246 lines
8.0 KiB
C++
246 lines
8.0 KiB
C++
//===- StandardOps.cpp - Standard MLIR Operations -------------------------===//
|
|
//
|
|
// Copyright 2019 The MLIR Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// =============================================================================
|
|
|
|
#include "mlir/IR/StandardOps.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/OpImplementation.h"
|
|
#include "mlir/IR/OperationSet.h"
|
|
#include "mlir/IR/SSAValue.h"
|
|
#include "mlir/IR/Types.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace mlir;
|
|
|
|
// TODO: Have verify functions return std::string to enable more descriptive
|
|
// error messages.
|
|
OpAsmParserResult AddFOp::parse(OpAsmParser *parser) {
|
|
SmallVector<OpAsmParser::OperandType, 2> ops;
|
|
Type *type;
|
|
SSAValue *lhs, *rhs;
|
|
if (parser->parseOperandList(ops, 2) || parser->parseColonType(type) ||
|
|
parser->resolveOperand(ops[0], type, lhs) ||
|
|
parser->resolveOperand(ops[1], type, rhs))
|
|
return {};
|
|
|
|
return OpAsmParserResult({lhs, rhs}, type);
|
|
}
|
|
|
|
void AddFOp::print(OpAsmPrinter *p) const {
|
|
*p << "addf " << *getOperand(0) << ", " << *getOperand(1) << " : "
|
|
<< *getType();
|
|
}
|
|
|
|
// Return an error message on failure.
|
|
const char *AddFOp::verify() const {
|
|
// TODO: Check that the types of the LHS and RHS match.
|
|
// TODO: This should be a refinement of TwoOperands.
|
|
// TODO: There should also be a OneResultWhoseTypeMatchesFirstOperand.
|
|
return nullptr;
|
|
}
|
|
|
|
OpAsmParserResult AffineApplyOp::parse(OpAsmParser *parser) {
|
|
SmallVector<OpAsmParser::OperandType, 2> opInfos;
|
|
SmallVector<SSAValue *, 4> operands;
|
|
|
|
auto &builder = parser->getBuilder();
|
|
auto *affineIntTy = builder.getAffineIntType();
|
|
|
|
AffineMapAttr *mapAttr;
|
|
if (parser->parseAttribute(mapAttr) ||
|
|
parser->parseOperandList(opInfos, -1,
|
|
OpAsmParser::Delimeter::ParenDelimeter))
|
|
return {};
|
|
unsigned numDims = opInfos.size();
|
|
|
|
if (parser->parseOperandList(
|
|
opInfos, -1, OpAsmParser::Delimeter::OptionalSquareDelimeter) ||
|
|
parser->resolveOperands(opInfos, affineIntTy, operands))
|
|
return {};
|
|
|
|
auto *map = mapAttr->getValue();
|
|
if (map->getNumDims() != numDims ||
|
|
numDims + map->getNumSymbols() != opInfos.size()) {
|
|
parser->emitError(parser->getNameLoc(),
|
|
"dimension or symbol index mismatch");
|
|
return {};
|
|
}
|
|
|
|
SmallVector<Type *, 4> resultTypes(map->getNumResults(), affineIntTy);
|
|
return OpAsmParserResult(
|
|
operands, resultTypes,
|
|
NamedAttribute(builder.getIdentifier("map"), mapAttr));
|
|
}
|
|
|
|
void AffineApplyOp::print(OpAsmPrinter *p) const {
|
|
auto *map = getAffineMap();
|
|
*p << "affine_apply " << *map;
|
|
|
|
auto opit = operand_begin();
|
|
*p << '(';
|
|
p->printOperands(opit, opit + map->getNumDims());
|
|
*p << ')';
|
|
|
|
if (map->getNumSymbols()) {
|
|
*p << '[';
|
|
p->printOperands(opit + map->getNumDims(), operand_end());
|
|
*p << ']';
|
|
}
|
|
}
|
|
|
|
const char *AffineApplyOp::verify() const {
|
|
// Check that affine map attribute was specified.
|
|
auto *affineMapAttr = getAttrOfType<AffineMapAttr>("map");
|
|
if (!affineMapAttr)
|
|
return "requires an affine map.";
|
|
|
|
// Check input and output dimensions match.
|
|
auto *map = affineMapAttr->getValue();
|
|
|
|
// Verify that operand count matches affine map dimension and symbol count.
|
|
if (getNumOperands() != map->getNumDims() + map->getNumSymbols())
|
|
return "operand count and affine map dimension and symbol count must match";
|
|
|
|
// Verify that result count matches affine map result count.
|
|
if (getNumResults() != map->getNumResults())
|
|
return "result count and affine map result count must match";
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// The constant op requires an attribute, and furthermore requires that it
|
|
/// matches the return type.
|
|
const char *ConstantOp::verify() const {
|
|
auto *value = getValue();
|
|
if (!value)
|
|
return "requires a 'value' attribute";
|
|
|
|
auto *type = this->getType();
|
|
if (isa<IntegerType>(type) || type->isAffineInt()) {
|
|
if (!isa<IntegerAttr>(value))
|
|
return "requires 'value' to be an integer for an integer result type";
|
|
return nullptr;
|
|
}
|
|
|
|
if (isa<FunctionType>(type)) {
|
|
// TODO: Verify a function attr.
|
|
}
|
|
|
|
return "requires a result type that aligns with the 'value' attribute";
|
|
}
|
|
|
|
/// ConstantIntOp only matches values whose result type is an IntegerType or
|
|
/// AffineInt.
|
|
bool ConstantIntOp::isClassFor(const Operation *op) {
|
|
return ConstantOp::isClassFor(op) &&
|
|
(isa<IntegerType>(op->getResult(0)->getType()) ||
|
|
op->getResult(0)->getType()->isAffineInt());
|
|
}
|
|
|
|
void DimOp::print(OpAsmPrinter *p) const {
|
|
*p << "dim " << *getOperand() << ", " << getIndex() << " : "
|
|
<< *getOperand()->getType();
|
|
}
|
|
|
|
OpAsmParserResult DimOp::parse(OpAsmParser *parser) {
|
|
OpAsmParser::OperandType operandInfo;
|
|
IntegerAttr *indexAttr;
|
|
Type *type;
|
|
SSAValue *operand;
|
|
if (parser->parseOperand(operandInfo) || parser->parseComma() ||
|
|
parser->parseAttribute(indexAttr) || parser->parseColonType(type) ||
|
|
parser->resolveOperand(operandInfo, type, operand))
|
|
return {};
|
|
|
|
auto &builder = parser->getBuilder();
|
|
return OpAsmParserResult(
|
|
operand, builder.getAffineIntType(),
|
|
NamedAttribute(builder.getIdentifier("index"), indexAttr));
|
|
}
|
|
|
|
const char *DimOp::verify() const {
|
|
// Check that we have an integer index operand.
|
|
auto indexAttr = getAttrOfType<IntegerAttr>("index");
|
|
if (!indexAttr)
|
|
return "requires an integer attribute named 'index'";
|
|
uint64_t index = (uint64_t)indexAttr->getValue();
|
|
|
|
auto *type = getOperand()->getType();
|
|
if (auto *tensorType = dyn_cast<RankedTensorType>(type)) {
|
|
if (index >= tensorType->getRank())
|
|
return "index is out of range";
|
|
} else if (auto *memrefType = dyn_cast<MemRefType>(type)) {
|
|
if (index >= memrefType->getRank())
|
|
return "index is out of range";
|
|
|
|
} else if (isa<UnrankedTensorType>(type)) {
|
|
// ok, assumed to be in-range.
|
|
} else {
|
|
return "requires an operand with tensor or memref type";
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void LoadOp::print(OpAsmPrinter *p) const {
|
|
*p << "load " << *getMemRef() << '[';
|
|
p->printOperands(getIndices());
|
|
*p << "] : " << *getMemRef()->getType();
|
|
}
|
|
|
|
OpAsmParserResult LoadOp::parse(OpAsmParser *parser) {
|
|
OpAsmParser::OperandType memrefInfo;
|
|
SmallVector<OpAsmParser::OperandType, 4> indexInfo;
|
|
MemRefType *type;
|
|
SmallVector<SSAValue *, 4> operands;
|
|
|
|
auto affineIntTy = parser->getBuilder().getAffineIntType();
|
|
if (parser->parseOperand(memrefInfo) ||
|
|
parser->parseOperandList(indexInfo, -1,
|
|
OpAsmParser::Delimeter::SquareDelimeter) ||
|
|
parser->parseColonType(type) ||
|
|
parser->resolveOperands(memrefInfo, type, operands) ||
|
|
parser->resolveOperands(indexInfo, affineIntTy, operands))
|
|
return {};
|
|
|
|
return OpAsmParserResult(operands, type->getElementType());
|
|
}
|
|
|
|
const char *LoadOp::verify() const {
|
|
if (getNumOperands() == 0)
|
|
return "expected a memref to load from";
|
|
|
|
auto *memRefType = dyn_cast<MemRefType>(getMemRef()->getType());
|
|
if (!memRefType)
|
|
return "first operand must be a memref";
|
|
|
|
for (auto *idx : getIndices())
|
|
if (!idx->getType()->isAffineInt())
|
|
return "index to load must have 'affineint' type";
|
|
|
|
// TODO: Verify we have the right number of indices.
|
|
|
|
// TODO: in MLFunction verify that the indices are parameters, IV's, or the
|
|
// result of an affine_apply.
|
|
return nullptr;
|
|
}
|
|
|
|
/// Install the standard operations in the specified operation set.
|
|
void mlir::registerStandardOperations(OperationSet &opSet) {
|
|
opSet.addOperations<AddFOp, AffineApplyOp, ConstantOp, DimOp, LoadOp>(
|
|
/*prefix=*/"");
|
|
}
|