Go to file
River Riddle 995ab92964 [mlir] Add a new builtin DenseResourceElementsAttr
This attributes is intended cover the current set of use cases that abuse
DenseElementsAttr, e.g. when the data is large. Using resources for large
data is one of the major reasons why they were added; e.g. they can be
deallocated mid-compilation, they support a wide variety of data origins
(e.g, heap allocated, mmap'd, etc.), they can support mutation, etc.

I considered at length not having a builtin variant of this, and instead
having multiple versions of this attribute for dialects that are interested,
but they all boiled down to the exact same attribute definition. Given the
generality of this attribute, it feels more aligned to keep it next to DenseArrayAttr
(given that DenseArrayAttr covers the "small" case, and DenseResourcesElementsAttr
covers the "large" case). The underlying infra used to build this attribute is
general, and having a builtin attribute doesn't preclude users from defining
their own when it makes sense (they can even share a blob manager with the
builtin dialect to avoid data duplication).

Differential Revision: https://reviews.llvm.org/D130022
2022-08-01 12:37:16 -07:00
.github workflows: Pass phab token to github-automation.py when creating a pull request 2022-07-29 09:59:55 -07:00
bolt Use drop_begin (NFC) 2022-07-31 15:17:09 -07:00
clang [RISCV][Clang] Add tests for all supported policy functions. (NFC) 2022-08-01 17:42:43 +00:00
clang-tools-extra [clangd] Add decl/def support to SymbolDetails 2022-08-01 14:42:19 -04:00
cmake [cmake] Fix missing paren in `FindPrefixFromConfig` 2022-07-26 07:35:12 +00:00
compiler-rt [tsan][test] Remaining tests requiring weak symbols for dyld64 2022-08-01 11:02:43 -07:00
cross-project-tests [Clang] Diagnose ill-formed constant expression when setting a non fixed enum to a value outside the range of the enumeration values 2022-07-28 15:27:50 -07:00
flang [mlir][flang] Make use of the new `GEPArg` builder of GEP Op to simplify code 2022-08-01 17:22:55 +02:00
libc [libc][NFC] Use STL case for utility 2022-08-01 09:27:37 +00:00
libclc Remove references to old mailing lists that have moved to discourse. Replace with links to discourse. 2022-07-22 09:59:03 -07:00
libcxx [libcxx] [test] Cover i386 & sparc64 in string.capacity test 2022-07-31 15:53:56 +02:00
libcxxabi Remove references to old mailing lists that have moved to discourse. Replace with links to discourse. 2022-07-22 09:59:03 -07:00
libunwind Update references to mailing lists that have moved to Discourse. 2022-07-28 16:54:58 -07:00
lld [ELF] EhInputSection::getParentOffset: fix out-of-bounds access for symbols relative to a non-empty .eh_frame 2022-08-01 01:10:51 -07:00
lldb [trace][intelpt] Update TraceIntelPTBundleSaver.cpp to accommodate FileSpec API changes 2022-08-01 11:52:15 -07:00
llvm [AMDGPU] Fix DGEMM hazard for GFX90a 2022-08-01 11:56:22 -07:00
llvm-libgcc [cmake] Slight fix ups to make robust to the full range of GNUInstallDirs 2022-07-26 14:48:49 +00:00
mlir [mlir] Add a new builtin DenseResourceElementsAttr 2022-08-01 12:37:16 -07:00
openmp [openmp] [test] Fix prepending config.library_dir to LD_LIBRARY_PATH 2022-08-01 18:54:06 +02:00
polly [Polly] Insert !dbg metadata for emitted CallInsts. 2022-07-26 19:43:53 -05:00
pstl Bump the trunk major version to 16 2022-07-26 21:34:45 -07:00
runtimes [runtimes] Add pstl to the list of default runtimes to fix the build 2022-07-22 22:57:37 +02:00
third-party Ensure newlines at the end of files (NFC) 2021-12-26 08:51:06 -08:00
utils [mlir][bazel] Fix bazel build files 2022-08-01 12:03:43 +02:00
.arcconfig
.arclint
.clang-format Revert "Title: [RISCV] Add missing part of instruction vmsge {u}. VX Review By: craig.topper Differential Revision : https://reviews.llvm.org/D100115" 2021-04-14 08:04:37 +01:00
.clang-tidy [clangd] Cleanup of readability-identifier-naming 2022-02-01 13:31:52 +00:00
.git-blame-ignore-revs Add __config formatting to .git-blame-ignore-revs 2022-06-14 09:52:49 -04:00
.gitignore [llvm] Ignore .rej files in .gitignore 2022-04-28 08:44:51 -07:00
.mailmap .mailmap: remove stray space in comment 2022-02-24 18:50:08 -05:00
CONTRIBUTING.md docs: update some bug tracker references (NFC) 2022-01-10 15:59:08 -08:00
README.md Fix grammar and punctuation across several docs; NFC 2022-04-07 07:11:11 -04:00
SECURITY.md [docs] Describe reporting security issues on the chromium tracker. 2021-05-19 15:21:50 -07:00

README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from here.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some common options:

      • -DLLVM_ENABLE_PROJECTS='...' and -DLLVM_ENABLE_RUNTIMES='...' --- semicolon-separated list of the LLVM sub-projects and runtimes you'd like to additionally build. LLVM_ENABLE_PROJECTS can include any of: clang, clang-tools-extra, cross-project-tests, flang, libc, libclc, lld, lldb, mlir, openmp, polly, or pstl. LLVM_ENABLE_RUNTIMES can include any of libcxx, libcxxabi, libunwind, compiler-rt, libc or openmp. Some runtime projects can be specified either in LLVM_ENABLE_PROJECTS or in LLVM_ENABLE_RUNTIMES.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang" -DLLVM_ENABLE_RUNTIMES="libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local). Be careful if you install runtime libraries: if your system uses those provided by LLVM (like libc++ or libc++abi), you must not overwrite your system's copy of those libraries, since that could render your system unusable. In general, using something like /usr is not advised, but /usr/local is fine.

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs to run. In most cases, you get the best performance if you specify the number of CPU threads you have. On some Unix systems, you can specify this with -j$(nproc).

    • For more information see CMake.

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.

Getting in touch

Join LLVM Discourse forums, discord chat or #llvm IRC channel on OFTC.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.