599 lines
25 KiB
C++

//===- Fusion.cpp - Implementation of linalg Fusion -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the linalg dialect Fusion pass.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Dominance.h"
#include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
#include "mlir/Dialect/Linalg/EDSC/Intrinsics.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Support/STLExtras.h"
#include "mlir/Transforms/FoldUtils.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "linalg-fusion"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::linalg;
using folded_std_constant_index = folded::ValueBuilder<ConstantIndexOp>;
using llvm::dbgs;
/// Implements a simple high-level fusion pass of linalg library operations.
///
/// In each block, linalg ops are processed in reverse textual order.
/// Given a linalg op `O`, fusion occurs by:
/// 1. inspecting the linalg ops that write into the views read by `O`. This
/// uses the SSA value of the views and a simple subview/slice analysis to
/// determine producer-consumer dependences;
/// 2. greedily fuse the linalg ops that produce subview
/// 3. inspect the fused ops and determine whether they have other remaining
/// LinalgOp uses. If not, then erase the original producing linalg op.
///
/// More advanced use cases, analyses as well as profitability heuristics are
/// left for future work.
// Return a cloned version of `op` that operates on `loopRanges`, assumed to be
// a subset of the original loop ranges of `op`.
// This is achieved by applying the `loopToOperandRangesMaps` permutation maps
// to the `loopRanges` in order to obtain view ranges.
static LinalgOp cloneWithLoopRanges(OpBuilder &b, Location loc, LinalgOp op,
ArrayRef<SubViewOp::Range> loopRanges) {
assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
auto maps = op.indexing_maps();
SmallVector<Value, 8> clonedViews;
clonedViews.reserve(op.getNumInputsAndOutputs());
// Iterate over the inputs and outputs in order.
// Extract the subranges from the linearized ranges.
SmallVector<Value, 8> ios(op.getInputsAndOutputBuffers());
for (auto en : llvm::enumerate(ios)) {
unsigned idx = en.index();
auto map = maps[idx].cast<AffineMapAttr>().getValue();
LLVM_DEBUG(dbgs() << "map: " << map << "\n");
Value view = en.value();
SmallVector<SubViewOp::Range, 4> viewRanges(map.getNumResults());
for (auto en2 : llvm::enumerate(map.getResults())) {
unsigned d = en2.index();
// loopToOperandRangesMaps are permutations-only.
unsigned loopPos = en2.value().cast<AffineDimExpr>().getPosition();
viewRanges[d] = loopRanges[loopPos];
LLVM_DEBUG(dbgs() << "\ni,j: " << en.index() << ", " << en2.index()
<< "\t"
<< "loopPos: " << loopPos << "\t" << viewRanges[d]);
}
// Construct a new subview for the tile.
unsigned rank = viewRanges.size();
SmallVector<Value, 4> offsets, sizes, strides;
offsets.reserve(rank);
sizes.reserve(rank);
strides.reserve(rank);
for (auto r : viewRanges) {
offsets.push_back(r.offset);
sizes.push_back(r.size);
strides.push_back(r.stride);
}
clonedViews.push_back(
b.create<SubViewOp>(loc, view, offsets, sizes, strides));
}
auto operands = getAssumedNonViewOperands(op);
clonedViews.append(operands.begin(), operands.end());
return op.clone(b, loc, clonedViews);
}
struct ViewDimension {
Value view;
unsigned dimension;
};
// Given an `op`, returns the first (`view`, `dimension`) pair that identifies
// the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps
// guarantees at least one such dimension is found. If multiple candidates exist
// they must agree by construction (i.e. have the same size) and we just return
// the first one.
static ViewDimension getViewDefiningLoopRange(LinalgOp op, unsigned loopDepth) {
assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
auto maps = op.indexing_maps();
// Iterate over the inputs and outputs in order.
// Extract the subranges from the linearized ranges.
SmallVector<Value, 8> ios(op.getInputsAndOutputBuffers());
for (auto en : llvm::enumerate(ios)) {
unsigned idx = en.index();
auto map = maps[idx].cast<AffineMapAttr>().getValue();
LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange I/O idx: " << idx << "\n");
LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange map: " << map << "\n");
Value view = en.value();
SmallVector<Value, 8> viewRanges(map.getNumResults(), nullptr);
for (auto en2 : llvm::enumerate(map.getResults())) {
if (loopDepth == en2.value().cast<AffineDimExpr>().getPosition()) {
LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange loopDepth: " << loopDepth
<< "\n");
LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange view: " << view << "\n");
return ViewDimension{view, static_cast<unsigned>(en2.index())};
}
}
}
llvm_unreachable("Expect to be able to extract a view defining loop range");
}
static LinalgOp fuse(Value producedView, LinalgOp producer, LinalgOp consumer,
unsigned consumerIdx, unsigned producerIdx,
OperationFolder *folder) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
if (auto convOp = dyn_cast<linalg::ConvOp>(producer.getOperation())) {
// TODO(ntv): add a level of indirection to linalg.generic.
if (convOp.padding())
llvm_unreachable("Unexpected conv with padding");
}
if (auto convOp = dyn_cast<linalg::ConvOp>(consumer.getOperation())) {
// TODO(ntv): add a level of indirection to linalg.generic.
if (convOp.padding())
llvm_unreachable("Unexpected conv with padding");
}
auto subView = dyn_cast_or_null<SubViewOp>(
consumer.getBuffer(consumerIdx).getDefiningOp());
auto slice = dyn_cast_or_null<SliceOp>(
consumer.getBuffer(consumerIdx).getDefiningOp());
assert(subView || slice);
(void)subView;
(void)slice;
// loopToOperandRangesMaps are permutations-only by construction:
// we can always identify a data dimension with a (at least one) loop
// dimension.
AffineMap producerMap =
producer.indexing_maps()[producer.getNumInputs() + producerIdx]
.cast<AffineMapAttr>()
.getValue();
LLVM_DEBUG(dbgs() << "Producer Idx: " << producerIdx
<< ", producer map: " << producerMap << "\n");
unsigned nPar = producer.getNumParallelLoops();
unsigned nRed = producer.getNumReductionLoops();
unsigned nWin = producer.getNumWindowLoops();
SmallVector<SubViewOp::Range, 8> loopRanges(nPar + nRed + nWin);
// Iterate over dimensions identified by the producer map for `producerIdx`.
// This defines a subset of the loop ranges that we need to complete later.
for (auto en : llvm::enumerate(producerMap.getResults())) {
unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition();
loopRanges[posInProducerLoop] = subView.getRanges()[en.index()];
}
OpBuilder b(consumer.getOperation());
auto loc = consumer.getLoc();
// Iterate over all dimensions. For the dimensions not identified by the
// producer map for `producerIdx`, we need to explicitly compute the view that
// defines the loop ranges using the `producer`.
for (unsigned i = 0, nLoops = loopRanges.size(); i < nLoops; ++i) {
if (loopRanges[i].offset)
LLVM_DEBUG(llvm::dbgs()
<< "existing LoopRange: " << loopRanges[i] << "\n");
else {
auto viewDim = getViewDefiningLoopRange(producer, i);
loopRanges[i] = SubViewOp::Range{folded_std_constant_index(folder, 0),
std_dim(viewDim.view, viewDim.dimension),
folded_std_constant_index(folder, 1)};
LLVM_DEBUG(llvm::dbgs() << "new LoopRange: " << loopRanges[i] << "\n");
}
}
return cloneWithLoopRanges(b, loc, producer, loopRanges);
}
// Encode structural fusion safety preconditions.
// Some of these will be lifted in the future with better analysis.
static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView,
LinalgOp consumer) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
if (producer.getNumOutputs() != 1) {
LLVM_DEBUG(dbgs() << "\nNot structurally fusable (multi-output)");
return false;
}
// Only fuse when the producer block dominates.
DominanceInfo dom(producer.getOperation());
if (!dom.dominates(producer.getOperation()->getBlock(),
consumer.getOperation()->getBlock())) {
LLVM_DEBUG(
dbgs()
<< "\nNot structurally fusable (producer block does not dominate)");
return false;
}
return true;
}
bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph,
LinalgOp consumer,
Value consumedView,
LinalgOp producer) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
// Make some simple structural checks that alleviate the need for more
// complex analyses.
if (!isStructurallyFusableProducer(producer, consumedView, consumer)) {
LLVM_DEBUG(dbgs() << "\n***Not static last write due to structure:\t"
<< *producer.getOperation());
return false;
}
// Check for any interleaved write to consumedView.
if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) {
LLVM_DEBUG(dbgs() << "\n***Not fusable due to interleaved write:\t"
<< *producer.getOperation());
return false;
}
return true;
}
bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph,
LinalgOp consumer, Value consumedView,
LinalgOp producer) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer))
return false;
// Check for any fusion-preventing dependence to any view read/written that
// would violate dependences.
if (!graph.findCoveringDependences(producer, consumer).empty()) {
LLVM_DEBUG(dbgs() << "\n***Not fusable due to an interleaved dependence:\t"
<< *producer.getOperation());
return false;
}
return true;
}
static Optional<FusionInfo>
fuseProducerOfDep(OpBuilder &b, LinalgOp consumer, unsigned consumerIdx,
const LinalgDependenceGraph &graph, OperationFolder *folder,
LinalgDependenceGraph::DependenceType depType) {
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
LLVM_DEBUG(dbgs() << "\nStart examining consumer: "
<< *consumer.getOperation());
for (auto dependence : graph.getDependencesInto(consumer, depType)) {
LLVM_DEBUG(dbgs() << "\n***Consider producer:\t"
<< *dependence.dependentOpView.op << "\n");
auto producer = cast<LinalgOp>(dependence.dependentOpView.op);
if (isa<linalg::IndexedGenericOp>(dependence.dependentOpView.op)) {
LLVM_DEBUG(dbgs() << "Not fusing indexed_generic producer");
continue;
}
// Check that the dependence is indeed on the input `consumerIdx` view.
auto consumedView = dependence.indexingView;
if (consumer.getBuffer(consumerIdx) != consumedView)
continue;
// Consumer consumes this view, `isStructurallyFusableProducer` also checks
// whether it is a strict subview of the producer view.
auto producedView = dependence.dependentOpView.view;
auto producerIdx = producer.getIndexOfOutputBuffer(producedView).getValue();
// `consumerIdx` and `producerIdx` exist by construction.
LLVM_DEBUG(dbgs() << "\n"
<< LinalgDependenceGraph::getDependenceTypeStr(depType)
<< "producer: " << *producer.getOperation() << " view: "
<< producedView << " output index: " << producerIdx);
// Must be a subview or a slice to guarantee there are loops we can fuse
// into.
auto subView = dyn_cast_or_null<SubViewOp>(consumedView.getDefiningOp());
auto slice = dyn_cast_or_null<SliceOp>(consumedView.getDefiningOp());
if (!subView && !slice) {
LLVM_DEBUG(dbgs() << "\nNot fusable (not a subview or slice)");
continue;
}
// Simple fusability checks.
if (!isFusableInto(graph, consumer, consumedView, producer))
continue;
// Fuse `producer` just before `consumer`.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(consumer.getOperation());
ScopedContext scope(b, consumer.getLoc());
LLVM_DEBUG(dbgs() << "Fuse into consumer: " << *consumer << "\n");
auto fusedProducer = fuse(producedView, producer, consumer, consumerIdx,
producerIdx, folder);
return FusionInfo{producer, fusedProducer};
}
return llvm::None;
}
// Only consider RAW and WAW atm.
Optional<FusionInfo> mlir::linalg::fuseProducerOf(
OpBuilder &b, LinalgOp consumer, unsigned consumerIdx,
const LinalgDependenceGraph &graph, OperationFolder *folder) {
SmallVector<LinalgDependenceGraph::DependenceType, 4> deps = {
LinalgDependenceGraph::DependenceType::RAW,
LinalgDependenceGraph::DependenceType::WAW,
};
for (auto dep : deps) {
if (auto res =
fuseProducerOfDep(b, consumer, consumerIdx, graph, folder, dep))
return res;
}
return llvm::None;
}
/// Checks if two Generic ops are fusible, when one is a producer and another is
/// a consumer (with the result of the producer being the `consumerIdx` operand
/// of the consumer).
static bool areTensorOpsFusible(LinalgOp producer, LinalgOp consumer,
unsigned consumerIdx) {
// Verify that the producer and consumer are ops on tensors.
if (!producer.hasTensorSemantics() || !consumer.hasTensorSemantics())
return false;
auto producerOp = dyn_cast<linalg::GenericOp>(producer.getOperation());
auto consumerOp = dyn_cast<linalg::GenericOp>(consumer.getOperation());
// Verify that
// - the producer and consumers are generic ops,
// - only handle cases where the producer has a single return value,
// - the producer return value should be the same as argument at `consumerIdx`
// of the consumer,
// - the producer has all "parallel" iterator type.
// - only handle ops that use regions for specifying the scalar operations.
if (!producerOp || !consumerOp || producerOp.getNumOutputs() != 1 ||
producerOp.getResult(0) != consumerOp.getOperand(consumerIdx) ||
producerOp.getNumParallelLoops() != producerOp.getNumLoops() ||
producerOp.fun() || consumerOp.fun())
return false;
// Get the consumer index map. The number of results of the consumer index map
// must match the number of loops of the producer.
AffineMap consumerIndexMap = consumerOp.getIndexingMap(consumerIdx);
if (consumerIndexMap.getNumResults() != producerOp.getNumLoops())
return false;
// Finally the index_map for the result must be invertible. For now just
// verify it is a permutation.
AffineMap producerResultIndexMap = producerOp.getOutputIndexingMap(0);
return producerResultIndexMap.isPermutation();
}
/// Computes the indexing maps for arguments of a producer generic op when the
/// result of the producer is fused with the consumer.
/// - consumerIndexMap is the indexing_map for the argument in the consumer op
/// that is the result of the producer op.
/// - invProducerResultIndexMap is the inverse of the indexing_map for the
/// result in the producer op.
/// - producerArgIndexMap is the indexing_map of the argument of the producer
/// op.
/// The result is the indexing_map to use for the producer argument when the
/// producer and consumer ops are fused.
static AffineMap computeProducerArgMap(AffineMap consumerIndexMap,
AffineMap invProducerResultIndexMap,
AffineMap producerArgIndexMap) {
// t1 is map from producer result tensor index -> producer arg tensor index.
auto t1 = producerArgIndexMap.compose(invProducerResultIndexMap);
// The return is map from consumer loop -> producer arg tensor index,
// i.e. indexing_map for the producer argument in the fused operation.
return t1.compose(consumerIndexMap);
}
Optional<LinalgOp> mlir::linalg::fuseTensorOps(OpBuilder &b, LinalgOp producer,
LinalgOp consumer,
unsigned consumerIdx,
OperationFolder *folder) {
if (!areTensorOpsFusible(producer, consumer, consumerIdx))
return {};
MLIRContext *context = b.getContext();
auto producerOp = cast<linalg::GenericOp>(producer.getOperation());
auto consumerOp = cast<linalg::GenericOp>(consumer.getOperation());
AffineMap consumerIndexMap = consumerOp.getIndexingMap(consumerIdx);
AffineMap invProducerResultIndexMap =
inversePermutation(producerOp.getOutputIndexingMap(0));
// Compute the fused op operandslist by replacing the operand corresponding to
// the result of the producer, with the operands of the producer.
unsigned fusedArgsIn =
producerOp.getNumInputs() + consumerOp.getNumInputs() - 1;
auto fusedArgsOut = consumerOp.getNumOutputs();
SmallVector<Value, 2> fusedOperandsList(consumerOp.getOperands());
fusedOperandsList.erase(std::next(fusedOperandsList.begin(), consumerIdx));
fusedOperandsList.reserve(fusedArgsIn + fusedArgsOut);
fusedOperandsList.insert(
std::next(fusedOperandsList.begin(), consumerIdx),
producerOp.operand_begin(),
std::next(producerOp.operand_begin(), producerOp.getNumInputs()));
// Compute the fused indexing_maps of the operands/results of the fused op.
SmallVector<Attribute, 2> fusedIndexingMapAttrs;
fusedIndexingMapAttrs.reserve(fusedArgsIn + fusedArgsOut);
fusedIndexingMapAttrs.append(consumerOp.indexing_maps().begin(),
consumerOp.indexing_maps().end());
fusedIndexingMapAttrs.erase(
std::next(fusedIndexingMapAttrs.begin(), consumerIdx));
auto *insertPos = std::next(fusedIndexingMapAttrs.begin(), consumerIdx);
for (auto producerArgIndexAttr :
llvm::enumerate(producerOp.indexing_maps())) {
if (producerArgIndexAttr.index() == producerOp.getNumInputs())
break;
auto composedIndexMap = computeProducerArgMap(
consumerIndexMap, invProducerResultIndexMap,
producerArgIndexAttr.value().cast<AffineMapAttr>().getValue());
insertPos = std::next(fusedIndexingMapAttrs.insert(
insertPos, AffineMapAttr::get(composedIndexMap)));
}
// Generate the fused op.
auto fusedLinalgOp = b.create<GenericOp>(
UnknownLoc::get(context), consumerOp.getResultTypes(), fusedOperandsList,
b.getI64IntegerAttr(fusedArgsIn), b.getI64IntegerAttr(fusedArgsOut),
b.getArrayAttr(fusedIndexingMapAttrs), consumerOp.iterator_types(),
/*doc=*/nullptr,
/*fun=*/nullptr,
/*library_call=*/nullptr);
// Build the region of the fused op.
auto &fusedOpRegion = fusedLinalgOp.region();
Block &producerOpBlock = producerOp.region().front();
Block &consumerOpBlock = consumerOp.region().front();
Block *fusedBlock = new Block();
fusedOpRegion.push_back(fusedBlock);
BlockAndValueMapping mapper;
// Map the arguments for the unmodified args from the consumer.
for (auto consumerOpArg : llvm::enumerate(consumerOpBlock.getArguments())) {
if (consumerOpArg.index() == consumerIdx) {
// Map the arguments for the args from the producer.
for (auto producerOpArg : producerOpBlock.getArguments())
mapper.map(producerOpArg,
fusedBlock->addArgument(producerOpArg.getType()));
continue;
}
mapper.map(consumerOpArg.value(),
fusedBlock->addArgument(consumerOpArg.value().getType()));
}
// Add operations from producer (except the yield operation) to the fused op.
for (auto &op : producerOpBlock.getOperations()) {
if (auto yieldOp = dyn_cast<YieldOp>(op)) {
// Lookup the value the yield operation is mapped to.
Value yieldVal = yieldOp.getOperand(0);
auto clonedVal = mapper.lookup(yieldVal);
mapper.map(consumerOpBlock.getArgument(consumerIdx), clonedVal);
continue;
}
fusedBlock->push_back(op.clone(mapper));
}
for (auto &op : consumerOpBlock.getOperations())
fusedBlock->push_back(op.clone(mapper));
return cast<LinalgOp>(fusedLinalgOp.getOperation());
}
static void fuseLinalgOpsGreedily(FuncOp f) {
LLVM_DEBUG(f.print(dbgs() << "\nBefore linalg-fusion: \n"));
OpBuilder b(f);
OperationFolder folder(f.getContext());
DenseSet<Operation *> eraseSet;
// Save original Linalg ops, we only want to make a pass over those.
SmallVector<Operation *, 8> linalgOps;
f.walk([&](LinalgOp op) {
if (op.hasBufferSemantics())
linalgOps.push_back(op);
});
// TODO(pifon, ntv): LinalgDependenceGraph should be able to update itself.
// The current naive and expensive reconstruction of the graph should be
// removed.
for (auto *op : llvm::reverse(linalgOps)) {
for (unsigned id = 0, e = LinalgOp(op).getNumInputsAndOutputBuffers();
id < e; ++id) {
linalg::Aliases aliases;
linalg::LinalgDependenceGraph graph(aliases, linalgOps);
if (auto info = fuseProducerOf(b, op, id, graph, &folder)) {
auto *originalOp = info->originalProducer.getOperation();
eraseSet.insert(originalOp);
auto *originalOpInLinalgOpsVector =
std::find(linalgOps.begin(), linalgOps.end(), originalOp);
*originalOpInLinalgOpsVector = info->fusedProducer.getOperation();
}
}
}
// The `fuseProducerOf` function performs structural checks and in particular
// that no covering read or write exist between the consumer and the producer.
// As a consequence, the only fusions that may occur preserve subsequent
// dependences and are guaranteed by construction to produce the whole view.
// We may thus erase the producer once it is fused.
for (auto *e : eraseSet)
e->erase();
LLVM_DEBUG(f.print(dbgs() << "\nAfter linalg-fusion: \n"));
}
namespace {
/// Patterns to fuse a generic op, with the producer of its operands.
struct FuseGenericTensorOps : public OpRewritePattern<GenericOp> {
using OpRewritePattern<GenericOp>::OpRewritePattern;
LogicalResult matchAndRewrite(GenericOp op,
PatternRewriter &rewriter) const override {
if (!op.hasTensorSemantics())
return failure();
// Find the first operand that is defined by another generic op on tensors.
for (auto operand : llvm::enumerate(op.getOperation()->getOperands())) {
auto definingOp =
dyn_cast_or_null<GenericOp>(operand.value().getDefiningOp());
if (!definingOp || !definingOp.hasTensorSemantics())
continue;
auto fusedOp =
fuseTensorOps(rewriter, cast<LinalgOp>(definingOp.getOperation()),
cast<LinalgOp>(op.getOperation()), operand.index());
if (!fusedOp)
continue;
rewriter.replaceOp(op, fusedOp.getValue().getOperation()->getResults());
return success();
}
return failure();
}
};
/// Pass that fuses generic ops on tensors. Used only for testing.
struct FusionOfTensorOpsPass : public OperationPass<FusionOfTensorOpsPass> {
/// Include the generated pass utilities.
#define GEN_PASS_LinalgFusionOfTensorOps
#include "mlir/Dialect/Linalg/Passes.h.inc"
void runOnOperation() override {
OwningRewritePatternList patterns;
Operation *op = getOperation();
patterns.insert<FuseGenericTensorOps>(op->getContext());
applyPatternsGreedily(op->getRegions(), patterns);
};
};
struct LinalgFusionPass : public FunctionPass<LinalgFusionPass> {
/// Include the generated pass utilities.
#define GEN_PASS_LinalgFusion
#include "mlir/Dialect/Linalg/Passes.h.inc"
void runOnFunction() override { fuseLinalgOpsGreedily(getFunction()); }
};
} // namespace
std::unique_ptr<OpPassBase<FuncOp>> mlir::createLinalgFusionPass() {
return std::make_unique<LinalgFusionPass>();
}
std::unique_ptr<Pass> mlir::createLinalgFusionOfTensorOpsPass() {
return std::make_unique<FusionOfTensorOpsPass>();
}