4109 lines
157 KiB
C++
4109 lines
157 KiB
C++
//===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file InstrRefBasedImpl.cpp
|
|
///
|
|
/// This is a separate implementation of LiveDebugValues, see
|
|
/// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
|
|
///
|
|
/// This pass propagates variable locations between basic blocks, resolving
|
|
/// control flow conflicts between them. The problem is SSA construction, where
|
|
/// each debug instruction assigns the *value* that a variable has, and every
|
|
/// instruction where the variable is in scope uses that variable. The resulting
|
|
/// map of instruction-to-value is then translated into a register (or spill)
|
|
/// location for each variable over each instruction.
|
|
///
|
|
/// The primary difference from normal SSA construction is that we cannot
|
|
/// _create_ PHI values that contain variable values. CodeGen has already
|
|
/// completed, and we can't alter it just to make debug-info complete. Thus:
|
|
/// we can identify function positions where we would like a PHI value for a
|
|
/// variable, but must search the MachineFunction to see whether such a PHI is
|
|
/// available. If no such PHI exists, the variable location must be dropped.
|
|
///
|
|
/// To achieve this, we perform two kinds of analysis. First, we identify
|
|
/// every value defined by every instruction (ignoring those that only move
|
|
/// another value), then re-compute an SSA-form representation of the
|
|
/// MachineFunction, using value propagation to eliminate any un-necessary
|
|
/// PHI values. This gives us a map of every value computed in the function,
|
|
/// and its location within the register file / stack.
|
|
///
|
|
/// Secondly, for each variable we perform the same analysis, where each debug
|
|
/// instruction is considered a def, and every instruction where the variable
|
|
/// is in lexical scope as a use. Value propagation is used again to eliminate
|
|
/// any un-necessary PHIs. This gives us a map of each variable to the value
|
|
/// it should have in a block.
|
|
///
|
|
/// Once both are complete, we have two maps for each block:
|
|
/// * Variables to the values they should have,
|
|
/// * Values to the register / spill slot they are located in.
|
|
/// After which we can marry-up variable values with a location, and emit
|
|
/// DBG_VALUE instructions specifying those locations. Variable locations may
|
|
/// be dropped in this process due to the desired variable value not being
|
|
/// resident in any machine location, or because there is no PHI value in any
|
|
/// location that accurately represents the desired value. The building of
|
|
/// location lists for each block is left to DbgEntityHistoryCalculator.
|
|
///
|
|
/// This pass is kept efficient because the size of the first SSA problem
|
|
/// is proportional to the working-set size of the function, which the compiler
|
|
/// tries to keep small. (It's also proportional to the number of blocks).
|
|
/// Additionally, we repeatedly perform the second SSA problem analysis with
|
|
/// only the variables and blocks in a single lexical scope, exploiting their
|
|
/// locality.
|
|
///
|
|
/// ### Terminology
|
|
///
|
|
/// A machine location is a register or spill slot, a value is something that's
|
|
/// defined by an instruction or PHI node, while a variable value is the value
|
|
/// assigned to a variable. A variable location is a machine location, that must
|
|
/// contain the appropriate variable value. A value that is a PHI node is
|
|
/// occasionally called an mphi.
|
|
///
|
|
/// The first SSA problem is the "machine value location" problem,
|
|
/// because we're determining which machine locations contain which values.
|
|
/// The "locations" are constant: what's unknown is what value they contain.
|
|
///
|
|
/// The second SSA problem (the one for variables) is the "variable value
|
|
/// problem", because it's determining what values a variable has, rather than
|
|
/// what location those values are placed in.
|
|
///
|
|
/// TODO:
|
|
/// Overlapping fragments
|
|
/// Entry values
|
|
/// Add back DEBUG statements for debugging this
|
|
/// Collect statistics
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/BinaryFormat/Dwarf.h"
|
|
#include "llvm/CodeGen/LexicalScopes.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineInstrBundle.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/CodeGen/TargetFrameLowering.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/GenericIteratedDominanceFrontier.h"
|
|
#include "llvm/Support/TypeSize.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <climits>
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <queue>
|
|
#include <tuple>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "InstrRefBasedImpl.h"
|
|
#include "LiveDebugValues.h"
|
|
|
|
using namespace llvm;
|
|
using namespace LiveDebugValues;
|
|
|
|
// SSAUpdaterImple sets DEBUG_TYPE, change it.
|
|
#undef DEBUG_TYPE
|
|
#define DEBUG_TYPE "livedebugvalues"
|
|
|
|
// Act more like the VarLoc implementation, by propagating some locations too
|
|
// far and ignoring some transfers.
|
|
static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
|
|
cl::desc("Act like old LiveDebugValues did"),
|
|
cl::init(false));
|
|
|
|
// Limit for the maximum number of stack slots we should track, past which we
|
|
// will ignore any spills. InstrRefBasedLDV gathers detailed information on all
|
|
// stack slots which leads to high memory consumption, and in some scenarios
|
|
// (such as asan with very many locals) the working set of the function can be
|
|
// very large, causing many spills. In these scenarios, it is very unlikely that
|
|
// the developer has hundreds of variables live at the same time that they're
|
|
// carefully thinking about -- instead, they probably autogenerated the code.
|
|
// When this happens, gracefully stop tracking excess spill slots, rather than
|
|
// consuming all the developer's memory.
|
|
static cl::opt<unsigned>
|
|
StackWorkingSetLimit("livedebugvalues-max-stack-slots", cl::Hidden,
|
|
cl::desc("livedebugvalues-stack-ws-limit"),
|
|
cl::init(250));
|
|
|
|
DbgOpID DbgOpID::UndefID = DbgOpID(0xffffffff);
|
|
|
|
/// Tracker for converting machine value locations and variable values into
|
|
/// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
|
|
/// specifying block live-in locations and transfers within blocks.
|
|
///
|
|
/// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
|
|
/// and must be initialized with the set of variable values that are live-in to
|
|
/// the block. The caller then repeatedly calls process(). TransferTracker picks
|
|
/// out variable locations for the live-in variable values (if there _is_ a
|
|
/// location) and creates the corresponding DBG_VALUEs. Then, as the block is
|
|
/// stepped through, transfers of values between machine locations are
|
|
/// identified and if profitable, a DBG_VALUE created.
|
|
///
|
|
/// This is where debug use-before-defs would be resolved: a variable with an
|
|
/// unavailable value could materialize in the middle of a block, when the
|
|
/// value becomes available. Or, we could detect clobbers and re-specify the
|
|
/// variable in a backup location. (XXX these are unimplemented).
|
|
class TransferTracker {
|
|
public:
|
|
const TargetInstrInfo *TII;
|
|
const TargetLowering *TLI;
|
|
/// This machine location tracker is assumed to always contain the up-to-date
|
|
/// value mapping for all machine locations. TransferTracker only reads
|
|
/// information from it. (XXX make it const?)
|
|
MLocTracker *MTracker;
|
|
MachineFunction &MF;
|
|
bool ShouldEmitDebugEntryValues;
|
|
|
|
/// Record of all changes in variable locations at a block position. Awkwardly
|
|
/// we allow inserting either before or after the point: MBB != nullptr
|
|
/// indicates it's before, otherwise after.
|
|
struct Transfer {
|
|
MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
|
|
MachineBasicBlock *MBB; /// non-null if we should insert after.
|
|
SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
|
|
};
|
|
|
|
/// Stores the resolved operands (machine locations and constants) and
|
|
/// qualifying meta-information needed to construct a concrete DBG_VALUE-like
|
|
/// instruction.
|
|
struct ResolvedDbgValue {
|
|
SmallVector<ResolvedDbgOp> Ops;
|
|
DbgValueProperties Properties;
|
|
|
|
ResolvedDbgValue(SmallVectorImpl<ResolvedDbgOp> &Ops,
|
|
DbgValueProperties Properties)
|
|
: Ops(Ops.begin(), Ops.end()), Properties(Properties) {}
|
|
|
|
/// Returns all the LocIdx values used in this struct, in the order in which
|
|
/// they appear as operands in the debug value; may contain duplicates.
|
|
auto loc_indices() const {
|
|
return map_range(
|
|
make_filter_range(
|
|
Ops, [](const ResolvedDbgOp &Op) { return !Op.IsConst; }),
|
|
[](const ResolvedDbgOp &Op) { return Op.Loc; });
|
|
}
|
|
};
|
|
|
|
/// Collection of transfers (DBG_VALUEs) to be inserted.
|
|
SmallVector<Transfer, 32> Transfers;
|
|
|
|
/// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
|
|
/// between TransferTrackers view of variable locations and MLocTrackers. For
|
|
/// example, MLocTracker observes all clobbers, but TransferTracker lazily
|
|
/// does not.
|
|
SmallVector<ValueIDNum, 32> VarLocs;
|
|
|
|
/// Map from LocIdxes to which DebugVariables are based that location.
|
|
/// Mantained while stepping through the block. Not accurate if
|
|
/// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
|
|
DenseMap<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
|
|
|
|
/// Map from DebugVariable to it's current location and qualifying meta
|
|
/// information. To be used in conjunction with ActiveMLocs to construct
|
|
/// enough information for the DBG_VALUEs for a particular LocIdx.
|
|
DenseMap<DebugVariable, ResolvedDbgValue> ActiveVLocs;
|
|
|
|
/// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
|
|
SmallVector<MachineInstr *, 4> PendingDbgValues;
|
|
|
|
/// Record of a use-before-def: created when a value that's live-in to the
|
|
/// current block isn't available in any machine location, but it will be
|
|
/// defined in this block.
|
|
struct UseBeforeDef {
|
|
/// Value of this variable, def'd in block.
|
|
SmallVector<DbgOp> Values;
|
|
/// Identity of this variable.
|
|
DebugVariable Var;
|
|
/// Additional variable properties.
|
|
DbgValueProperties Properties;
|
|
UseBeforeDef(ArrayRef<DbgOp> Values, const DebugVariable &Var,
|
|
const DbgValueProperties &Properties)
|
|
: Values(Values.begin(), Values.end()), Var(Var),
|
|
Properties(Properties) {}
|
|
};
|
|
|
|
/// Map from instruction index (within the block) to the set of UseBeforeDefs
|
|
/// that become defined at that instruction.
|
|
DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
|
|
|
|
/// The set of variables that are in UseBeforeDefs and can become a location
|
|
/// once the relevant value is defined. An element being erased from this
|
|
/// collection prevents the use-before-def materializing.
|
|
DenseSet<DebugVariable> UseBeforeDefVariables;
|
|
|
|
const TargetRegisterInfo &TRI;
|
|
const BitVector &CalleeSavedRegs;
|
|
|
|
TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
|
|
MachineFunction &MF, const TargetRegisterInfo &TRI,
|
|
const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
|
|
: TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
|
|
CalleeSavedRegs(CalleeSavedRegs) {
|
|
TLI = MF.getSubtarget().getTargetLowering();
|
|
auto &TM = TPC.getTM<TargetMachine>();
|
|
ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
|
|
}
|
|
|
|
bool isCalleeSaved(LocIdx L) {
|
|
unsigned Reg = MTracker->LocIdxToLocID[L];
|
|
if (Reg >= MTracker->NumRegs)
|
|
return false;
|
|
for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
|
|
if (CalleeSavedRegs.test(*RAI))
|
|
return true;
|
|
return false;
|
|
};
|
|
|
|
/// For a variable \p Var with the live-in value \p Value, attempts to resolve
|
|
/// the DbgValue to a concrete DBG_VALUE, emitting that value and loading the
|
|
/// tracking information to track Var throughout the block.
|
|
/// \p ValueToLoc is a map containing the best known location for every
|
|
/// ValueIDNum that Value may use.
|
|
/// \p MBB is the basic block that we are loading the live-in value for.
|
|
/// \p DbgOpStore is the map containing the DbgOpID->DbgOp mapping needed to
|
|
/// determine the values used by Value.
|
|
void loadVarInloc(MachineBasicBlock &MBB, DbgOpIDMap &DbgOpStore,
|
|
const DenseMap<ValueIDNum, LocIdx> &ValueToLoc,
|
|
DebugVariable Var, DbgValue Value) {
|
|
SmallVector<DbgOp> DbgOps;
|
|
SmallVector<ResolvedDbgOp> ResolvedDbgOps;
|
|
bool IsValueValid = true;
|
|
unsigned LastUseBeforeDef = 0;
|
|
|
|
// If every value used by the incoming DbgValue is available at block
|
|
// entry, ResolvedDbgOps will contain the machine locations/constants for
|
|
// those values and will be used to emit a debug location.
|
|
// If one or more values are not yet available, but will all be defined in
|
|
// this block, then LastUseBeforeDef will track the instruction index in
|
|
// this BB at which the last of those values is defined, DbgOps will
|
|
// contain the values that we will emit when we reach that instruction.
|
|
// If one or more values are undef or not available throughout this block,
|
|
// and we can't recover as an entry value, we set IsValueValid=false and
|
|
// skip this variable.
|
|
for (DbgOpID ID : Value.getDbgOpIDs()) {
|
|
DbgOp Op = DbgOpStore.find(ID);
|
|
DbgOps.push_back(Op);
|
|
if (ID.isUndef()) {
|
|
IsValueValid = false;
|
|
break;
|
|
}
|
|
if (ID.isConst()) {
|
|
ResolvedDbgOps.push_back(Op.MO);
|
|
continue;
|
|
}
|
|
|
|
// If the value has no location, we can't make a variable location.
|
|
const ValueIDNum &Num = Op.ID;
|
|
auto ValuesPreferredLoc = ValueToLoc.find(Num);
|
|
if (ValuesPreferredLoc->second.isIllegal()) {
|
|
// If it's a def that occurs in this block, register it as a
|
|
// use-before-def to be resolved as we step through the block.
|
|
// Continue processing values so that we add any other UseBeforeDef
|
|
// entries needed for later.
|
|
if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI()) {
|
|
LastUseBeforeDef = std::max(LastUseBeforeDef,
|
|
static_cast<unsigned>(Num.getInst()));
|
|
continue;
|
|
}
|
|
recoverAsEntryValue(Var, Value.Properties, Num);
|
|
IsValueValid = false;
|
|
break;
|
|
}
|
|
|
|
// Defer modifying ActiveVLocs until after we've confirmed we have a
|
|
// live range.
|
|
LocIdx M = ValuesPreferredLoc->second;
|
|
ResolvedDbgOps.push_back(M);
|
|
}
|
|
|
|
// If we cannot produce a valid value for the LiveIn value within this
|
|
// block, skip this variable.
|
|
if (!IsValueValid)
|
|
return;
|
|
|
|
// Add UseBeforeDef entry for the last value to be defined in this block.
|
|
if (LastUseBeforeDef) {
|
|
addUseBeforeDef(Var, Value.Properties, DbgOps,
|
|
LastUseBeforeDef);
|
|
return;
|
|
}
|
|
|
|
// The LiveIn value is available at block entry, begin tracking and record
|
|
// the transfer.
|
|
for (const ResolvedDbgOp &Op : ResolvedDbgOps)
|
|
if (!Op.IsConst)
|
|
ActiveMLocs[Op.Loc].insert(Var);
|
|
auto NewValue = ResolvedDbgValue{ResolvedDbgOps, Value.Properties};
|
|
auto Result = ActiveVLocs.insert(std::make_pair(Var, NewValue));
|
|
if (!Result.second)
|
|
Result.first->second = NewValue;
|
|
PendingDbgValues.push_back(
|
|
MTracker->emitLoc(ResolvedDbgOps, Var, Value.Properties));
|
|
}
|
|
|
|
/// Load object with live-in variable values. \p mlocs contains the live-in
|
|
/// values in each machine location, while \p vlocs the live-in variable
|
|
/// values. This method picks variable locations for the live-in variables,
|
|
/// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
|
|
/// object fields to track variable locations as we step through the block.
|
|
/// FIXME: could just examine mloctracker instead of passing in \p mlocs?
|
|
void
|
|
loadInlocs(MachineBasicBlock &MBB, ValueTable &MLocs, DbgOpIDMap &DbgOpStore,
|
|
const SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
|
|
unsigned NumLocs) {
|
|
ActiveMLocs.clear();
|
|
ActiveVLocs.clear();
|
|
VarLocs.clear();
|
|
VarLocs.reserve(NumLocs);
|
|
UseBeforeDefs.clear();
|
|
UseBeforeDefVariables.clear();
|
|
|
|
// Map of the preferred location for each value.
|
|
DenseMap<ValueIDNum, LocIdx> ValueToLoc;
|
|
|
|
// Initialized the preferred-location map with illegal locations, to be
|
|
// filled in later.
|
|
for (const auto &VLoc : VLocs)
|
|
if (VLoc.second.Kind == DbgValue::Def)
|
|
for (DbgOpID OpID : VLoc.second.getDbgOpIDs())
|
|
if (!OpID.ID.IsConst)
|
|
ValueToLoc.insert(
|
|
{DbgOpStore.find(OpID).ID, LocIdx::MakeIllegalLoc()});
|
|
|
|
ActiveMLocs.reserve(VLocs.size());
|
|
ActiveVLocs.reserve(VLocs.size());
|
|
|
|
// Produce a map of value numbers to the current machine locs they live
|
|
// in. When emulating VarLocBasedImpl, there should only be one
|
|
// location; when not, we get to pick.
|
|
for (auto Location : MTracker->locations()) {
|
|
LocIdx Idx = Location.Idx;
|
|
ValueIDNum &VNum = MLocs[Idx.asU64()];
|
|
if (VNum == ValueIDNum::EmptyValue)
|
|
continue;
|
|
VarLocs.push_back(VNum);
|
|
|
|
// Is there a variable that wants a location for this value? If not, skip.
|
|
auto VIt = ValueToLoc.find(VNum);
|
|
if (VIt == ValueToLoc.end())
|
|
continue;
|
|
|
|
LocIdx CurLoc = VIt->second;
|
|
// In order of preference, pick:
|
|
// * Callee saved registers,
|
|
// * Other registers,
|
|
// * Spill slots.
|
|
if (CurLoc.isIllegal() || MTracker->isSpill(CurLoc) ||
|
|
(!isCalleeSaved(CurLoc) && isCalleeSaved(Idx.asU64()))) {
|
|
// Insert, or overwrite if insertion failed.
|
|
VIt->second = Idx;
|
|
}
|
|
}
|
|
|
|
// Now map variables to their picked LocIdxes.
|
|
for (const auto &Var : VLocs) {
|
|
loadVarInloc(MBB, DbgOpStore, ValueToLoc, Var.first, Var.second);
|
|
}
|
|
flushDbgValues(MBB.begin(), &MBB);
|
|
}
|
|
|
|
/// Record that \p Var has value \p ID, a value that becomes available
|
|
/// later in the function.
|
|
void addUseBeforeDef(const DebugVariable &Var,
|
|
const DbgValueProperties &Properties,
|
|
const SmallVectorImpl<DbgOp> &DbgOps, unsigned Inst) {
|
|
UseBeforeDefs[Inst].emplace_back(DbgOps, Var, Properties);
|
|
UseBeforeDefVariables.insert(Var);
|
|
}
|
|
|
|
/// After the instruction at index \p Inst and position \p pos has been
|
|
/// processed, check whether it defines a variable value in a use-before-def.
|
|
/// If so, and the variable value hasn't changed since the start of the
|
|
/// block, create a DBG_VALUE.
|
|
void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
|
|
auto MIt = UseBeforeDefs.find(Inst);
|
|
if (MIt == UseBeforeDefs.end())
|
|
return;
|
|
|
|
// Map of values to the locations that store them for every value used by
|
|
// the variables that may have become available.
|
|
SmallDenseMap<ValueIDNum, LocIdx> ValueToLoc;
|
|
|
|
// Populate ValueToLoc with illegal default mappings for every value used by
|
|
// any UseBeforeDef variables for this instruction.
|
|
for (auto &Use : MIt->second) {
|
|
if (!UseBeforeDefVariables.count(Use.Var))
|
|
continue;
|
|
|
|
for (DbgOp &Op : Use.Values) {
|
|
assert(!Op.isUndef() && "UseBeforeDef erroneously created for a "
|
|
"DbgValue with undef values.");
|
|
if (Op.IsConst)
|
|
continue;
|
|
|
|
ValueToLoc.insert(std::make_pair(Op.ID, LocIdx::MakeIllegalLoc()));
|
|
}
|
|
}
|
|
|
|
// Exit early if we have no DbgValues to produce.
|
|
if (ValueToLoc.empty())
|
|
return;
|
|
|
|
// Determine the best location for each desired value.
|
|
for (auto Location : MTracker->locations()) {
|
|
LocIdx Idx = Location.Idx;
|
|
ValueIDNum &LocValueID = Location.Value;
|
|
|
|
// Is there a variable that wants a location for this value? If not, skip.
|
|
auto VIt = ValueToLoc.find(LocValueID);
|
|
if (VIt == ValueToLoc.end())
|
|
continue;
|
|
|
|
LocIdx CurLoc = VIt->second;
|
|
// In order of preference, pick:
|
|
// * Callee saved registers,
|
|
// * Other registers,
|
|
// * Spill slots.
|
|
if (CurLoc.isIllegal() || MTracker->isSpill(CurLoc) ||
|
|
(!isCalleeSaved(CurLoc) && isCalleeSaved(Idx.asU64()))) {
|
|
// Insert, or overwrite if insertion failed.
|
|
VIt->second = Idx;
|
|
}
|
|
}
|
|
|
|
// Using the map of values to locations, produce a final set of values for
|
|
// this variable.
|
|
for (auto &Use : MIt->second) {
|
|
if (!UseBeforeDefVariables.count(Use.Var))
|
|
continue;
|
|
|
|
SmallVector<ResolvedDbgOp> DbgOps;
|
|
|
|
for (DbgOp &Op : Use.Values) {
|
|
if (Op.IsConst) {
|
|
DbgOps.push_back(Op.MO);
|
|
continue;
|
|
}
|
|
LocIdx NewLoc = ValueToLoc.find(Op.ID)->second;
|
|
if (NewLoc.isIllegal())
|
|
break;
|
|
DbgOps.push_back(NewLoc);
|
|
}
|
|
|
|
// If at least one value used by this debug value is no longer available,
|
|
// i.e. one of the values was killed before we finished defining all of
|
|
// the values used by this variable, discard.
|
|
if (DbgOps.size() != Use.Values.size())
|
|
continue;
|
|
|
|
// Otherwise, we're good to go.
|
|
PendingDbgValues.push_back(
|
|
MTracker->emitLoc(DbgOps, Use.Var, Use.Properties));
|
|
}
|
|
flushDbgValues(pos, nullptr);
|
|
}
|
|
|
|
/// Helper to move created DBG_VALUEs into Transfers collection.
|
|
void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
|
|
if (PendingDbgValues.size() == 0)
|
|
return;
|
|
|
|
// Pick out the instruction start position.
|
|
MachineBasicBlock::instr_iterator BundleStart;
|
|
if (MBB && Pos == MBB->begin())
|
|
BundleStart = MBB->instr_begin();
|
|
else
|
|
BundleStart = getBundleStart(Pos->getIterator());
|
|
|
|
Transfers.push_back({BundleStart, MBB, PendingDbgValues});
|
|
PendingDbgValues.clear();
|
|
}
|
|
|
|
bool isEntryValueVariable(const DebugVariable &Var,
|
|
const DIExpression *Expr) const {
|
|
if (!Var.getVariable()->isParameter())
|
|
return false;
|
|
|
|
if (Var.getInlinedAt())
|
|
return false;
|
|
|
|
if (Expr->getNumElements() > 0)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool isEntryValueValue(const ValueIDNum &Val) const {
|
|
// Must be in entry block (block number zero), and be a PHI / live-in value.
|
|
if (Val.getBlock() || !Val.isPHI())
|
|
return false;
|
|
|
|
// Entry values must enter in a register.
|
|
if (MTracker->isSpill(Val.getLoc()))
|
|
return false;
|
|
|
|
Register SP = TLI->getStackPointerRegisterToSaveRestore();
|
|
Register FP = TRI.getFrameRegister(MF);
|
|
Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
|
|
return Reg != SP && Reg != FP;
|
|
}
|
|
|
|
bool recoverAsEntryValue(const DebugVariable &Var,
|
|
const DbgValueProperties &Prop,
|
|
const ValueIDNum &Num) {
|
|
// Is this variable location a candidate to be an entry value. First,
|
|
// should we be trying this at all?
|
|
if (!ShouldEmitDebugEntryValues)
|
|
return false;
|
|
|
|
// We don't currently emit entry values for DBG_VALUE_LISTs.
|
|
if (Prop.IsVariadic)
|
|
return false;
|
|
|
|
// Is the variable appropriate for entry values (i.e., is a parameter).
|
|
if (!isEntryValueVariable(Var, Prop.DIExpr))
|
|
return false;
|
|
|
|
// Is the value assigned to this variable still the entry value?
|
|
if (!isEntryValueValue(Num))
|
|
return false;
|
|
|
|
// Emit a variable location using an entry value expression.
|
|
DIExpression *NewExpr =
|
|
DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue);
|
|
Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
|
|
MachineOperand MO = MachineOperand::CreateReg(Reg, false);
|
|
|
|
PendingDbgValues.push_back(
|
|
emitMOLoc(MO, Var, {NewExpr, Prop.Indirect, Prop.IsVariadic}));
|
|
return true;
|
|
}
|
|
|
|
/// Change a variable value after encountering a DBG_VALUE inside a block.
|
|
void redefVar(const MachineInstr &MI) {
|
|
DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
|
|
MI.getDebugLoc()->getInlinedAt());
|
|
DbgValueProperties Properties(MI);
|
|
|
|
// Ignore non-register locations, we don't transfer those.
|
|
if (MI.isUndefDebugValue() ||
|
|
all_of(MI.debug_operands(),
|
|
[](const MachineOperand &MO) { return !MO.isReg(); })) {
|
|
auto It = ActiveVLocs.find(Var);
|
|
if (It != ActiveVLocs.end()) {
|
|
for (LocIdx Loc : It->second.loc_indices())
|
|
ActiveMLocs[Loc].erase(Var);
|
|
ActiveVLocs.erase(It);
|
|
}
|
|
// Any use-before-defs no longer apply.
|
|
UseBeforeDefVariables.erase(Var);
|
|
return;
|
|
}
|
|
|
|
SmallVector<ResolvedDbgOp> NewLocs;
|
|
for (const MachineOperand &MO : MI.debug_operands()) {
|
|
if (MO.isReg()) {
|
|
// Any undef regs have already been filtered out above.
|
|
Register Reg = MO.getReg();
|
|
LocIdx NewLoc = MTracker->getRegMLoc(Reg);
|
|
NewLocs.push_back(NewLoc);
|
|
} else {
|
|
NewLocs.push_back(MO);
|
|
}
|
|
}
|
|
|
|
redefVar(MI, Properties, NewLocs);
|
|
}
|
|
|
|
/// Handle a change in variable location within a block. Terminate the
|
|
/// variables current location, and record the value it now refers to, so
|
|
/// that we can detect location transfers later on.
|
|
void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
|
|
SmallVectorImpl<ResolvedDbgOp> &NewLocs) {
|
|
DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
|
|
MI.getDebugLoc()->getInlinedAt());
|
|
// Any use-before-defs no longer apply.
|
|
UseBeforeDefVariables.erase(Var);
|
|
|
|
// Erase any previous location.
|
|
auto It = ActiveVLocs.find(Var);
|
|
if (It != ActiveVLocs.end()) {
|
|
for (LocIdx Loc : It->second.loc_indices())
|
|
ActiveMLocs[Loc].erase(Var);
|
|
}
|
|
|
|
// If there _is_ no new location, all we had to do was erase.
|
|
if (NewLocs.empty()) {
|
|
if (It != ActiveVLocs.end())
|
|
ActiveVLocs.erase(It);
|
|
return;
|
|
}
|
|
|
|
SmallVector<std::pair<LocIdx, DebugVariable>> LostMLocs;
|
|
for (ResolvedDbgOp &Op : NewLocs) {
|
|
if (Op.IsConst)
|
|
continue;
|
|
|
|
LocIdx NewLoc = Op.Loc;
|
|
|
|
// Check whether our local copy of values-by-location in #VarLocs is out
|
|
// of date. Wipe old tracking data for the location if it's been clobbered
|
|
// in the meantime.
|
|
if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) {
|
|
for (const auto &P : ActiveMLocs[NewLoc]) {
|
|
auto LostVLocIt = ActiveVLocs.find(P);
|
|
if (LostVLocIt != ActiveVLocs.end()) {
|
|
for (LocIdx Loc : LostVLocIt->second.loc_indices()) {
|
|
// Every active variable mapping for NewLoc will be cleared, no
|
|
// need to track individual variables.
|
|
if (Loc == NewLoc)
|
|
continue;
|
|
LostMLocs.emplace_back(Loc, P);
|
|
}
|
|
}
|
|
ActiveVLocs.erase(P);
|
|
}
|
|
for (const auto &LostMLoc : LostMLocs)
|
|
ActiveMLocs[LostMLoc.first].erase(LostMLoc.second);
|
|
LostMLocs.clear();
|
|
It = ActiveVLocs.find(Var);
|
|
ActiveMLocs[NewLoc.asU64()].clear();
|
|
VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc);
|
|
}
|
|
|
|
ActiveMLocs[NewLoc].insert(Var);
|
|
}
|
|
|
|
if (It == ActiveVLocs.end()) {
|
|
ActiveVLocs.insert(
|
|
std::make_pair(Var, ResolvedDbgValue(NewLocs, Properties)));
|
|
} else {
|
|
It->second.Ops.assign(NewLocs);
|
|
It->second.Properties = Properties;
|
|
}
|
|
}
|
|
|
|
/// Account for a location \p mloc being clobbered. Examine the variable
|
|
/// locations that will be terminated: and try to recover them by using
|
|
/// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
|
|
/// explicitly terminate a location if it can't be recovered.
|
|
void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
|
|
bool MakeUndef = true) {
|
|
auto ActiveMLocIt = ActiveMLocs.find(MLoc);
|
|
if (ActiveMLocIt == ActiveMLocs.end())
|
|
return;
|
|
|
|
// What was the old variable value?
|
|
ValueIDNum OldValue = VarLocs[MLoc.asU64()];
|
|
clobberMloc(MLoc, OldValue, Pos, MakeUndef);
|
|
}
|
|
/// Overload that takes an explicit value \p OldValue for when the value in
|
|
/// \p MLoc has changed and the TransferTracker's locations have not been
|
|
/// updated yet.
|
|
void clobberMloc(LocIdx MLoc, ValueIDNum OldValue,
|
|
MachineBasicBlock::iterator Pos, bool MakeUndef = true) {
|
|
auto ActiveMLocIt = ActiveMLocs.find(MLoc);
|
|
if (ActiveMLocIt == ActiveMLocs.end())
|
|
return;
|
|
|
|
VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
|
|
|
|
// Examine the remaining variable locations: if we can find the same value
|
|
// again, we can recover the location.
|
|
Optional<LocIdx> NewLoc;
|
|
for (auto Loc : MTracker->locations())
|
|
if (Loc.Value == OldValue)
|
|
NewLoc = Loc.Idx;
|
|
|
|
// If there is no location, and we weren't asked to make the variable
|
|
// explicitly undef, then stop here.
|
|
if (!NewLoc && !MakeUndef) {
|
|
// Try and recover a few more locations with entry values.
|
|
for (const auto &Var : ActiveMLocIt->second) {
|
|
auto &Prop = ActiveVLocs.find(Var)->second.Properties;
|
|
recoverAsEntryValue(Var, Prop, OldValue);
|
|
}
|
|
flushDbgValues(Pos, nullptr);
|
|
return;
|
|
}
|
|
|
|
// Examine all the variables based on this location.
|
|
DenseSet<DebugVariable> NewMLocs;
|
|
// If no new location has been found, every variable that depends on this
|
|
// MLoc is dead, so end their existing MLoc->Var mappings as well.
|
|
SmallVector<std::pair<LocIdx, DebugVariable>> LostMLocs;
|
|
for (const auto &Var : ActiveMLocIt->second) {
|
|
auto ActiveVLocIt = ActiveVLocs.find(Var);
|
|
// Re-state the variable location: if there's no replacement then NewLoc
|
|
// is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE
|
|
// identifying the alternative location will be emitted.
|
|
const DbgValueProperties &Properties = ActiveVLocIt->second.Properties;
|
|
|
|
// Produce the new list of debug ops - an empty list if no new location
|
|
// was found, or the existing list with the substitution MLoc -> NewLoc
|
|
// otherwise.
|
|
SmallVector<ResolvedDbgOp> DbgOps;
|
|
if (NewLoc) {
|
|
ResolvedDbgOp OldOp(MLoc);
|
|
ResolvedDbgOp NewOp(*NewLoc);
|
|
// Insert illegal ops to overwrite afterwards.
|
|
DbgOps.insert(DbgOps.begin(), ActiveVLocIt->second.Ops.size(),
|
|
ResolvedDbgOp(LocIdx::MakeIllegalLoc()));
|
|
replace_copy(ActiveVLocIt->second.Ops, DbgOps.begin(), OldOp, NewOp);
|
|
}
|
|
|
|
PendingDbgValues.push_back(MTracker->emitLoc(DbgOps, Var, Properties));
|
|
|
|
// Update machine locations <=> variable locations maps. Defer updating
|
|
// ActiveMLocs to avoid invalidating the ActiveMLocIt iterator.
|
|
if (!NewLoc) {
|
|
for (LocIdx Loc : ActiveVLocIt->second.loc_indices()) {
|
|
if (Loc != MLoc)
|
|
LostMLocs.emplace_back(Loc, Var);
|
|
}
|
|
ActiveVLocs.erase(ActiveVLocIt);
|
|
} else {
|
|
ActiveVLocIt->second.Ops = DbgOps;
|
|
NewMLocs.insert(Var);
|
|
}
|
|
}
|
|
|
|
// Remove variables from ActiveMLocs if they no longer use any other MLocs
|
|
// due to being killed by this clobber.
|
|
for (auto &LocVarIt : LostMLocs) {
|
|
auto LostMLocIt = ActiveMLocs.find(LocVarIt.first);
|
|
assert(LostMLocIt != ActiveMLocs.end() &&
|
|
"Variable was using this MLoc, but ActiveMLocs[MLoc] has no "
|
|
"entries?");
|
|
LostMLocIt->second.erase(LocVarIt.second);
|
|
}
|
|
|
|
// We lazily track what locations have which values; if we've found a new
|
|
// location for the clobbered value, remember it.
|
|
if (NewLoc)
|
|
VarLocs[NewLoc->asU64()] = OldValue;
|
|
|
|
flushDbgValues(Pos, nullptr);
|
|
|
|
// Commit ActiveMLoc changes.
|
|
ActiveMLocIt->second.clear();
|
|
if (!NewMLocs.empty())
|
|
for (auto &Var : NewMLocs)
|
|
ActiveMLocs[*NewLoc].insert(Var);
|
|
}
|
|
|
|
/// Transfer variables based on \p Src to be based on \p Dst. This handles
|
|
/// both register copies as well as spills and restores. Creates DBG_VALUEs
|
|
/// describing the movement.
|
|
void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
|
|
// Does Src still contain the value num we expect? If not, it's been
|
|
// clobbered in the meantime, and our variable locations are stale.
|
|
if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src))
|
|
return;
|
|
|
|
// assert(ActiveMLocs[Dst].size() == 0);
|
|
//^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
|
|
|
|
// Move set of active variables from one location to another.
|
|
auto MovingVars = ActiveMLocs[Src];
|
|
ActiveMLocs[Dst].insert(MovingVars.begin(), MovingVars.end());
|
|
VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
|
|
|
|
// For each variable based on Src; create a location at Dst.
|
|
ResolvedDbgOp SrcOp(Src);
|
|
ResolvedDbgOp DstOp(Dst);
|
|
for (const auto &Var : MovingVars) {
|
|
auto ActiveVLocIt = ActiveVLocs.find(Var);
|
|
assert(ActiveVLocIt != ActiveVLocs.end());
|
|
|
|
// Update all instances of Src in the variable's tracked values to Dst.
|
|
std::replace(ActiveVLocIt->second.Ops.begin(),
|
|
ActiveVLocIt->second.Ops.end(), SrcOp, DstOp);
|
|
|
|
MachineInstr *MI = MTracker->emitLoc(ActiveVLocIt->second.Ops, Var,
|
|
ActiveVLocIt->second.Properties);
|
|
PendingDbgValues.push_back(MI);
|
|
}
|
|
ActiveMLocs[Src].clear();
|
|
flushDbgValues(Pos, nullptr);
|
|
|
|
// XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
|
|
// about the old location.
|
|
if (EmulateOldLDV)
|
|
VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
|
|
}
|
|
|
|
MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
|
|
const DebugVariable &Var,
|
|
const DbgValueProperties &Properties) {
|
|
DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
|
|
Var.getVariable()->getScope(),
|
|
const_cast<DILocation *>(Var.getInlinedAt()));
|
|
auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
|
|
MIB.add(MO);
|
|
if (Properties.Indirect)
|
|
MIB.addImm(0);
|
|
else
|
|
MIB.addReg(0);
|
|
MIB.addMetadata(Var.getVariable());
|
|
MIB.addMetadata(Properties.DIExpr);
|
|
return MIB;
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
|
|
ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1};
|
|
|
|
#ifndef NDEBUG
|
|
void ResolvedDbgOp::dump(const MLocTracker *MTrack) const {
|
|
if (IsConst) {
|
|
dbgs() << MO;
|
|
} else {
|
|
dbgs() << MTrack->LocIdxToName(Loc);
|
|
}
|
|
}
|
|
void DbgOp::dump(const MLocTracker *MTrack) const {
|
|
if (IsConst) {
|
|
dbgs() << MO;
|
|
} else if (!isUndef()) {
|
|
dbgs() << MTrack->IDAsString(ID);
|
|
}
|
|
}
|
|
void DbgOpID::dump(const MLocTracker *MTrack, const DbgOpIDMap *OpStore) const {
|
|
if (!OpStore) {
|
|
dbgs() << "ID(" << asU32() << ")";
|
|
} else {
|
|
OpStore->find(*this).dump(MTrack);
|
|
}
|
|
}
|
|
void DbgValue::dump(const MLocTracker *MTrack,
|
|
const DbgOpIDMap *OpStore) const {
|
|
if (Kind == NoVal) {
|
|
dbgs() << "NoVal(" << BlockNo << ")";
|
|
} else if (Kind == VPHI || Kind == Def) {
|
|
if (Kind == VPHI)
|
|
dbgs() << "VPHI(" << BlockNo << ",";
|
|
else
|
|
dbgs() << "Def(";
|
|
for (unsigned Idx = 0; Idx < getDbgOpIDs().size(); ++Idx) {
|
|
getDbgOpID(Idx).dump(MTrack, OpStore);
|
|
if (Idx != 0)
|
|
dbgs() << ",";
|
|
}
|
|
dbgs() << ")";
|
|
}
|
|
if (Properties.Indirect)
|
|
dbgs() << " indir";
|
|
if (Properties.DIExpr)
|
|
dbgs() << " " << *Properties.DIExpr;
|
|
}
|
|
#endif
|
|
|
|
MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
|
|
const TargetRegisterInfo &TRI,
|
|
const TargetLowering &TLI)
|
|
: MF(MF), TII(TII), TRI(TRI), TLI(TLI),
|
|
LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) {
|
|
NumRegs = TRI.getNumRegs();
|
|
reset();
|
|
LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
|
|
assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
|
|
|
|
// Always track SP. This avoids the implicit clobbering caused by regmasks
|
|
// from affectings its values. (LiveDebugValues disbelieves calls and
|
|
// regmasks that claim to clobber SP).
|
|
Register SP = TLI.getStackPointerRegisterToSaveRestore();
|
|
if (SP) {
|
|
unsigned ID = getLocID(SP);
|
|
(void)lookupOrTrackRegister(ID);
|
|
|
|
for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI)
|
|
SPAliases.insert(*RAI);
|
|
}
|
|
|
|
// Build some common stack positions -- full registers being spilt to the
|
|
// stack.
|
|
StackSlotIdxes.insert({{8, 0}, 0});
|
|
StackSlotIdxes.insert({{16, 0}, 1});
|
|
StackSlotIdxes.insert({{32, 0}, 2});
|
|
StackSlotIdxes.insert({{64, 0}, 3});
|
|
StackSlotIdxes.insert({{128, 0}, 4});
|
|
StackSlotIdxes.insert({{256, 0}, 5});
|
|
StackSlotIdxes.insert({{512, 0}, 6});
|
|
|
|
// Traverse all the subregister idxes, and ensure there's an index for them.
|
|
// Duplicates are no problem: we're interested in their position in the
|
|
// stack slot, we don't want to type the slot.
|
|
for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) {
|
|
unsigned Size = TRI.getSubRegIdxSize(I);
|
|
unsigned Offs = TRI.getSubRegIdxOffset(I);
|
|
unsigned Idx = StackSlotIdxes.size();
|
|
|
|
// Some subregs have -1, -2 and so forth fed into their fields, to mean
|
|
// special backend things. Ignore those.
|
|
if (Size > 60000 || Offs > 60000)
|
|
continue;
|
|
|
|
StackSlotIdxes.insert({{Size, Offs}, Idx});
|
|
}
|
|
|
|
// There may also be strange register class sizes (think x86 fp80s).
|
|
for (const TargetRegisterClass *RC : TRI.regclasses()) {
|
|
unsigned Size = TRI.getRegSizeInBits(*RC);
|
|
|
|
// We might see special reserved values as sizes, and classes for other
|
|
// stuff the machine tries to model. If it's more than 512 bits, then it
|
|
// is very unlikely to be a register than can be spilt.
|
|
if (Size > 512)
|
|
continue;
|
|
|
|
unsigned Idx = StackSlotIdxes.size();
|
|
StackSlotIdxes.insert({{Size, 0}, Idx});
|
|
}
|
|
|
|
for (auto &Idx : StackSlotIdxes)
|
|
StackIdxesToPos[Idx.second] = Idx.first;
|
|
|
|
NumSlotIdxes = StackSlotIdxes.size();
|
|
}
|
|
|
|
LocIdx MLocTracker::trackRegister(unsigned ID) {
|
|
assert(ID != 0);
|
|
LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
|
|
LocIdxToIDNum.grow(NewIdx);
|
|
LocIdxToLocID.grow(NewIdx);
|
|
|
|
// Default: it's an mphi.
|
|
ValueIDNum ValNum = {CurBB, 0, NewIdx};
|
|
// Was this reg ever touched by a regmask?
|
|
for (const auto &MaskPair : reverse(Masks)) {
|
|
if (MaskPair.first->clobbersPhysReg(ID)) {
|
|
// There was an earlier def we skipped.
|
|
ValNum = {CurBB, MaskPair.second, NewIdx};
|
|
break;
|
|
}
|
|
}
|
|
|
|
LocIdxToIDNum[NewIdx] = ValNum;
|
|
LocIdxToLocID[NewIdx] = ID;
|
|
return NewIdx;
|
|
}
|
|
|
|
void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB,
|
|
unsigned InstID) {
|
|
// Def any register we track have that isn't preserved. The regmask
|
|
// terminates the liveness of a register, meaning its value can't be
|
|
// relied upon -- we represent this by giving it a new value.
|
|
for (auto Location : locations()) {
|
|
unsigned ID = LocIdxToLocID[Location.Idx];
|
|
// Don't clobber SP, even if the mask says it's clobbered.
|
|
if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID))
|
|
defReg(ID, CurBB, InstID);
|
|
}
|
|
Masks.push_back(std::make_pair(MO, InstID));
|
|
}
|
|
|
|
Optional<SpillLocationNo> MLocTracker::getOrTrackSpillLoc(SpillLoc L) {
|
|
SpillLocationNo SpillID(SpillLocs.idFor(L));
|
|
|
|
if (SpillID.id() == 0) {
|
|
// If there is no location, and we have reached the limit of how many stack
|
|
// slots to track, then don't track this one.
|
|
if (SpillLocs.size() >= StackWorkingSetLimit)
|
|
return None;
|
|
|
|
// Spill location is untracked: create record for this one, and all
|
|
// subregister slots too.
|
|
SpillID = SpillLocationNo(SpillLocs.insert(L));
|
|
for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) {
|
|
unsigned L = getSpillIDWithIdx(SpillID, StackIdx);
|
|
LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
|
|
LocIdxToIDNum.grow(Idx);
|
|
LocIdxToLocID.grow(Idx);
|
|
LocIDToLocIdx.push_back(Idx);
|
|
LocIdxToLocID[Idx] = L;
|
|
// Initialize to PHI value; corresponds to the location's live-in value
|
|
// during transfer function construction.
|
|
LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx);
|
|
}
|
|
}
|
|
return SpillID;
|
|
}
|
|
|
|
std::string MLocTracker::LocIdxToName(LocIdx Idx) const {
|
|
unsigned ID = LocIdxToLocID[Idx];
|
|
if (ID >= NumRegs) {
|
|
StackSlotPos Pos = locIDToSpillIdx(ID);
|
|
ID -= NumRegs;
|
|
unsigned Slot = ID / NumSlotIdxes;
|
|
return Twine("slot ")
|
|
.concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first)
|
|
.concat(Twine(" offs ").concat(Twine(Pos.second))))))
|
|
.str();
|
|
} else {
|
|
return TRI.getRegAsmName(ID).str();
|
|
}
|
|
}
|
|
|
|
std::string MLocTracker::IDAsString(const ValueIDNum &Num) const {
|
|
std::string DefName = LocIdxToName(Num.getLoc());
|
|
return Num.asString(DefName);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
LLVM_DUMP_METHOD void MLocTracker::dump() {
|
|
for (auto Location : locations()) {
|
|
std::string MLocName = LocIdxToName(Location.Value.getLoc());
|
|
std::string DefName = Location.Value.asString(MLocName);
|
|
dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
|
|
}
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() {
|
|
for (auto Location : locations()) {
|
|
std::string foo = LocIdxToName(Location.Idx);
|
|
dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
|
|
}
|
|
}
|
|
#endif
|
|
|
|
MachineInstrBuilder
|
|
MLocTracker::emitLoc(const SmallVectorImpl<ResolvedDbgOp> &DbgOps,
|
|
const DebugVariable &Var,
|
|
const DbgValueProperties &Properties) {
|
|
DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
|
|
Var.getVariable()->getScope(),
|
|
const_cast<DILocation *>(Var.getInlinedAt()));
|
|
|
|
const MCInstrDesc &Desc = Properties.IsVariadic
|
|
? TII.get(TargetOpcode::DBG_VALUE_LIST)
|
|
: TII.get(TargetOpcode::DBG_VALUE);
|
|
|
|
#ifdef EXPENSIVE_CHECKS
|
|
assert(all_of(DbgOps,
|
|
[](const ResolvedDbgOp &Op) {
|
|
return Op.IsConst || !Op.Loc.isIllegal();
|
|
}) &&
|
|
"Did not expect illegal ops in DbgOps.");
|
|
assert((DbgOps.size() == 0 ||
|
|
DbgOps.size() == Properties.getLocationOpCount()) &&
|
|
"Expected to have either one DbgOp per MI LocationOp, or none.");
|
|
#endif
|
|
|
|
auto GetRegOp = [](unsigned Reg) -> MachineOperand {
|
|
return MachineOperand::CreateReg(
|
|
/* Reg */ Reg, /* isDef */ false, /* isImp */ false,
|
|
/* isKill */ false, /* isDead */ false,
|
|
/* isUndef */ false, /* isEarlyClobber */ false,
|
|
/* SubReg */ 0, /* isDebug */ true);
|
|
};
|
|
|
|
SmallVector<MachineOperand> MOs;
|
|
|
|
auto EmitUndef = [&]() {
|
|
MOs.clear();
|
|
MOs.assign(Properties.getLocationOpCount(), GetRegOp(0));
|
|
return BuildMI(MF, DL, Desc, false, MOs, Var.getVariable(),
|
|
Properties.DIExpr);
|
|
};
|
|
|
|
// Don't bother passing any real operands to BuildMI if any of them would be
|
|
// $noreg.
|
|
if (DbgOps.empty())
|
|
return EmitUndef();
|
|
|
|
bool Indirect = Properties.Indirect;
|
|
|
|
const DIExpression *Expr = Properties.DIExpr;
|
|
|
|
assert(DbgOps.size() == Properties.getLocationOpCount());
|
|
|
|
// If all locations are valid, accumulate them into our list of
|
|
// MachineOperands. For any spilled locations, either update the indirectness
|
|
// register or apply the appropriate transformations in the DIExpression.
|
|
for (size_t Idx = 0; Idx < Properties.getLocationOpCount(); ++Idx) {
|
|
const ResolvedDbgOp &Op = DbgOps[Idx];
|
|
|
|
if (Op.IsConst) {
|
|
MOs.push_back(Op.MO);
|
|
continue;
|
|
}
|
|
|
|
LocIdx MLoc = Op.Loc;
|
|
unsigned LocID = LocIdxToLocID[MLoc];
|
|
if (LocID >= NumRegs) {
|
|
SpillLocationNo SpillID = locIDToSpill(LocID);
|
|
StackSlotPos StackIdx = locIDToSpillIdx(LocID);
|
|
unsigned short Offset = StackIdx.second;
|
|
|
|
// TODO: support variables that are located in spill slots, with non-zero
|
|
// offsets from the start of the spill slot. It would require some more
|
|
// complex DIExpression calculations. This doesn't seem to be produced by
|
|
// LLVM right now, so don't try and support it.
|
|
// Accept no-subregister slots and subregisters where the offset is zero.
|
|
// The consumer should already have type information to work out how large
|
|
// the variable is.
|
|
if (Offset == 0) {
|
|
const SpillLoc &Spill = SpillLocs[SpillID.id()];
|
|
unsigned Base = Spill.SpillBase;
|
|
|
|
// There are several ways we can dereference things, and several inputs
|
|
// to consider:
|
|
// * NRVO variables will appear with IsIndirect set, but should have
|
|
// nothing else in their DIExpressions,
|
|
// * Variables with DW_OP_stack_value in their expr already need an
|
|
// explicit dereference of the stack location,
|
|
// * Values that don't match the variable size need DW_OP_deref_size,
|
|
// * Everything else can just become a simple location expression.
|
|
|
|
// We need to use deref_size whenever there's a mismatch between the
|
|
// size of value and the size of variable portion being read.
|
|
// Additionally, we should use it whenever dealing with stack_value
|
|
// fragments, to avoid the consumer having to determine the deref size
|
|
// from DW_OP_piece.
|
|
bool UseDerefSize = false;
|
|
unsigned ValueSizeInBits = getLocSizeInBits(MLoc);
|
|
unsigned DerefSizeInBytes = ValueSizeInBits / 8;
|
|
if (auto Fragment = Var.getFragment()) {
|
|
unsigned VariableSizeInBits = Fragment->SizeInBits;
|
|
if (VariableSizeInBits != ValueSizeInBits || Expr->isComplex())
|
|
UseDerefSize = true;
|
|
} else if (auto Size = Var.getVariable()->getSizeInBits()) {
|
|
if (*Size != ValueSizeInBits) {
|
|
UseDerefSize = true;
|
|
}
|
|
}
|
|
|
|
SmallVector<uint64_t, 5> OffsetOps;
|
|
TRI.getOffsetOpcodes(Spill.SpillOffset, OffsetOps);
|
|
bool StackValue = false;
|
|
|
|
if (Properties.Indirect) {
|
|
// This is something like an NRVO variable, where the pointer has been
|
|
// spilt to the stack. It should end up being a memory location, with
|
|
// the pointer to the variable loaded off the stack with a deref:
|
|
assert(!Expr->isImplicit());
|
|
OffsetOps.push_back(dwarf::DW_OP_deref);
|
|
} else if (UseDerefSize && !Properties.IsVariadic) {
|
|
// TODO: Figure out how to handle deref size issues for variadic
|
|
// values.
|
|
// We're loading a value off the stack that's not the same size as the
|
|
// variable. Add / subtract stack offset, explicitly deref with a
|
|
// size, and add DW_OP_stack_value if not already present.
|
|
OffsetOps.push_back(dwarf::DW_OP_deref_size);
|
|
OffsetOps.push_back(DerefSizeInBytes);
|
|
StackValue = true;
|
|
} else if (Expr->isComplex()) {
|
|
// A variable with no size ambiguity, but with extra elements in it's
|
|
// expression. Manually dereference the stack location.
|
|
OffsetOps.push_back(dwarf::DW_OP_deref);
|
|
} else {
|
|
// A plain value that has been spilt to the stack, with no further
|
|
// context. Request a location expression, marking the DBG_VALUE as
|
|
// IsIndirect.
|
|
Indirect = true;
|
|
}
|
|
|
|
Expr = DIExpression::appendOpsToArg(Expr, OffsetOps, Idx, StackValue);
|
|
MOs.push_back(GetRegOp(Base));
|
|
} else {
|
|
// This is a stack location with a weird subregister offset: emit an
|
|
// undef DBG_VALUE instead.
|
|
return EmitUndef();
|
|
}
|
|
} else {
|
|
// Non-empty, non-stack slot, must be a plain register.
|
|
MOs.push_back(GetRegOp(LocID));
|
|
}
|
|
}
|
|
|
|
return BuildMI(MF, DL, Desc, Indirect, MOs, Var.getVariable(), Expr);
|
|
}
|
|
|
|
/// Default construct and initialize the pass.
|
|
InstrRefBasedLDV::InstrRefBasedLDV() = default;
|
|
|
|
bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const {
|
|
unsigned Reg = MTracker->LocIdxToLocID[L];
|
|
return isCalleeSavedReg(Reg);
|
|
}
|
|
bool InstrRefBasedLDV::isCalleeSavedReg(Register R) const {
|
|
for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI)
|
|
if (CalleeSavedRegs.test(*RAI))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Debug Range Extension Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef NDEBUG
|
|
// Something to restore in the future.
|
|
// void InstrRefBasedLDV::printVarLocInMBB(..)
|
|
#endif
|
|
|
|
Optional<SpillLocationNo>
|
|
InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
|
|
assert(MI.hasOneMemOperand() &&
|
|
"Spill instruction does not have exactly one memory operand?");
|
|
auto MMOI = MI.memoperands_begin();
|
|
const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
|
|
assert(PVal->kind() == PseudoSourceValue::FixedStack &&
|
|
"Inconsistent memory operand in spill instruction");
|
|
int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
|
|
const MachineBasicBlock *MBB = MI.getParent();
|
|
Register Reg;
|
|
StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
|
|
return MTracker->getOrTrackSpillLoc({Reg, Offset});
|
|
}
|
|
|
|
Optional<LocIdx>
|
|
InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) {
|
|
Optional<SpillLocationNo> SpillLoc = extractSpillBaseRegAndOffset(MI);
|
|
if (!SpillLoc)
|
|
return None;
|
|
|
|
// Where in the stack slot is this value defined -- i.e., what size of value
|
|
// is this? An important question, because it could be loaded into a register
|
|
// from the stack at some point. Happily the memory operand will tell us
|
|
// the size written to the stack.
|
|
auto *MemOperand = *MI.memoperands_begin();
|
|
unsigned SizeInBits = MemOperand->getSizeInBits();
|
|
|
|
// Find that position in the stack indexes we're tracking.
|
|
auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0});
|
|
if (IdxIt == MTracker->StackSlotIdxes.end())
|
|
// That index is not tracked. This is suprising, and unlikely to ever
|
|
// occur, but the safe action is to indicate the variable is optimised out.
|
|
return None;
|
|
|
|
unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillLoc, IdxIt->second);
|
|
return MTracker->getSpillMLoc(SpillID);
|
|
}
|
|
|
|
/// End all previous ranges related to @MI and start a new range from @MI
|
|
/// if it is a DBG_VALUE instr.
|
|
bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
|
|
if (!MI.isDebugValue())
|
|
return false;
|
|
|
|
const DILocalVariable *Var = MI.getDebugVariable();
|
|
const DIExpression *Expr = MI.getDebugExpression();
|
|
const DILocation *DebugLoc = MI.getDebugLoc();
|
|
const DILocation *InlinedAt = DebugLoc->getInlinedAt();
|
|
assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
|
|
"Expected inlined-at fields to agree");
|
|
|
|
DebugVariable V(Var, Expr, InlinedAt);
|
|
DbgValueProperties Properties(MI);
|
|
|
|
// If there are no instructions in this lexical scope, do no location tracking
|
|
// at all, this variable shouldn't get a legitimate location range.
|
|
auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
|
|
if (Scope == nullptr)
|
|
return true; // handled it; by doing nothing
|
|
|
|
// MLocTracker needs to know that this register is read, even if it's only
|
|
// read by a debug inst.
|
|
for (const MachineOperand &MO : MI.debug_operands())
|
|
if (MO.isReg() && MO.getReg() != 0)
|
|
(void)MTracker->readReg(MO.getReg());
|
|
|
|
// If we're preparing for the second analysis (variables), the machine value
|
|
// locations are already solved, and we report this DBG_VALUE and the value
|
|
// it refers to to VLocTracker.
|
|
if (VTracker) {
|
|
SmallVector<DbgOpID> DebugOps;
|
|
// Feed defVar the new variable location, or if this is a DBG_VALUE $noreg,
|
|
// feed defVar None.
|
|
if (!MI.isUndefDebugValue()) {
|
|
for (const MachineOperand &MO : MI.debug_operands()) {
|
|
// There should be no undef registers here, as we've screened for undef
|
|
// debug values.
|
|
if (MO.isReg()) {
|
|
DebugOps.push_back(DbgOpStore.insert(MTracker->readReg(MO.getReg())));
|
|
} else if (MO.isImm() || MO.isFPImm() || MO.isCImm()) {
|
|
DebugOps.push_back(DbgOpStore.insert(MO));
|
|
} else {
|
|
llvm_unreachable("Unexpected debug operand type.");
|
|
}
|
|
}
|
|
}
|
|
VTracker->defVar(MI, Properties, DebugOps);
|
|
}
|
|
|
|
// If performing final tracking of transfers, report this variable definition
|
|
// to the TransferTracker too.
|
|
if (TTracker)
|
|
TTracker->redefVar(MI);
|
|
return true;
|
|
}
|
|
|
|
bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
|
|
const ValueTable *MLiveOuts,
|
|
const ValueTable *MLiveIns) {
|
|
if (!MI.isDebugRef())
|
|
return false;
|
|
|
|
// Only handle this instruction when we are building the variable value
|
|
// transfer function.
|
|
if (!VTracker && !TTracker)
|
|
return false;
|
|
|
|
unsigned InstNo = MI.getOperand(0).getImm();
|
|
unsigned OpNo = MI.getOperand(1).getImm();
|
|
|
|
const DILocalVariable *Var = MI.getDebugVariable();
|
|
const DIExpression *Expr = MI.getDebugExpression();
|
|
const DILocation *DebugLoc = MI.getDebugLoc();
|
|
const DILocation *InlinedAt = DebugLoc->getInlinedAt();
|
|
assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
|
|
"Expected inlined-at fields to agree");
|
|
|
|
DebugVariable V(Var, Expr, InlinedAt);
|
|
|
|
auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
|
|
if (Scope == nullptr)
|
|
return true; // Handled by doing nothing. This variable is never in scope.
|
|
|
|
const MachineFunction &MF = *MI.getParent()->getParent();
|
|
|
|
// Various optimizations may have happened to the value during codegen,
|
|
// recorded in the value substitution table. Apply any substitutions to
|
|
// the instruction / operand number in this DBG_INSTR_REF, and collect
|
|
// any subregister extractions performed during optimization.
|
|
|
|
// Create dummy substitution with Src set, for lookup.
|
|
auto SoughtSub =
|
|
MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
|
|
|
|
SmallVector<unsigned, 4> SeenSubregs;
|
|
auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
|
|
while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
|
|
LowerBoundIt->Src == SoughtSub.Src) {
|
|
std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
|
|
SoughtSub.Src = LowerBoundIt->Dest;
|
|
if (unsigned Subreg = LowerBoundIt->Subreg)
|
|
SeenSubregs.push_back(Subreg);
|
|
LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
|
|
}
|
|
|
|
// Default machine value number is <None> -- if no instruction defines
|
|
// the corresponding value, it must have been optimized out.
|
|
Optional<ValueIDNum> NewID;
|
|
|
|
// Try to lookup the instruction number, and find the machine value number
|
|
// that it defines. It could be an instruction, or a PHI.
|
|
auto InstrIt = DebugInstrNumToInstr.find(InstNo);
|
|
auto PHIIt = llvm::lower_bound(DebugPHINumToValue, InstNo);
|
|
if (InstrIt != DebugInstrNumToInstr.end()) {
|
|
const MachineInstr &TargetInstr = *InstrIt->second.first;
|
|
uint64_t BlockNo = TargetInstr.getParent()->getNumber();
|
|
|
|
// Pick out the designated operand. It might be a memory reference, if
|
|
// a register def was folded into a stack store.
|
|
if (OpNo == MachineFunction::DebugOperandMemNumber &&
|
|
TargetInstr.hasOneMemOperand()) {
|
|
Optional<LocIdx> L = findLocationForMemOperand(TargetInstr);
|
|
if (L)
|
|
NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L);
|
|
} else if (OpNo != MachineFunction::DebugOperandMemNumber) {
|
|
// Permit the debug-info to be completely wrong: identifying a nonexistant
|
|
// operand, or one that is not a register definition, means something
|
|
// unexpected happened during optimisation. Broken debug-info, however,
|
|
// shouldn't crash the compiler -- instead leave the variable value as
|
|
// None, which will make it appear "optimised out".
|
|
if (OpNo < TargetInstr.getNumOperands()) {
|
|
const MachineOperand &MO = TargetInstr.getOperand(OpNo);
|
|
|
|
if (MO.isReg() && MO.isDef() && MO.getReg()) {
|
|
unsigned LocID = MTracker->getLocID(MO.getReg());
|
|
LocIdx L = MTracker->LocIDToLocIdx[LocID];
|
|
NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
|
|
}
|
|
}
|
|
|
|
if (!NewID) {
|
|
LLVM_DEBUG(
|
|
{ dbgs() << "Seen instruction reference to illegal operand\n"; });
|
|
}
|
|
}
|
|
// else: NewID is left as None.
|
|
} else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
|
|
// It's actually a PHI value. Which value it is might not be obvious, use
|
|
// the resolver helper to find out.
|
|
NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
|
|
MI, InstNo);
|
|
}
|
|
|
|
// Apply any subregister extractions, in reverse. We might have seen code
|
|
// like this:
|
|
// CALL64 @foo, implicit-def $rax
|
|
// %0:gr64 = COPY $rax
|
|
// %1:gr32 = COPY %0.sub_32bit
|
|
// %2:gr16 = COPY %1.sub_16bit
|
|
// %3:gr8 = COPY %2.sub_8bit
|
|
// In which case each copy would have been recorded as a substitution with
|
|
// a subregister qualifier. Apply those qualifiers now.
|
|
if (NewID && !SeenSubregs.empty()) {
|
|
unsigned Offset = 0;
|
|
unsigned Size = 0;
|
|
|
|
// Look at each subregister that we passed through, and progressively
|
|
// narrow in, accumulating any offsets that occur. Substitutions should
|
|
// only ever be the same or narrower width than what they read from;
|
|
// iterate in reverse order so that we go from wide to small.
|
|
for (unsigned Subreg : reverse(SeenSubregs)) {
|
|
unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
|
|
unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
|
|
Offset += ThisOffset;
|
|
Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
|
|
}
|
|
|
|
// If that worked, look for an appropriate subregister with the register
|
|
// where the define happens. Don't look at values that were defined during
|
|
// a stack write: we can't currently express register locations within
|
|
// spills.
|
|
LocIdx L = NewID->getLoc();
|
|
if (NewID && !MTracker->isSpill(L)) {
|
|
// Find the register class for the register where this def happened.
|
|
// FIXME: no index for this?
|
|
Register Reg = MTracker->LocIdxToLocID[L];
|
|
const TargetRegisterClass *TRC = nullptr;
|
|
for (const auto *TRCI : TRI->regclasses())
|
|
if (TRCI->contains(Reg))
|
|
TRC = TRCI;
|
|
assert(TRC && "Couldn't find target register class?");
|
|
|
|
// If the register we have isn't the right size or in the right place,
|
|
// Try to find a subregister inside it.
|
|
unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
|
|
if (Size != MainRegSize || Offset) {
|
|
// Enumerate all subregisters, searching.
|
|
Register NewReg = 0;
|
|
for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
|
|
unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
|
|
unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
|
|
unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
|
|
if (SubregSize == Size && SubregOffset == Offset) {
|
|
NewReg = *SRI;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we didn't find anything: there's no way to express our value.
|
|
if (!NewReg) {
|
|
NewID = None;
|
|
} else {
|
|
// Re-state the value as being defined within the subregister
|
|
// that we found.
|
|
LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
|
|
NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
|
|
}
|
|
}
|
|
} else {
|
|
// If we can't handle subregisters, unset the new value.
|
|
NewID = None;
|
|
}
|
|
}
|
|
|
|
// We, we have a value number or None. Tell the variable value tracker about
|
|
// it. The rest of this LiveDebugValues implementation acts exactly the same
|
|
// for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
|
|
// aren't immediately available).
|
|
DbgValueProperties Properties(Expr, false, false);
|
|
SmallVector<DbgOpID> DbgOpIDs;
|
|
if (NewID)
|
|
DbgOpIDs.push_back(DbgOpStore.insert(*NewID));
|
|
if (VTracker)
|
|
VTracker->defVar(MI, Properties, DbgOpIDs);
|
|
|
|
// If we're on the final pass through the function, decompose this INSTR_REF
|
|
// into a plain DBG_VALUE.
|
|
if (!TTracker)
|
|
return true;
|
|
|
|
// Pick a location for the machine value number, if such a location exists.
|
|
// (This information could be stored in TransferTracker to make it faster).
|
|
Optional<LocIdx> FoundLoc;
|
|
for (auto Location : MTracker->locations()) {
|
|
LocIdx CurL = Location.Idx;
|
|
ValueIDNum ID = MTracker->readMLoc(CurL);
|
|
if (NewID && ID == NewID) {
|
|
// If this is the first location with that value, pick it. Otherwise,
|
|
// consider whether it's a "longer term" location.
|
|
if (!FoundLoc) {
|
|
FoundLoc = CurL;
|
|
continue;
|
|
}
|
|
|
|
if (MTracker->isSpill(CurL))
|
|
FoundLoc = CurL; // Spills are a longer term location.
|
|
else if (!MTracker->isSpill(*FoundLoc) &&
|
|
!MTracker->isSpill(CurL) &&
|
|
!isCalleeSaved(*FoundLoc) &&
|
|
isCalleeSaved(CurL))
|
|
FoundLoc = CurL; // Callee saved regs are longer term than normal.
|
|
}
|
|
}
|
|
|
|
SmallVector<ResolvedDbgOp> NewLocs;
|
|
if (FoundLoc)
|
|
NewLocs.push_back(*FoundLoc);
|
|
// Tell transfer tracker that the variable value has changed.
|
|
TTracker->redefVar(MI, Properties, NewLocs);
|
|
|
|
// If there was a value with no location; but the value is defined in a
|
|
// later instruction in this block, this is a block-local use-before-def.
|
|
if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
|
|
NewID->getInst() > CurInst) {
|
|
SmallVector<DbgOp> UseBeforeDefLocs;
|
|
UseBeforeDefLocs.push_back(*NewID);
|
|
TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false, false},
|
|
UseBeforeDefLocs, NewID->getInst());
|
|
}
|
|
|
|
// Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
|
|
// This DBG_VALUE is potentially a $noreg / undefined location, if
|
|
// FoundLoc is None.
|
|
// (XXX -- could morph the DBG_INSTR_REF in the future).
|
|
MachineInstr *DbgMI = MTracker->emitLoc(NewLocs, V, Properties);
|
|
|
|
TTracker->PendingDbgValues.push_back(DbgMI);
|
|
TTracker->flushDbgValues(MI.getIterator(), nullptr);
|
|
return true;
|
|
}
|
|
|
|
bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
|
|
if (!MI.isDebugPHI())
|
|
return false;
|
|
|
|
// Analyse these only when solving the machine value location problem.
|
|
if (VTracker || TTracker)
|
|
return true;
|
|
|
|
// First operand is the value location, either a stack slot or register.
|
|
// Second is the debug instruction number of the original PHI.
|
|
const MachineOperand &MO = MI.getOperand(0);
|
|
unsigned InstrNum = MI.getOperand(1).getImm();
|
|
|
|
auto EmitBadPHI = [this, &MI, InstrNum]() -> bool {
|
|
// Helper lambda to do any accounting when we fail to find a location for
|
|
// a DBG_PHI. This can happen if DBG_PHIs are malformed, or refer to a
|
|
// dead stack slot, for example.
|
|
// Record a DebugPHIRecord with an empty value + location.
|
|
DebugPHINumToValue.push_back({InstrNum, MI.getParent(), None, None});
|
|
return true;
|
|
};
|
|
|
|
if (MO.isReg() && MO.getReg()) {
|
|
// The value is whatever's currently in the register. Read and record it,
|
|
// to be analysed later.
|
|
Register Reg = MO.getReg();
|
|
ValueIDNum Num = MTracker->readReg(Reg);
|
|
auto PHIRec = DebugPHIRecord(
|
|
{InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
|
|
DebugPHINumToValue.push_back(PHIRec);
|
|
|
|
// Ensure this register is tracked.
|
|
for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
|
|
MTracker->lookupOrTrackRegister(*RAI);
|
|
} else if (MO.isFI()) {
|
|
// The value is whatever's in this stack slot.
|
|
unsigned FI = MO.getIndex();
|
|
|
|
// If the stack slot is dead, then this was optimized away.
|
|
// FIXME: stack slot colouring should account for slots that get merged.
|
|
if (MFI->isDeadObjectIndex(FI))
|
|
return EmitBadPHI();
|
|
|
|
// Identify this spill slot, ensure it's tracked.
|
|
Register Base;
|
|
StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
|
|
SpillLoc SL = {Base, Offs};
|
|
Optional<SpillLocationNo> SpillNo = MTracker->getOrTrackSpillLoc(SL);
|
|
|
|
// We might be able to find a value, but have chosen not to, to avoid
|
|
// tracking too much stack information.
|
|
if (!SpillNo)
|
|
return EmitBadPHI();
|
|
|
|
// Any stack location DBG_PHI should have an associate bit-size.
|
|
assert(MI.getNumOperands() == 3 && "Stack DBG_PHI with no size?");
|
|
unsigned slotBitSize = MI.getOperand(2).getImm();
|
|
|
|
unsigned SpillID = MTracker->getLocID(*SpillNo, {slotBitSize, 0});
|
|
LocIdx SpillLoc = MTracker->getSpillMLoc(SpillID);
|
|
ValueIDNum Result = MTracker->readMLoc(SpillLoc);
|
|
|
|
// Record this DBG_PHI for later analysis.
|
|
auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), Result, SpillLoc});
|
|
DebugPHINumToValue.push_back(DbgPHI);
|
|
} else {
|
|
// Else: if the operand is neither a legal register or a stack slot, then
|
|
// we're being fed illegal debug-info. Record an empty PHI, so that any
|
|
// debug users trying to read this number will be put off trying to
|
|
// interpret the value.
|
|
LLVM_DEBUG(
|
|
{ dbgs() << "Seen DBG_PHI with unrecognised operand format\n"; });
|
|
return EmitBadPHI();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
|
|
// Meta Instructions do not affect the debug liveness of any register they
|
|
// define.
|
|
if (MI.isImplicitDef()) {
|
|
// Except when there's an implicit def, and the location it's defining has
|
|
// no value number. The whole point of an implicit def is to announce that
|
|
// the register is live, without be specific about it's value. So define
|
|
// a value if there isn't one already.
|
|
ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
|
|
// Has a legitimate value -> ignore the implicit def.
|
|
if (Num.getLoc() != 0)
|
|
return;
|
|
// Otherwise, def it here.
|
|
} else if (MI.isMetaInstruction())
|
|
return;
|
|
|
|
// We always ignore SP defines on call instructions, they don't actually
|
|
// change the value of the stack pointer... except for win32's _chkstk. This
|
|
// is rare: filter quickly for the common case (no stack adjustments, not a
|
|
// call, etc). If it is a call that modifies SP, recognise the SP register
|
|
// defs.
|
|
bool CallChangesSP = false;
|
|
if (AdjustsStackInCalls && MI.isCall() && MI.getOperand(0).isSymbol() &&
|
|
!strcmp(MI.getOperand(0).getSymbolName(), StackProbeSymbolName.data()))
|
|
CallChangesSP = true;
|
|
|
|
// Test whether we should ignore a def of this register due to it being part
|
|
// of the stack pointer.
|
|
auto IgnoreSPAlias = [this, &MI, CallChangesSP](Register R) -> bool {
|
|
if (CallChangesSP)
|
|
return false;
|
|
return MI.isCall() && MTracker->SPAliases.count(R);
|
|
};
|
|
|
|
// Find the regs killed by MI, and find regmasks of preserved regs.
|
|
// Max out the number of statically allocated elements in `DeadRegs`, as this
|
|
// prevents fallback to std::set::count() operations.
|
|
SmallSet<uint32_t, 32> DeadRegs;
|
|
SmallVector<const uint32_t *, 4> RegMasks;
|
|
SmallVector<const MachineOperand *, 4> RegMaskPtrs;
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
// Determine whether the operand is a register def.
|
|
if (MO.isReg() && MO.isDef() && MO.getReg() &&
|
|
Register::isPhysicalRegister(MO.getReg()) &&
|
|
!IgnoreSPAlias(MO.getReg())) {
|
|
// Remove ranges of all aliased registers.
|
|
for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
|
|
// FIXME: Can we break out of this loop early if no insertion occurs?
|
|
DeadRegs.insert(*RAI);
|
|
} else if (MO.isRegMask()) {
|
|
RegMasks.push_back(MO.getRegMask());
|
|
RegMaskPtrs.push_back(&MO);
|
|
}
|
|
}
|
|
|
|
// Tell MLocTracker about all definitions, of regmasks and otherwise.
|
|
for (uint32_t DeadReg : DeadRegs)
|
|
MTracker->defReg(DeadReg, CurBB, CurInst);
|
|
|
|
for (const auto *MO : RegMaskPtrs)
|
|
MTracker->writeRegMask(MO, CurBB, CurInst);
|
|
|
|
// If this instruction writes to a spill slot, def that slot.
|
|
if (hasFoldedStackStore(MI)) {
|
|
if (Optional<SpillLocationNo> SpillNo = extractSpillBaseRegAndOffset(MI)) {
|
|
for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
|
|
unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
|
|
LocIdx L = MTracker->getSpillMLoc(SpillID);
|
|
MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!TTracker)
|
|
return;
|
|
|
|
// When committing variable values to locations: tell transfer tracker that
|
|
// we've clobbered things. It may be able to recover the variable from a
|
|
// different location.
|
|
|
|
// Inform TTracker about any direct clobbers.
|
|
for (uint32_t DeadReg : DeadRegs) {
|
|
LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
|
|
TTracker->clobberMloc(Loc, MI.getIterator(), false);
|
|
}
|
|
|
|
// Look for any clobbers performed by a register mask. Only test locations
|
|
// that are actually being tracked.
|
|
if (!RegMaskPtrs.empty()) {
|
|
for (auto L : MTracker->locations()) {
|
|
// Stack locations can't be clobbered by regmasks.
|
|
if (MTracker->isSpill(L.Idx))
|
|
continue;
|
|
|
|
Register Reg = MTracker->LocIdxToLocID[L.Idx];
|
|
if (IgnoreSPAlias(Reg))
|
|
continue;
|
|
|
|
for (const auto *MO : RegMaskPtrs)
|
|
if (MO->clobbersPhysReg(Reg))
|
|
TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
|
|
}
|
|
}
|
|
|
|
// Tell TTracker about any folded stack store.
|
|
if (hasFoldedStackStore(MI)) {
|
|
if (Optional<SpillLocationNo> SpillNo = extractSpillBaseRegAndOffset(MI)) {
|
|
for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
|
|
unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
|
|
LocIdx L = MTracker->getSpillMLoc(SpillID);
|
|
TTracker->clobberMloc(L, MI.getIterator(), true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
|
|
// In all circumstances, re-def all aliases. It's definitely a new value now.
|
|
for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI)
|
|
MTracker->defReg(*RAI, CurBB, CurInst);
|
|
|
|
ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
|
|
MTracker->setReg(DstRegNum, SrcValue);
|
|
|
|
// Copy subregisters from one location to another.
|
|
for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
|
|
unsigned SrcSubReg = SRI.getSubReg();
|
|
unsigned SubRegIdx = SRI.getSubRegIndex();
|
|
unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
|
|
if (!DstSubReg)
|
|
continue;
|
|
|
|
// Do copy. There are two matching subregisters, the source value should
|
|
// have been def'd when the super-reg was, the latter might not be tracked
|
|
// yet.
|
|
// This will force SrcSubReg to be tracked, if it isn't yet. Will read
|
|
// mphi values if it wasn't tracked.
|
|
LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg);
|
|
LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg);
|
|
(void)SrcL;
|
|
(void)DstL;
|
|
ValueIDNum CpyValue = MTracker->readReg(SrcSubReg);
|
|
|
|
MTracker->setReg(DstSubReg, CpyValue);
|
|
}
|
|
}
|
|
|
|
Optional<SpillLocationNo>
|
|
InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
|
|
MachineFunction *MF) {
|
|
// TODO: Handle multiple stores folded into one.
|
|
if (!MI.hasOneMemOperand())
|
|
return None;
|
|
|
|
// Reject any memory operand that's aliased -- we can't guarantee its value.
|
|
auto MMOI = MI.memoperands_begin();
|
|
const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
|
|
if (PVal->isAliased(MFI))
|
|
return None;
|
|
|
|
if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
|
|
return None; // This is not a spill instruction, since no valid size was
|
|
// returned from either function.
|
|
|
|
return extractSpillBaseRegAndOffset(MI);
|
|
}
|
|
|
|
bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
|
|
MachineFunction *MF, unsigned &Reg) {
|
|
if (!isSpillInstruction(MI, MF))
|
|
return false;
|
|
|
|
int FI;
|
|
Reg = TII->isStoreToStackSlotPostFE(MI, FI);
|
|
return Reg != 0;
|
|
}
|
|
|
|
Optional<SpillLocationNo>
|
|
InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
|
|
MachineFunction *MF, unsigned &Reg) {
|
|
if (!MI.hasOneMemOperand())
|
|
return None;
|
|
|
|
// FIXME: Handle folded restore instructions with more than one memory
|
|
// operand.
|
|
if (MI.getRestoreSize(TII)) {
|
|
Reg = MI.getOperand(0).getReg();
|
|
return extractSpillBaseRegAndOffset(MI);
|
|
}
|
|
return None;
|
|
}
|
|
|
|
bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
|
|
// XXX -- it's too difficult to implement VarLocBasedImpl's stack location
|
|
// limitations under the new model. Therefore, when comparing them, compare
|
|
// versions that don't attempt spills or restores at all.
|
|
if (EmulateOldLDV)
|
|
return false;
|
|
|
|
// Strictly limit ourselves to plain loads and stores, not all instructions
|
|
// that can access the stack.
|
|
int DummyFI = -1;
|
|
if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) &&
|
|
!TII->isLoadFromStackSlotPostFE(MI, DummyFI))
|
|
return false;
|
|
|
|
MachineFunction *MF = MI.getMF();
|
|
unsigned Reg;
|
|
|
|
LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
|
|
|
|
// Strictly limit ourselves to plain loads and stores, not all instructions
|
|
// that can access the stack.
|
|
int FIDummy;
|
|
if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) &&
|
|
!TII->isLoadFromStackSlotPostFE(MI, FIDummy))
|
|
return false;
|
|
|
|
// First, if there are any DBG_VALUEs pointing at a spill slot that is
|
|
// written to, terminate that variable location. The value in memory
|
|
// will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
|
|
if (Optional<SpillLocationNo> Loc = isSpillInstruction(MI, MF)) {
|
|
// Un-set this location and clobber, so that earlier locations don't
|
|
// continue past this store.
|
|
for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) {
|
|
unsigned SpillID = MTracker->getSpillIDWithIdx(*Loc, SlotIdx);
|
|
Optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID);
|
|
if (!MLoc)
|
|
continue;
|
|
|
|
// We need to over-write the stack slot with something (here, a def at
|
|
// this instruction) to ensure no values are preserved in this stack slot
|
|
// after the spill. It also prevents TTracker from trying to recover the
|
|
// location and re-installing it in the same place.
|
|
ValueIDNum Def(CurBB, CurInst, *MLoc);
|
|
MTracker->setMLoc(*MLoc, Def);
|
|
if (TTracker)
|
|
TTracker->clobberMloc(*MLoc, MI.getIterator());
|
|
}
|
|
}
|
|
|
|
// Try to recognise spill and restore instructions that may transfer a value.
|
|
if (isLocationSpill(MI, MF, Reg)) {
|
|
// isLocationSpill returning true should guarantee we can extract a
|
|
// location.
|
|
SpillLocationNo Loc = *extractSpillBaseRegAndOffset(MI);
|
|
|
|
auto DoTransfer = [&](Register SrcReg, unsigned SpillID) {
|
|
auto ReadValue = MTracker->readReg(SrcReg);
|
|
LocIdx DstLoc = MTracker->getSpillMLoc(SpillID);
|
|
MTracker->setMLoc(DstLoc, ReadValue);
|
|
|
|
if (TTracker) {
|
|
LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg);
|
|
TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator());
|
|
}
|
|
};
|
|
|
|
// Then, transfer subreg bits.
|
|
for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
|
|
// Ensure this reg is tracked,
|
|
(void)MTracker->lookupOrTrackRegister(*SRI);
|
|
unsigned SubregIdx = TRI->getSubRegIndex(Reg, *SRI);
|
|
unsigned SpillID = MTracker->getLocID(Loc, SubregIdx);
|
|
DoTransfer(*SRI, SpillID);
|
|
}
|
|
|
|
// Directly lookup size of main source reg, and transfer.
|
|
unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
|
|
unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
|
|
DoTransfer(Reg, SpillID);
|
|
} else {
|
|
Optional<SpillLocationNo> Loc = isRestoreInstruction(MI, MF, Reg);
|
|
if (!Loc)
|
|
return false;
|
|
|
|
// Assumption: we're reading from the base of the stack slot, not some
|
|
// offset into it. It seems very unlikely LLVM would ever generate
|
|
// restores where this wasn't true. This then becomes a question of what
|
|
// subregisters in the destination register line up with positions in the
|
|
// stack slot.
|
|
|
|
// Def all registers that alias the destination.
|
|
for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
|
|
MTracker->defReg(*RAI, CurBB, CurInst);
|
|
|
|
// Now find subregisters within the destination register, and load values
|
|
// from stack slot positions.
|
|
auto DoTransfer = [&](Register DestReg, unsigned SpillID) {
|
|
LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID);
|
|
auto ReadValue = MTracker->readMLoc(SrcIdx);
|
|
MTracker->setReg(DestReg, ReadValue);
|
|
};
|
|
|
|
for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
|
|
unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
|
|
unsigned SpillID = MTracker->getLocID(*Loc, Subreg);
|
|
DoTransfer(*SRI, SpillID);
|
|
}
|
|
|
|
// Directly look up this registers slot idx by size, and transfer.
|
|
unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
|
|
unsigned SpillID = MTracker->getLocID(*Loc, {Size, 0});
|
|
DoTransfer(Reg, SpillID);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
|
|
auto DestSrc = TII->isCopyInstr(MI);
|
|
if (!DestSrc)
|
|
return false;
|
|
|
|
const MachineOperand *DestRegOp = DestSrc->Destination;
|
|
const MachineOperand *SrcRegOp = DestSrc->Source;
|
|
|
|
Register SrcReg = SrcRegOp->getReg();
|
|
Register DestReg = DestRegOp->getReg();
|
|
|
|
// Ignore identity copies. Yep, these make it as far as LiveDebugValues.
|
|
if (SrcReg == DestReg)
|
|
return true;
|
|
|
|
// For emulating VarLocBasedImpl:
|
|
// We want to recognize instructions where destination register is callee
|
|
// saved register. If register that could be clobbered by the call is
|
|
// included, there would be a great chance that it is going to be clobbered
|
|
// soon. It is more likely that previous register, which is callee saved, is
|
|
// going to stay unclobbered longer, even if it is killed.
|
|
//
|
|
// For InstrRefBasedImpl, we can track multiple locations per value, so
|
|
// ignore this condition.
|
|
if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
|
|
return false;
|
|
|
|
// InstrRefBasedImpl only followed killing copies.
|
|
if (EmulateOldLDV && !SrcRegOp->isKill())
|
|
return false;
|
|
|
|
// Before we update MTracker, remember which values were present in each of
|
|
// the locations about to be overwritten, so that we can recover any
|
|
// potentially clobbered variables.
|
|
DenseMap<LocIdx, ValueIDNum> ClobberedLocs;
|
|
if (TTracker) {
|
|
for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
|
|
LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
|
|
auto MLocIt = TTracker->ActiveMLocs.find(ClobberedLoc);
|
|
// If ActiveMLocs isn't tracking this location or there are no variables
|
|
// using it, don't bother remembering.
|
|
if (MLocIt == TTracker->ActiveMLocs.end() || MLocIt->second.empty())
|
|
continue;
|
|
ValueIDNum Value = MTracker->readReg(*RAI);
|
|
ClobberedLocs[ClobberedLoc] = Value;
|
|
}
|
|
}
|
|
|
|
// Copy MTracker info, including subregs if available.
|
|
InstrRefBasedLDV::performCopy(SrcReg, DestReg);
|
|
|
|
// The copy might have clobbered variables based on the destination register.
|
|
// Tell TTracker about it, passing the old ValueIDNum to search for
|
|
// alternative locations (or else terminating those variables).
|
|
if (TTracker) {
|
|
for (auto LocVal : ClobberedLocs) {
|
|
TTracker->clobberMloc(LocVal.first, LocVal.second, MI.getIterator(), false);
|
|
}
|
|
}
|
|
|
|
// Only produce a transfer of DBG_VALUE within a block where old LDV
|
|
// would have. We might make use of the additional value tracking in some
|
|
// other way, later.
|
|
if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
|
|
TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
|
|
MTracker->getRegMLoc(DestReg), MI.getIterator());
|
|
|
|
// VarLocBasedImpl would quit tracking the old location after copying.
|
|
if (EmulateOldLDV && SrcReg != DestReg)
|
|
MTracker->defReg(SrcReg, CurBB, CurInst);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Accumulate a mapping between each DILocalVariable fragment and other
|
|
/// fragments of that DILocalVariable which overlap. This reduces work during
|
|
/// the data-flow stage from "Find any overlapping fragments" to "Check if the
|
|
/// known-to-overlap fragments are present".
|
|
/// \param MI A previously unprocessed debug instruction to analyze for
|
|
/// fragment usage.
|
|
void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
|
|
assert(MI.isDebugValue() || MI.isDebugRef());
|
|
DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
|
|
MI.getDebugLoc()->getInlinedAt());
|
|
FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
|
|
|
|
// If this is the first sighting of this variable, then we are guaranteed
|
|
// there are currently no overlapping fragments either. Initialize the set
|
|
// of seen fragments, record no overlaps for the current one, and return.
|
|
auto SeenIt = SeenFragments.find(MIVar.getVariable());
|
|
if (SeenIt == SeenFragments.end()) {
|
|
SmallSet<FragmentInfo, 4> OneFragment;
|
|
OneFragment.insert(ThisFragment);
|
|
SeenFragments.insert({MIVar.getVariable(), OneFragment});
|
|
|
|
OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
|
|
return;
|
|
}
|
|
|
|
// If this particular Variable/Fragment pair already exists in the overlap
|
|
// map, it has already been accounted for.
|
|
auto IsInOLapMap =
|
|
OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
|
|
if (!IsInOLapMap.second)
|
|
return;
|
|
|
|
auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
|
|
auto &AllSeenFragments = SeenIt->second;
|
|
|
|
// Otherwise, examine all other seen fragments for this variable, with "this"
|
|
// fragment being a previously unseen fragment. Record any pair of
|
|
// overlapping fragments.
|
|
for (const auto &ASeenFragment : AllSeenFragments) {
|
|
// Does this previously seen fragment overlap?
|
|
if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
|
|
// Yes: Mark the current fragment as being overlapped.
|
|
ThisFragmentsOverlaps.push_back(ASeenFragment);
|
|
// Mark the previously seen fragment as being overlapped by the current
|
|
// one.
|
|
auto ASeenFragmentsOverlaps =
|
|
OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
|
|
assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
|
|
"Previously seen var fragment has no vector of overlaps");
|
|
ASeenFragmentsOverlaps->second.push_back(ThisFragment);
|
|
}
|
|
}
|
|
|
|
AllSeenFragments.insert(ThisFragment);
|
|
}
|
|
|
|
void InstrRefBasedLDV::process(MachineInstr &MI, const ValueTable *MLiveOuts,
|
|
const ValueTable *MLiveIns) {
|
|
// Try to interpret an MI as a debug or transfer instruction. Only if it's
|
|
// none of these should we interpret it's register defs as new value
|
|
// definitions.
|
|
if (transferDebugValue(MI))
|
|
return;
|
|
if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
|
|
return;
|
|
if (transferDebugPHI(MI))
|
|
return;
|
|
if (transferRegisterCopy(MI))
|
|
return;
|
|
if (transferSpillOrRestoreInst(MI))
|
|
return;
|
|
transferRegisterDef(MI);
|
|
}
|
|
|
|
void InstrRefBasedLDV::produceMLocTransferFunction(
|
|
MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
|
|
unsigned MaxNumBlocks) {
|
|
// Because we try to optimize around register mask operands by ignoring regs
|
|
// that aren't currently tracked, we set up something ugly for later: RegMask
|
|
// operands that are seen earlier than the first use of a register, still need
|
|
// to clobber that register in the transfer function. But this information
|
|
// isn't actively recorded. Instead, we track each RegMask used in each block,
|
|
// and accumulated the clobbered but untracked registers in each block into
|
|
// the following bitvector. Later, if new values are tracked, we can add
|
|
// appropriate clobbers.
|
|
SmallVector<BitVector, 32> BlockMasks;
|
|
BlockMasks.resize(MaxNumBlocks);
|
|
|
|
// Reserve one bit per register for the masks described above.
|
|
unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
|
|
for (auto &BV : BlockMasks)
|
|
BV.resize(TRI->getNumRegs(), true);
|
|
|
|
// Step through all instructions and inhale the transfer function.
|
|
for (auto &MBB : MF) {
|
|
// Object fields that are read by trackers to know where we are in the
|
|
// function.
|
|
CurBB = MBB.getNumber();
|
|
CurInst = 1;
|
|
|
|
// Set all machine locations to a PHI value. For transfer function
|
|
// production only, this signifies the live-in value to the block.
|
|
MTracker->reset();
|
|
MTracker->setMPhis(CurBB);
|
|
|
|
// Step through each instruction in this block.
|
|
for (auto &MI : MBB) {
|
|
// Pass in an empty unique_ptr for the value tables when accumulating the
|
|
// machine transfer function.
|
|
process(MI, nullptr, nullptr);
|
|
|
|
// Also accumulate fragment map.
|
|
if (MI.isDebugValue() || MI.isDebugRef())
|
|
accumulateFragmentMap(MI);
|
|
|
|
// Create a map from the instruction number (if present) to the
|
|
// MachineInstr and its position.
|
|
if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
|
|
auto InstrAndPos = std::make_pair(&MI, CurInst);
|
|
auto InsertResult =
|
|
DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
|
|
|
|
// There should never be duplicate instruction numbers.
|
|
assert(InsertResult.second);
|
|
(void)InsertResult;
|
|
}
|
|
|
|
++CurInst;
|
|
}
|
|
|
|
// Produce the transfer function, a map of machine location to new value. If
|
|
// any machine location has the live-in phi value from the start of the
|
|
// block, it's live-through and doesn't need recording in the transfer
|
|
// function.
|
|
for (auto Location : MTracker->locations()) {
|
|
LocIdx Idx = Location.Idx;
|
|
ValueIDNum &P = Location.Value;
|
|
if (P.isPHI() && P.getLoc() == Idx.asU64())
|
|
continue;
|
|
|
|
// Insert-or-update.
|
|
auto &TransferMap = MLocTransfer[CurBB];
|
|
auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
|
|
if (!Result.second)
|
|
Result.first->second = P;
|
|
}
|
|
|
|
// Accumulate any bitmask operands into the clobbered reg mask for this
|
|
// block.
|
|
for (auto &P : MTracker->Masks) {
|
|
BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
|
|
}
|
|
}
|
|
|
|
// Compute a bitvector of all the registers that are tracked in this block.
|
|
BitVector UsedRegs(TRI->getNumRegs());
|
|
for (auto Location : MTracker->locations()) {
|
|
unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
|
|
// Ignore stack slots, and aliases of the stack pointer.
|
|
if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID))
|
|
continue;
|
|
UsedRegs.set(ID);
|
|
}
|
|
|
|
// Check that any regmask-clobber of a register that gets tracked, is not
|
|
// live-through in the transfer function. It needs to be clobbered at the
|
|
// very least.
|
|
for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
|
|
BitVector &BV = BlockMasks[I];
|
|
BV.flip();
|
|
BV &= UsedRegs;
|
|
// This produces all the bits that we clobber, but also use. Check that
|
|
// they're all clobbered or at least set in the designated transfer
|
|
// elem.
|
|
for (unsigned Bit : BV.set_bits()) {
|
|
unsigned ID = MTracker->getLocID(Bit);
|
|
LocIdx Idx = MTracker->LocIDToLocIdx[ID];
|
|
auto &TransferMap = MLocTransfer[I];
|
|
|
|
// Install a value representing the fact that this location is effectively
|
|
// written to in this block. As there's no reserved value, instead use
|
|
// a value number that is never generated. Pick the value number for the
|
|
// first instruction in the block, def'ing this location, which we know
|
|
// this block never used anyway.
|
|
ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
|
|
auto Result =
|
|
TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
|
|
if (!Result.second) {
|
|
ValueIDNum &ValueID = Result.first->second;
|
|
if (ValueID.getBlock() == I && ValueID.isPHI())
|
|
// It was left as live-through. Set it to clobbered.
|
|
ValueID = NotGeneratedNum;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool InstrRefBasedLDV::mlocJoin(
|
|
MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
|
|
FuncValueTable &OutLocs, ValueTable &InLocs) {
|
|
LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
|
|
bool Changed = false;
|
|
|
|
// Handle value-propagation when control flow merges on entry to a block. For
|
|
// any location without a PHI already placed, the location has the same value
|
|
// as its predecessors. If a PHI is placed, test to see whether it's now a
|
|
// redundant PHI that we can eliminate.
|
|
|
|
SmallVector<const MachineBasicBlock *, 8> BlockOrders;
|
|
for (auto *Pred : MBB.predecessors())
|
|
BlockOrders.push_back(Pred);
|
|
|
|
// Visit predecessors in RPOT order.
|
|
auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
|
|
return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
|
|
};
|
|
llvm::sort(BlockOrders, Cmp);
|
|
|
|
// Skip entry block.
|
|
if (BlockOrders.size() == 0)
|
|
return false;
|
|
|
|
// Step through all machine locations, look at each predecessor and test
|
|
// whether we can eliminate redundant PHIs.
|
|
for (auto Location : MTracker->locations()) {
|
|
LocIdx Idx = Location.Idx;
|
|
|
|
// Pick out the first predecessors live-out value for this location. It's
|
|
// guaranteed to not be a backedge, as we order by RPO.
|
|
ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
|
|
|
|
// If we've already eliminated a PHI here, do no further checking, just
|
|
// propagate the first live-in value into this block.
|
|
if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) {
|
|
if (InLocs[Idx.asU64()] != FirstVal) {
|
|
InLocs[Idx.asU64()] = FirstVal;
|
|
Changed |= true;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// We're now examining a PHI to see whether it's un-necessary. Loop around
|
|
// the other live-in values and test whether they're all the same.
|
|
bool Disagree = false;
|
|
for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
|
|
const MachineBasicBlock *PredMBB = BlockOrders[I];
|
|
const ValueIDNum &PredLiveOut =
|
|
OutLocs[PredMBB->getNumber()][Idx.asU64()];
|
|
|
|
// Incoming values agree, continue trying to eliminate this PHI.
|
|
if (FirstVal == PredLiveOut)
|
|
continue;
|
|
|
|
// We can also accept a PHI value that feeds back into itself.
|
|
if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx))
|
|
continue;
|
|
|
|
// Live-out of a predecessor disagrees with the first predecessor.
|
|
Disagree = true;
|
|
}
|
|
|
|
// No disagreement? No PHI. Otherwise, leave the PHI in live-ins.
|
|
if (!Disagree) {
|
|
InLocs[Idx.asU64()] = FirstVal;
|
|
Changed |= true;
|
|
}
|
|
}
|
|
|
|
// TODO: Reimplement NumInserted and NumRemoved.
|
|
return Changed;
|
|
}
|
|
|
|
void InstrRefBasedLDV::findStackIndexInterference(
|
|
SmallVectorImpl<unsigned> &Slots) {
|
|
// We could spend a bit of time finding the exact, minimal, set of stack
|
|
// indexes that interfere with each other, much like reg units. Or, we can
|
|
// rely on the fact that:
|
|
// * The smallest / lowest index will interfere with everything at zero
|
|
// offset, which will be the largest set of registers,
|
|
// * Most indexes with non-zero offset will end up being interference units
|
|
// anyway.
|
|
// So just pick those out and return them.
|
|
|
|
// We can rely on a single-byte stack index existing already, because we
|
|
// initialize them in MLocTracker.
|
|
auto It = MTracker->StackSlotIdxes.find({8, 0});
|
|
assert(It != MTracker->StackSlotIdxes.end());
|
|
Slots.push_back(It->second);
|
|
|
|
// Find anything that has a non-zero offset and add that too.
|
|
for (auto &Pair : MTracker->StackSlotIdxes) {
|
|
// Is offset zero? If so, ignore.
|
|
if (!Pair.first.second)
|
|
continue;
|
|
Slots.push_back(Pair.second);
|
|
}
|
|
}
|
|
|
|
void InstrRefBasedLDV::placeMLocPHIs(
|
|
MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
|
|
FuncValueTable &MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
|
|
SmallVector<unsigned, 4> StackUnits;
|
|
findStackIndexInterference(StackUnits);
|
|
|
|
// To avoid repeatedly running the PHI placement algorithm, leverage the
|
|
// fact that a def of register MUST also def its register units. Find the
|
|
// units for registers, place PHIs for them, and then replicate them for
|
|
// aliasing registers. Some inputs that are never def'd (DBG_PHIs of
|
|
// arguments) don't lead to register units being tracked, just place PHIs for
|
|
// those registers directly. Stack slots have their own form of "unit",
|
|
// store them to one side.
|
|
SmallSet<Register, 32> RegUnitsToPHIUp;
|
|
SmallSet<LocIdx, 32> NormalLocsToPHI;
|
|
SmallSet<SpillLocationNo, 32> StackSlots;
|
|
for (auto Location : MTracker->locations()) {
|
|
LocIdx L = Location.Idx;
|
|
if (MTracker->isSpill(L)) {
|
|
StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L]));
|
|
continue;
|
|
}
|
|
|
|
Register R = MTracker->LocIdxToLocID[L];
|
|
SmallSet<Register, 8> FoundRegUnits;
|
|
bool AnyIllegal = false;
|
|
for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) {
|
|
for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){
|
|
if (!MTracker->isRegisterTracked(*URoot)) {
|
|
// Not all roots were loaded into the tracking map: this register
|
|
// isn't actually def'd anywhere, we only read from it. Generate PHIs
|
|
// for this reg, but don't iterate units.
|
|
AnyIllegal = true;
|
|
} else {
|
|
FoundRegUnits.insert(*URoot);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (AnyIllegal) {
|
|
NormalLocsToPHI.insert(L);
|
|
continue;
|
|
}
|
|
|
|
RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end());
|
|
}
|
|
|
|
// Lambda to fetch PHIs for a given location, and write into the PHIBlocks
|
|
// collection.
|
|
SmallVector<MachineBasicBlock *, 32> PHIBlocks;
|
|
auto CollectPHIsForLoc = [&](LocIdx L) {
|
|
// Collect the set of defs.
|
|
SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
|
|
for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
|
|
MachineBasicBlock *MBB = OrderToBB[I];
|
|
const auto &TransferFunc = MLocTransfer[MBB->getNumber()];
|
|
if (TransferFunc.find(L) != TransferFunc.end())
|
|
DefBlocks.insert(MBB);
|
|
}
|
|
|
|
// The entry block defs the location too: it's the live-in / argument value.
|
|
// Only insert if there are other defs though; everything is trivially live
|
|
// through otherwise.
|
|
if (!DefBlocks.empty())
|
|
DefBlocks.insert(&*MF.begin());
|
|
|
|
// Ask the SSA construction algorithm where we should put PHIs. Clear
|
|
// anything that might have been hanging around from earlier.
|
|
PHIBlocks.clear();
|
|
BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks);
|
|
};
|
|
|
|
auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) {
|
|
for (const MachineBasicBlock *MBB : PHIBlocks)
|
|
MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L);
|
|
};
|
|
|
|
// For locations with no reg units, just place PHIs.
|
|
for (LocIdx L : NormalLocsToPHI) {
|
|
CollectPHIsForLoc(L);
|
|
// Install those PHI values into the live-in value array.
|
|
InstallPHIsAtLoc(L);
|
|
}
|
|
|
|
// For stack slots, calculate PHIs for the equivalent of the units, then
|
|
// install for each index.
|
|
for (SpillLocationNo Slot : StackSlots) {
|
|
for (unsigned Idx : StackUnits) {
|
|
unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx);
|
|
LocIdx L = MTracker->getSpillMLoc(SpillID);
|
|
CollectPHIsForLoc(L);
|
|
InstallPHIsAtLoc(L);
|
|
|
|
// Find anything that aliases this stack index, install PHIs for it too.
|
|
unsigned Size, Offset;
|
|
std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx];
|
|
for (auto &Pair : MTracker->StackSlotIdxes) {
|
|
unsigned ThisSize, ThisOffset;
|
|
std::tie(ThisSize, ThisOffset) = Pair.first;
|
|
if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset)
|
|
continue;
|
|
|
|
unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second);
|
|
LocIdx ThisL = MTracker->getSpillMLoc(ThisID);
|
|
InstallPHIsAtLoc(ThisL);
|
|
}
|
|
}
|
|
}
|
|
|
|
// For reg units, place PHIs, and then place them for any aliasing registers.
|
|
for (Register R : RegUnitsToPHIUp) {
|
|
LocIdx L = MTracker->lookupOrTrackRegister(R);
|
|
CollectPHIsForLoc(L);
|
|
|
|
// Install those PHI values into the live-in value array.
|
|
InstallPHIsAtLoc(L);
|
|
|
|
// Now find aliases and install PHIs for those.
|
|
for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) {
|
|
// Super-registers that are "above" the largest register read/written by
|
|
// the function will alias, but will not be tracked.
|
|
if (!MTracker->isRegisterTracked(*RAI))
|
|
continue;
|
|
|
|
LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI);
|
|
InstallPHIsAtLoc(AliasLoc);
|
|
}
|
|
}
|
|
}
|
|
|
|
void InstrRefBasedLDV::buildMLocValueMap(
|
|
MachineFunction &MF, FuncValueTable &MInLocs, FuncValueTable &MOutLocs,
|
|
SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
|
|
std::priority_queue<unsigned int, std::vector<unsigned int>,
|
|
std::greater<unsigned int>>
|
|
Worklist, Pending;
|
|
|
|
// We track what is on the current and pending worklist to avoid inserting
|
|
// the same thing twice. We could avoid this with a custom priority queue,
|
|
// but this is probably not worth it.
|
|
SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
|
|
|
|
// Initialize worklist with every block to be visited. Also produce list of
|
|
// all blocks.
|
|
SmallPtrSet<MachineBasicBlock *, 32> AllBlocks;
|
|
for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
|
|
Worklist.push(I);
|
|
OnWorklist.insert(OrderToBB[I]);
|
|
AllBlocks.insert(OrderToBB[I]);
|
|
}
|
|
|
|
// Initialize entry block to PHIs. These represent arguments.
|
|
for (auto Location : MTracker->locations())
|
|
MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx);
|
|
|
|
MTracker->reset();
|
|
|
|
// Start by placing PHIs, using the usual SSA constructor algorithm. Consider
|
|
// any machine-location that isn't live-through a block to be def'd in that
|
|
// block.
|
|
placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer);
|
|
|
|
// Propagate values to eliminate redundant PHIs. At the same time, this
|
|
// produces the table of Block x Location => Value for the entry to each
|
|
// block.
|
|
// The kind of PHIs we can eliminate are, for example, where one path in a
|
|
// conditional spills and restores a register, and the register still has
|
|
// the same value once control flow joins, unbeknowns to the PHI placement
|
|
// code. Propagating values allows us to identify such un-necessary PHIs and
|
|
// remove them.
|
|
SmallPtrSet<const MachineBasicBlock *, 16> Visited;
|
|
while (!Worklist.empty() || !Pending.empty()) {
|
|
// Vector for storing the evaluated block transfer function.
|
|
SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
|
|
|
|
while (!Worklist.empty()) {
|
|
MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
|
|
CurBB = MBB->getNumber();
|
|
Worklist.pop();
|
|
|
|
// Join the values in all predecessor blocks.
|
|
bool InLocsChanged;
|
|
InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
|
|
InLocsChanged |= Visited.insert(MBB).second;
|
|
|
|
// Don't examine transfer function if we've visited this loc at least
|
|
// once, and inlocs haven't changed.
|
|
if (!InLocsChanged)
|
|
continue;
|
|
|
|
// Load the current set of live-ins into MLocTracker.
|
|
MTracker->loadFromArray(MInLocs[CurBB], CurBB);
|
|
|
|
// Each element of the transfer function can be a new def, or a read of
|
|
// a live-in value. Evaluate each element, and store to "ToRemap".
|
|
ToRemap.clear();
|
|
for (auto &P : MLocTransfer[CurBB]) {
|
|
if (P.second.getBlock() == CurBB && P.second.isPHI()) {
|
|
// This is a movement of whatever was live in. Read it.
|
|
ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc());
|
|
ToRemap.push_back(std::make_pair(P.first, NewID));
|
|
} else {
|
|
// It's a def. Just set it.
|
|
assert(P.second.getBlock() == CurBB);
|
|
ToRemap.push_back(std::make_pair(P.first, P.second));
|
|
}
|
|
}
|
|
|
|
// Commit the transfer function changes into mloc tracker, which
|
|
// transforms the contents of the MLocTracker into the live-outs.
|
|
for (auto &P : ToRemap)
|
|
MTracker->setMLoc(P.first, P.second);
|
|
|
|
// Now copy out-locs from mloc tracker into out-loc vector, checking
|
|
// whether changes have occurred. These changes can have come from both
|
|
// the transfer function, and mlocJoin.
|
|
bool OLChanged = false;
|
|
for (auto Location : MTracker->locations()) {
|
|
OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
|
|
MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
|
|
}
|
|
|
|
MTracker->reset();
|
|
|
|
// No need to examine successors again if out-locs didn't change.
|
|
if (!OLChanged)
|
|
continue;
|
|
|
|
// All successors should be visited: put any back-edges on the pending
|
|
// list for the next pass-through, and any other successors to be
|
|
// visited this pass, if they're not going to be already.
|
|
for (auto *s : MBB->successors()) {
|
|
// Does branching to this successor represent a back-edge?
|
|
if (BBToOrder[s] > BBToOrder[MBB]) {
|
|
// No: visit it during this dataflow iteration.
|
|
if (OnWorklist.insert(s).second)
|
|
Worklist.push(BBToOrder[s]);
|
|
} else {
|
|
// Yes: visit it on the next iteration.
|
|
if (OnPending.insert(s).second)
|
|
Pending.push(BBToOrder[s]);
|
|
}
|
|
}
|
|
}
|
|
|
|
Worklist.swap(Pending);
|
|
std::swap(OnPending, OnWorklist);
|
|
OnPending.clear();
|
|
// At this point, pending must be empty, since it was just the empty
|
|
// worklist
|
|
assert(Pending.empty() && "Pending should be empty");
|
|
}
|
|
|
|
// Once all the live-ins don't change on mlocJoin(), we've eliminated all
|
|
// redundant PHIs.
|
|
}
|
|
|
|
void InstrRefBasedLDV::BlockPHIPlacement(
|
|
const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
|
|
const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
|
|
SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) {
|
|
// Apply IDF calculator to the designated set of location defs, storing
|
|
// required PHIs into PHIBlocks. Uses the dominator tree stored in the
|
|
// InstrRefBasedLDV object.
|
|
IDFCalculatorBase<MachineBasicBlock, false> IDF(DomTree->getBase());
|
|
|
|
IDF.setLiveInBlocks(AllBlocks);
|
|
IDF.setDefiningBlocks(DefBlocks);
|
|
IDF.calculate(PHIBlocks);
|
|
}
|
|
|
|
bool InstrRefBasedLDV::pickVPHILoc(
|
|
SmallVectorImpl<DbgOpID> &OutValues, const MachineBasicBlock &MBB,
|
|
const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs,
|
|
const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
|
|
|
|
// No predecessors means no PHIs.
|
|
if (BlockOrders.empty())
|
|
return false;
|
|
|
|
// All the location operands that do not already agree need to be joined,
|
|
// track the indices of each such location operand here.
|
|
SmallDenseSet<unsigned> LocOpsToJoin;
|
|
|
|
auto FirstValueIt = LiveOuts.find(BlockOrders[0]);
|
|
if (FirstValueIt == LiveOuts.end())
|
|
return false;
|
|
const DbgValue &FirstValue = *FirstValueIt->second;
|
|
|
|
for (const auto p : BlockOrders) {
|
|
auto OutValIt = LiveOuts.find(p);
|
|
if (OutValIt == LiveOuts.end())
|
|
// If we have a predecessor not in scope, we'll never find a PHI position.
|
|
return false;
|
|
const DbgValue &OutVal = *OutValIt->second;
|
|
|
|
// No-values cannot have locations we can join on.
|
|
if (OutVal.Kind == DbgValue::NoVal)
|
|
return false;
|
|
|
|
// For unjoined VPHIs where we don't know the location, we definitely
|
|
// can't find a join loc unless the VPHI is a backedge.
|
|
if (OutVal.isUnjoinedPHI() && OutVal.BlockNo != MBB.getNumber())
|
|
return false;
|
|
|
|
if (FirstValue.Properties != OutVal.Properties)
|
|
return false;
|
|
|
|
for (unsigned Idx = 0; Idx < FirstValue.getLocationOpCount(); ++Idx) {
|
|
// An unjoined PHI has no defined locations, and so a shared location must
|
|
// be found for every operand.
|
|
if (OutVal.isUnjoinedPHI()) {
|
|
LocOpsToJoin.insert(Idx);
|
|
continue;
|
|
}
|
|
DbgOpID FirstValOp = FirstValue.getDbgOpID(Idx);
|
|
DbgOpID OutValOp = OutVal.getDbgOpID(Idx);
|
|
if (FirstValOp != OutValOp) {
|
|
// We can never join constant ops - the ops must either both be equal
|
|
// constant ops or non-const ops.
|
|
if (FirstValOp.isConst() || OutValOp.isConst())
|
|
return false;
|
|
else
|
|
LocOpsToJoin.insert(Idx);
|
|
}
|
|
}
|
|
}
|
|
|
|
SmallVector<DbgOpID> NewDbgOps;
|
|
|
|
for (unsigned Idx = 0; Idx < FirstValue.getLocationOpCount(); ++Idx) {
|
|
// If this op doesn't need to be joined because the values agree, use that
|
|
// already-agreed value.
|
|
if (!LocOpsToJoin.contains(Idx)) {
|
|
NewDbgOps.push_back(FirstValue.getDbgOpID(Idx));
|
|
continue;
|
|
}
|
|
|
|
Optional<ValueIDNum> JoinedOpLoc =
|
|
pickOperandPHILoc(Idx, MBB, LiveOuts, MOutLocs, BlockOrders);
|
|
|
|
if (!JoinedOpLoc)
|
|
return false;
|
|
|
|
NewDbgOps.push_back(DbgOpStore.insert(*JoinedOpLoc));
|
|
}
|
|
|
|
OutValues.append(NewDbgOps);
|
|
return true;
|
|
}
|
|
|
|
Optional<ValueIDNum> InstrRefBasedLDV::pickOperandPHILoc(
|
|
unsigned DbgOpIdx, const MachineBasicBlock &MBB, const LiveIdxT &LiveOuts,
|
|
FuncValueTable &MOutLocs,
|
|
const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
|
|
|
|
// Collect a set of locations from predecessor where its live-out value can
|
|
// be found.
|
|
SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
|
|
unsigned NumLocs = MTracker->getNumLocs();
|
|
|
|
for (const auto p : BlockOrders) {
|
|
unsigned ThisBBNum = p->getNumber();
|
|
auto OutValIt = LiveOuts.find(p);
|
|
assert(OutValIt != LiveOuts.end());
|
|
const DbgValue &OutVal = *OutValIt->second;
|
|
DbgOpID OutValOpID = OutVal.getDbgOpID(DbgOpIdx);
|
|
DbgOp OutValOp = DbgOpStore.find(OutValOpID);
|
|
assert(!OutValOp.IsConst);
|
|
|
|
// Create new empty vector of locations.
|
|
Locs.resize(Locs.size() + 1);
|
|
|
|
// If the live-in value is a def, find the locations where that value is
|
|
// present. Do the same for VPHIs where we know the VPHI value.
|
|
if (OutVal.Kind == DbgValue::Def ||
|
|
(OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() &&
|
|
!OutValOp.isUndef())) {
|
|
ValueIDNum ValToLookFor = OutValOp.ID;
|
|
// Search the live-outs of the predecessor for the specified value.
|
|
for (unsigned int I = 0; I < NumLocs; ++I) {
|
|
if (MOutLocs[ThisBBNum][I] == ValToLookFor)
|
|
Locs.back().push_back(LocIdx(I));
|
|
}
|
|
} else {
|
|
assert(OutVal.Kind == DbgValue::VPHI);
|
|
// Otherwise: this is a VPHI on a backedge feeding back into itself, i.e.
|
|
// a value that's live-through the whole loop. (It has to be a backedge,
|
|
// because a block can't dominate itself). We can accept as a PHI location
|
|
// any location where the other predecessors agree, _and_ the machine
|
|
// locations feed back into themselves. Therefore, add all self-looping
|
|
// machine-value PHI locations.
|
|
for (unsigned int I = 0; I < NumLocs; ++I) {
|
|
ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I));
|
|
if (MOutLocs[ThisBBNum][I] == MPHI)
|
|
Locs.back().push_back(LocIdx(I));
|
|
}
|
|
}
|
|
}
|
|
// We should have found locations for all predecessors, or returned.
|
|
assert(Locs.size() == BlockOrders.size());
|
|
|
|
// Starting with the first set of locations, take the intersection with
|
|
// subsequent sets.
|
|
SmallVector<LocIdx, 4> CandidateLocs = Locs[0];
|
|
for (unsigned int I = 1; I < Locs.size(); ++I) {
|
|
auto &LocVec = Locs[I];
|
|
SmallVector<LocIdx, 4> NewCandidates;
|
|
std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(),
|
|
LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin()));
|
|
CandidateLocs = NewCandidates;
|
|
}
|
|
if (CandidateLocs.empty())
|
|
return None;
|
|
|
|
// We now have a set of LocIdxes that contain the right output value in
|
|
// each of the predecessors. Pick the lowest; if there's a register loc,
|
|
// that'll be it.
|
|
LocIdx L = *CandidateLocs.begin();
|
|
|
|
// Return a PHI-value-number for the found location.
|
|
ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
|
|
return PHIVal;
|
|
}
|
|
|
|
bool InstrRefBasedLDV::vlocJoin(
|
|
MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
|
|
SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
|
|
DbgValue &LiveIn) {
|
|
LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
|
|
bool Changed = false;
|
|
|
|
// Order predecessors by RPOT order, for exploring them in that order.
|
|
SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
|
|
|
|
auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
|
|
return BBToOrder[A] < BBToOrder[B];
|
|
};
|
|
|
|
llvm::sort(BlockOrders, Cmp);
|
|
|
|
unsigned CurBlockRPONum = BBToOrder[&MBB];
|
|
|
|
// Collect all the incoming DbgValues for this variable, from predecessor
|
|
// live-out values.
|
|
SmallVector<InValueT, 8> Values;
|
|
bool Bail = false;
|
|
int BackEdgesStart = 0;
|
|
for (auto *p : BlockOrders) {
|
|
// If the predecessor isn't in scope / to be explored, we'll never be
|
|
// able to join any locations.
|
|
if (!BlocksToExplore.contains(p)) {
|
|
Bail = true;
|
|
break;
|
|
}
|
|
|
|
// All Live-outs will have been initialized.
|
|
DbgValue &OutLoc = *VLOCOutLocs.find(p)->second;
|
|
|
|
// Keep track of where back-edges begin in the Values vector. Relies on
|
|
// BlockOrders being sorted by RPO.
|
|
unsigned ThisBBRPONum = BBToOrder[p];
|
|
if (ThisBBRPONum < CurBlockRPONum)
|
|
++BackEdgesStart;
|
|
|
|
Values.push_back(std::make_pair(p, &OutLoc));
|
|
}
|
|
|
|
// If there were no values, or one of the predecessors couldn't have a
|
|
// value, then give up immediately. It's not safe to produce a live-in
|
|
// value. Leave as whatever it was before.
|
|
if (Bail || Values.size() == 0)
|
|
return false;
|
|
|
|
// All (non-entry) blocks have at least one non-backedge predecessor.
|
|
// Pick the variable value from the first of these, to compare against
|
|
// all others.
|
|
const DbgValue &FirstVal = *Values[0].second;
|
|
|
|
// If the old live-in value is not a PHI then either a) no PHI is needed
|
|
// here, or b) we eliminated the PHI that was here. If so, we can just
|
|
// propagate in the first parent's incoming value.
|
|
if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) {
|
|
Changed = LiveIn != FirstVal;
|
|
if (Changed)
|
|
LiveIn = FirstVal;
|
|
return Changed;
|
|
}
|
|
|
|
// Scan for variable values that can never be resolved: if they have
|
|
// different DIExpressions, different indirectness, or are mixed constants /
|
|
// non-constants.
|
|
for (const auto &V : Values) {
|
|
if (V.second->Properties != FirstVal.Properties)
|
|
return false;
|
|
if (V.second->Kind == DbgValue::NoVal)
|
|
return false;
|
|
if (!V.second->hasJoinableLocOps(FirstVal))
|
|
return false;
|
|
}
|
|
|
|
// Try to eliminate this PHI. Do the incoming values all agree?
|
|
bool Disagree = false;
|
|
for (auto &V : Values) {
|
|
if (*V.second == FirstVal)
|
|
continue; // No disagreement.
|
|
|
|
// If both values are not equal but have equal non-empty IDs then they refer
|
|
// to the same value from different sources (e.g. one is VPHI and the other
|
|
// is Def), which does not cause disagreement.
|
|
if (V.second->hasIdenticalValidLocOps(FirstVal))
|
|
continue;
|
|
|
|
// Eliminate if a backedge feeds a VPHI back into itself.
|
|
if (V.second->Kind == DbgValue::VPHI &&
|
|
V.second->BlockNo == MBB.getNumber() &&
|
|
// Is this a backedge?
|
|
std::distance(Values.begin(), &V) >= BackEdgesStart)
|
|
continue;
|
|
|
|
Disagree = true;
|
|
}
|
|
|
|
// No disagreement -> live-through value.
|
|
if (!Disagree) {
|
|
Changed = LiveIn != FirstVal;
|
|
if (Changed)
|
|
LiveIn = FirstVal;
|
|
return Changed;
|
|
} else {
|
|
// Otherwise use a VPHI.
|
|
DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI);
|
|
Changed = LiveIn != VPHI;
|
|
if (Changed)
|
|
LiveIn = VPHI;
|
|
return Changed;
|
|
}
|
|
}
|
|
|
|
void InstrRefBasedLDV::getBlocksForScope(
|
|
const DILocation *DILoc,
|
|
SmallPtrSetImpl<const MachineBasicBlock *> &BlocksToExplore,
|
|
const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks) {
|
|
// Get the set of "normal" in-lexical-scope blocks.
|
|
LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
|
|
|
|
// VarLoc LiveDebugValues tracks variable locations that are defined in
|
|
// blocks not in scope. This is something we could legitimately ignore, but
|
|
// lets allow it for now for the sake of coverage.
|
|
BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
|
|
|
|
// Storage for artificial blocks we intend to add to BlocksToExplore.
|
|
DenseSet<const MachineBasicBlock *> ToAdd;
|
|
|
|
// To avoid needlessly dropping large volumes of variable locations, propagate
|
|
// variables through aritifical blocks, i.e. those that don't have any
|
|
// instructions in scope at all. To accurately replicate VarLoc
|
|
// LiveDebugValues, this means exploring all artificial successors too.
|
|
// Perform a depth-first-search to enumerate those blocks.
|
|
for (const auto *MBB : BlocksToExplore) {
|
|
// Depth-first-search state: each node is a block and which successor
|
|
// we're currently exploring.
|
|
SmallVector<std::pair<const MachineBasicBlock *,
|
|
MachineBasicBlock::const_succ_iterator>,
|
|
8>
|
|
DFS;
|
|
|
|
// Find any artificial successors not already tracked.
|
|
for (auto *succ : MBB->successors()) {
|
|
if (BlocksToExplore.count(succ))
|
|
continue;
|
|
if (!ArtificialBlocks.count(succ))
|
|
continue;
|
|
ToAdd.insert(succ);
|
|
DFS.push_back({succ, succ->succ_begin()});
|
|
}
|
|
|
|
// Search all those blocks, depth first.
|
|
while (!DFS.empty()) {
|
|
const MachineBasicBlock *CurBB = DFS.back().first;
|
|
MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
|
|
// Walk back if we've explored this blocks successors to the end.
|
|
if (CurSucc == CurBB->succ_end()) {
|
|
DFS.pop_back();
|
|
continue;
|
|
}
|
|
|
|
// If the current successor is artificial and unexplored, descend into
|
|
// it.
|
|
if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
|
|
ToAdd.insert(*CurSucc);
|
|
DFS.push_back({*CurSucc, (*CurSucc)->succ_begin()});
|
|
continue;
|
|
}
|
|
|
|
++CurSucc;
|
|
}
|
|
};
|
|
|
|
BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
|
|
}
|
|
|
|
void InstrRefBasedLDV::buildVLocValueMap(
|
|
const DILocation *DILoc, const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
|
|
SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
|
|
FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
|
|
SmallVectorImpl<VLocTracker> &AllTheVLocs) {
|
|
// This method is much like buildMLocValueMap: but focuses on a single
|
|
// LexicalScope at a time. Pick out a set of blocks and variables that are
|
|
// to have their value assignments solved, then run our dataflow algorithm
|
|
// until a fixedpoint is reached.
|
|
std::priority_queue<unsigned int, std::vector<unsigned int>,
|
|
std::greater<unsigned int>>
|
|
Worklist, Pending;
|
|
SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
|
|
|
|
// The set of blocks we'll be examining.
|
|
SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
|
|
|
|
// The order in which to examine them (RPO).
|
|
SmallVector<MachineBasicBlock *, 8> BlockOrders;
|
|
|
|
// RPO ordering function.
|
|
auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
|
|
return BBToOrder[A] < BBToOrder[B];
|
|
};
|
|
|
|
getBlocksForScope(DILoc, BlocksToExplore, AssignBlocks);
|
|
|
|
// Single block scope: not interesting! No propagation at all. Note that
|
|
// this could probably go above ArtificialBlocks without damage, but
|
|
// that then produces output differences from original-live-debug-values,
|
|
// which propagates from a single block into many artificial ones.
|
|
if (BlocksToExplore.size() == 1)
|
|
return;
|
|
|
|
// Convert a const set to a non-const set. LexicalScopes
|
|
// getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones.
|
|
// (Neither of them mutate anything).
|
|
SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore;
|
|
for (const auto *MBB : BlocksToExplore)
|
|
MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB));
|
|
|
|
// Picks out relevants blocks RPO order and sort them.
|
|
for (const auto *MBB : BlocksToExplore)
|
|
BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
|
|
|
|
llvm::sort(BlockOrders, Cmp);
|
|
unsigned NumBlocks = BlockOrders.size();
|
|
|
|
// Allocate some vectors for storing the live ins and live outs. Large.
|
|
SmallVector<DbgValue, 32> LiveIns, LiveOuts;
|
|
LiveIns.reserve(NumBlocks);
|
|
LiveOuts.reserve(NumBlocks);
|
|
|
|
// Initialize all values to start as NoVals. This signifies "it's live
|
|
// through, but we don't know what it is".
|
|
DbgValueProperties EmptyProperties(EmptyExpr, false, false);
|
|
for (unsigned int I = 0; I < NumBlocks; ++I) {
|
|
DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
|
|
LiveIns.push_back(EmptyDbgValue);
|
|
LiveOuts.push_back(EmptyDbgValue);
|
|
}
|
|
|
|
// Produce by-MBB indexes of live-in/live-outs, to ease lookup within
|
|
// vlocJoin.
|
|
LiveIdxT LiveOutIdx, LiveInIdx;
|
|
LiveOutIdx.reserve(NumBlocks);
|
|
LiveInIdx.reserve(NumBlocks);
|
|
for (unsigned I = 0; I < NumBlocks; ++I) {
|
|
LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
|
|
LiveInIdx[BlockOrders[I]] = &LiveIns[I];
|
|
}
|
|
|
|
// Loop over each variable and place PHIs for it, then propagate values
|
|
// between blocks. This keeps the locality of working on one lexical scope at
|
|
// at time, but avoids re-processing variable values because some other
|
|
// variable has been assigned.
|
|
for (const auto &Var : VarsWeCareAbout) {
|
|
// Re-initialize live-ins and live-outs, to clear the remains of previous
|
|
// variables live-ins / live-outs.
|
|
for (unsigned int I = 0; I < NumBlocks; ++I) {
|
|
DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
|
|
LiveIns[I] = EmptyDbgValue;
|
|
LiveOuts[I] = EmptyDbgValue;
|
|
}
|
|
|
|
// Place PHIs for variable values, using the LLVM IDF calculator.
|
|
// Collect the set of blocks where variables are def'd.
|
|
SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
|
|
for (const MachineBasicBlock *ExpMBB : BlocksToExplore) {
|
|
auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars;
|
|
if (TransferFunc.find(Var) != TransferFunc.end())
|
|
DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB));
|
|
}
|
|
|
|
SmallVector<MachineBasicBlock *, 32> PHIBlocks;
|
|
|
|
// Request the set of PHIs we should insert for this variable. If there's
|
|
// only one value definition, things are very simple.
|
|
if (DefBlocks.size() == 1) {
|
|
placePHIsForSingleVarDefinition(MutBlocksToExplore, *DefBlocks.begin(),
|
|
AllTheVLocs, Var, Output);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise: we need to place PHIs through SSA and propagate values.
|
|
BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks);
|
|
|
|
// Insert PHIs into the per-block live-in tables for this variable.
|
|
for (MachineBasicBlock *PHIMBB : PHIBlocks) {
|
|
unsigned BlockNo = PHIMBB->getNumber();
|
|
DbgValue *LiveIn = LiveInIdx[PHIMBB];
|
|
*LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI);
|
|
}
|
|
|
|
for (auto *MBB : BlockOrders) {
|
|
Worklist.push(BBToOrder[MBB]);
|
|
OnWorklist.insert(MBB);
|
|
}
|
|
|
|
// Iterate over all the blocks we selected, propagating the variables value.
|
|
// This loop does two things:
|
|
// * Eliminates un-necessary VPHIs in vlocJoin,
|
|
// * Evaluates the blocks transfer function (i.e. variable assignments) and
|
|
// stores the result to the blocks live-outs.
|
|
// Always evaluate the transfer function on the first iteration, and when
|
|
// the live-ins change thereafter.
|
|
bool FirstTrip = true;
|
|
while (!Worklist.empty() || !Pending.empty()) {
|
|
while (!Worklist.empty()) {
|
|
auto *MBB = OrderToBB[Worklist.top()];
|
|
CurBB = MBB->getNumber();
|
|
Worklist.pop();
|
|
|
|
auto LiveInsIt = LiveInIdx.find(MBB);
|
|
assert(LiveInsIt != LiveInIdx.end());
|
|
DbgValue *LiveIn = LiveInsIt->second;
|
|
|
|
// Join values from predecessors. Updates LiveInIdx, and writes output
|
|
// into JoinedInLocs.
|
|
bool InLocsChanged =
|
|
vlocJoin(*MBB, LiveOutIdx, BlocksToExplore, *LiveIn);
|
|
|
|
SmallVector<const MachineBasicBlock *, 8> Preds;
|
|
for (const auto *Pred : MBB->predecessors())
|
|
Preds.push_back(Pred);
|
|
|
|
// If this block's live-in value is a VPHI, try to pick a machine-value
|
|
// for it. This makes the machine-value available and propagated
|
|
// through all blocks by the time value propagation finishes. We can't
|
|
// do this any earlier as it needs to read the block live-outs.
|
|
if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) {
|
|
// There's a small possibility that on a preceeding path, a VPHI is
|
|
// eliminated and transitions from VPHI-with-location to
|
|
// live-through-value. As a result, the selected location of any VPHI
|
|
// might change, so we need to re-compute it on each iteration.
|
|
SmallVector<DbgOpID> JoinedOps;
|
|
|
|
if (pickVPHILoc(JoinedOps, *MBB, LiveOutIdx, MOutLocs, Preds)) {
|
|
bool NewLocPicked = !equal(LiveIn->getDbgOpIDs(), JoinedOps);
|
|
InLocsChanged |= NewLocPicked;
|
|
if (NewLocPicked)
|
|
LiveIn->setDbgOpIDs(JoinedOps);
|
|
}
|
|
}
|
|
|
|
if (!InLocsChanged && !FirstTrip)
|
|
continue;
|
|
|
|
DbgValue *LiveOut = LiveOutIdx[MBB];
|
|
bool OLChanged = false;
|
|
|
|
// Do transfer function.
|
|
auto &VTracker = AllTheVLocs[MBB->getNumber()];
|
|
auto TransferIt = VTracker.Vars.find(Var);
|
|
if (TransferIt != VTracker.Vars.end()) {
|
|
// Erase on empty transfer (DBG_VALUE $noreg).
|
|
if (TransferIt->second.Kind == DbgValue::Undef) {
|
|
DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal);
|
|
if (*LiveOut != NewVal) {
|
|
*LiveOut = NewVal;
|
|
OLChanged = true;
|
|
}
|
|
} else {
|
|
// Insert new variable value; or overwrite.
|
|
if (*LiveOut != TransferIt->second) {
|
|
*LiveOut = TransferIt->second;
|
|
OLChanged = true;
|
|
}
|
|
}
|
|
} else {
|
|
// Just copy live-ins to live-outs, for anything not transferred.
|
|
if (*LiveOut != *LiveIn) {
|
|
*LiveOut = *LiveIn;
|
|
OLChanged = true;
|
|
}
|
|
}
|
|
|
|
// If no live-out value changed, there's no need to explore further.
|
|
if (!OLChanged)
|
|
continue;
|
|
|
|
// We should visit all successors. Ensure we'll visit any non-backedge
|
|
// successors during this dataflow iteration; book backedge successors
|
|
// to be visited next time around.
|
|
for (auto *s : MBB->successors()) {
|
|
// Ignore out of scope / not-to-be-explored successors.
|
|
if (LiveInIdx.find(s) == LiveInIdx.end())
|
|
continue;
|
|
|
|
if (BBToOrder[s] > BBToOrder[MBB]) {
|
|
if (OnWorklist.insert(s).second)
|
|
Worklist.push(BBToOrder[s]);
|
|
} else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
|
|
Pending.push(BBToOrder[s]);
|
|
}
|
|
}
|
|
}
|
|
Worklist.swap(Pending);
|
|
std::swap(OnWorklist, OnPending);
|
|
OnPending.clear();
|
|
assert(Pending.empty());
|
|
FirstTrip = false;
|
|
}
|
|
|
|
// Save live-ins to output vector. Ignore any that are still marked as being
|
|
// VPHIs with no location -- those are variables that we know the value of,
|
|
// but are not actually available in the register file.
|
|
for (auto *MBB : BlockOrders) {
|
|
DbgValue *BlockLiveIn = LiveInIdx[MBB];
|
|
if (BlockLiveIn->Kind == DbgValue::NoVal)
|
|
continue;
|
|
if (BlockLiveIn->isUnjoinedPHI())
|
|
continue;
|
|
if (BlockLiveIn->Kind == DbgValue::VPHI)
|
|
BlockLiveIn->Kind = DbgValue::Def;
|
|
assert(BlockLiveIn->Properties.DIExpr->getFragmentInfo() ==
|
|
Var.getFragment() && "Fragment info missing during value prop");
|
|
Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn));
|
|
}
|
|
} // Per-variable loop.
|
|
|
|
BlockOrders.clear();
|
|
BlocksToExplore.clear();
|
|
}
|
|
|
|
void InstrRefBasedLDV::placePHIsForSingleVarDefinition(
|
|
const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
|
|
MachineBasicBlock *AssignMBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
|
|
const DebugVariable &Var, LiveInsT &Output) {
|
|
// If there is a single definition of the variable, then working out it's
|
|
// value everywhere is very simple: it's every block dominated by the
|
|
// definition. At the dominance frontier, the usual algorithm would:
|
|
// * Place PHIs,
|
|
// * Propagate values into them,
|
|
// * Find there's no incoming variable value from the other incoming branches
|
|
// of the dominance frontier,
|
|
// * Specify there's no variable value in blocks past the frontier.
|
|
// This is a common case, hence it's worth special-casing it.
|
|
|
|
// Pick out the variables value from the block transfer function.
|
|
VLocTracker &VLocs = AllTheVLocs[AssignMBB->getNumber()];
|
|
auto ValueIt = VLocs.Vars.find(Var);
|
|
const DbgValue &Value = ValueIt->second;
|
|
|
|
// If it's an explicit assignment of "undef", that means there is no location
|
|
// anyway, anywhere.
|
|
if (Value.Kind == DbgValue::Undef)
|
|
return;
|
|
|
|
// Assign the variable value to entry to each dominated block that's in scope.
|
|
// Skip the definition block -- it's assigned the variable value in the middle
|
|
// of the block somewhere.
|
|
for (auto *ScopeBlock : InScopeBlocks) {
|
|
if (!DomTree->properlyDominates(AssignMBB, ScopeBlock))
|
|
continue;
|
|
|
|
Output[ScopeBlock->getNumber()].push_back({Var, Value});
|
|
}
|
|
|
|
// All blocks that aren't dominated have no live-in value, thus no variable
|
|
// value will be given to them.
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void InstrRefBasedLDV::dump_mloc_transfer(
|
|
const MLocTransferMap &mloc_transfer) const {
|
|
for (const auto &P : mloc_transfer) {
|
|
std::string foo = MTracker->LocIdxToName(P.first);
|
|
std::string bar = MTracker->IDAsString(P.second);
|
|
dbgs() << "Loc " << foo << " --> " << bar << "\n";
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
|
|
// Build some useful data structures.
|
|
|
|
LLVMContext &Context = MF.getFunction().getContext();
|
|
EmptyExpr = DIExpression::get(Context, {});
|
|
|
|
auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
|
|
if (const DebugLoc &DL = MI.getDebugLoc())
|
|
return DL.getLine() != 0;
|
|
return false;
|
|
};
|
|
// Collect a set of all the artificial blocks.
|
|
for (auto &MBB : MF)
|
|
if (none_of(MBB.instrs(), hasNonArtificialLocation))
|
|
ArtificialBlocks.insert(&MBB);
|
|
|
|
// Compute mappings of block <=> RPO order.
|
|
ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
|
|
unsigned int RPONumber = 0;
|
|
auto processMBB = [&](MachineBasicBlock *MBB) {
|
|
OrderToBB[RPONumber] = MBB;
|
|
BBToOrder[MBB] = RPONumber;
|
|
BBNumToRPO[MBB->getNumber()] = RPONumber;
|
|
++RPONumber;
|
|
};
|
|
for (MachineBasicBlock *MBB : RPOT)
|
|
processMBB(MBB);
|
|
for (MachineBasicBlock &MBB : MF)
|
|
if (BBToOrder.find(&MBB) == BBToOrder.end())
|
|
processMBB(&MBB);
|
|
|
|
// Order value substitutions by their "source" operand pair, for quick lookup.
|
|
llvm::sort(MF.DebugValueSubstitutions);
|
|
|
|
#ifdef EXPENSIVE_CHECKS
|
|
// As an expensive check, test whether there are any duplicate substitution
|
|
// sources in the collection.
|
|
if (MF.DebugValueSubstitutions.size() > 2) {
|
|
for (auto It = MF.DebugValueSubstitutions.begin();
|
|
It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
|
|
assert(It->Src != std::next(It)->Src && "Duplicate variable location "
|
|
"substitution seen");
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Produce an "ejection map" for blocks, i.e., what's the highest-numbered
|
|
// lexical scope it's used in. When exploring in DFS order and we pass that
|
|
// scope, the block can be processed and any tracking information freed.
|
|
void InstrRefBasedLDV::makeDepthFirstEjectionMap(
|
|
SmallVectorImpl<unsigned> &EjectionMap,
|
|
const ScopeToDILocT &ScopeToDILocation,
|
|
ScopeToAssignBlocksT &ScopeToAssignBlocks) {
|
|
SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
|
|
SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
|
|
auto *TopScope = LS.getCurrentFunctionScope();
|
|
|
|
// Unlike lexical scope explorers, we explore in reverse order, to find the
|
|
// "last" lexical scope used for each block early.
|
|
WorkStack.push_back({TopScope, TopScope->getChildren().size() - 1});
|
|
|
|
while (!WorkStack.empty()) {
|
|
auto &ScopePosition = WorkStack.back();
|
|
LexicalScope *WS = ScopePosition.first;
|
|
ssize_t ChildNum = ScopePosition.second--;
|
|
|
|
const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
|
|
if (ChildNum >= 0) {
|
|
// If ChildNum is positive, there are remaining children to explore.
|
|
// Push the child and its children-count onto the stack.
|
|
auto &ChildScope = Children[ChildNum];
|
|
WorkStack.push_back(
|
|
std::make_pair(ChildScope, ChildScope->getChildren().size() - 1));
|
|
} else {
|
|
WorkStack.pop_back();
|
|
|
|
// We've explored all children and any later blocks: examine all blocks
|
|
// in our scope. If they haven't yet had an ejection number set, then
|
|
// this scope will be the last to use that block.
|
|
auto DILocationIt = ScopeToDILocation.find(WS);
|
|
if (DILocationIt != ScopeToDILocation.end()) {
|
|
getBlocksForScope(DILocationIt->second, BlocksToExplore,
|
|
ScopeToAssignBlocks.find(WS)->second);
|
|
for (const auto *MBB : BlocksToExplore) {
|
|
unsigned BBNum = MBB->getNumber();
|
|
if (EjectionMap[BBNum] == 0)
|
|
EjectionMap[BBNum] = WS->getDFSOut();
|
|
}
|
|
|
|
BlocksToExplore.clear();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool InstrRefBasedLDV::depthFirstVLocAndEmit(
|
|
unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation,
|
|
const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToAssignBlocks,
|
|
LiveInsT &Output, FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
|
|
SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF,
|
|
DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
|
|
const TargetPassConfig &TPC) {
|
|
TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
|
|
unsigned NumLocs = MTracker->getNumLocs();
|
|
VTracker = nullptr;
|
|
|
|
// No scopes? No variable locations.
|
|
if (!LS.getCurrentFunctionScope())
|
|
return false;
|
|
|
|
// Build map from block number to the last scope that uses the block.
|
|
SmallVector<unsigned, 16> EjectionMap;
|
|
EjectionMap.resize(MaxNumBlocks, 0);
|
|
makeDepthFirstEjectionMap(EjectionMap, ScopeToDILocation,
|
|
ScopeToAssignBlocks);
|
|
|
|
// Helper lambda for ejecting a block -- if nothing is going to use the block,
|
|
// we can translate the variable location information into DBG_VALUEs and then
|
|
// free all of InstrRefBasedLDV's data structures.
|
|
auto EjectBlock = [&](MachineBasicBlock &MBB) -> void {
|
|
unsigned BBNum = MBB.getNumber();
|
|
AllTheVLocs[BBNum].clear();
|
|
|
|
// Prime the transfer-tracker, and then step through all the block
|
|
// instructions, installing transfers.
|
|
MTracker->reset();
|
|
MTracker->loadFromArray(MInLocs[BBNum], BBNum);
|
|
TTracker->loadInlocs(MBB, MInLocs[BBNum], DbgOpStore, Output[BBNum],
|
|
NumLocs);
|
|
|
|
CurBB = BBNum;
|
|
CurInst = 1;
|
|
for (auto &MI : MBB) {
|
|
process(MI, MOutLocs.get(), MInLocs.get());
|
|
TTracker->checkInstForNewValues(CurInst, MI.getIterator());
|
|
++CurInst;
|
|
}
|
|
|
|
// Free machine-location tables for this block.
|
|
MInLocs[BBNum].reset();
|
|
MOutLocs[BBNum].reset();
|
|
// We don't need live-in variable values for this block either.
|
|
Output[BBNum].clear();
|
|
AllTheVLocs[BBNum].clear();
|
|
};
|
|
|
|
SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
|
|
SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
|
|
WorkStack.push_back({LS.getCurrentFunctionScope(), 0});
|
|
unsigned HighestDFSIn = 0;
|
|
|
|
// Proceed to explore in depth first order.
|
|
while (!WorkStack.empty()) {
|
|
auto &ScopePosition = WorkStack.back();
|
|
LexicalScope *WS = ScopePosition.first;
|
|
ssize_t ChildNum = ScopePosition.second++;
|
|
|
|
// We obesrve scopes with children twice here, once descending in, once
|
|
// ascending out of the scope nest. Use HighestDFSIn as a ratchet to ensure
|
|
// we don't process a scope twice. Additionally, ignore scopes that don't
|
|
// have a DILocation -- by proxy, this means we never tracked any variable
|
|
// assignments in that scope.
|
|
auto DILocIt = ScopeToDILocation.find(WS);
|
|
if (HighestDFSIn <= WS->getDFSIn() && DILocIt != ScopeToDILocation.end()) {
|
|
const DILocation *DILoc = DILocIt->second;
|
|
auto &VarsWeCareAbout = ScopeToVars.find(WS)->second;
|
|
auto &BlocksInScope = ScopeToAssignBlocks.find(WS)->second;
|
|
|
|
buildVLocValueMap(DILoc, VarsWeCareAbout, BlocksInScope, Output, MOutLocs,
|
|
MInLocs, AllTheVLocs);
|
|
}
|
|
|
|
HighestDFSIn = std::max(HighestDFSIn, WS->getDFSIn());
|
|
|
|
// Descend into any scope nests.
|
|
const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
|
|
if (ChildNum < (ssize_t)Children.size()) {
|
|
// There are children to explore -- push onto stack and continue.
|
|
auto &ChildScope = Children[ChildNum];
|
|
WorkStack.push_back(std::make_pair(ChildScope, 0));
|
|
} else {
|
|
WorkStack.pop_back();
|
|
|
|
// We've explored a leaf, or have explored all the children of a scope.
|
|
// Try to eject any blocks where this is the last scope it's relevant to.
|
|
auto DILocationIt = ScopeToDILocation.find(WS);
|
|
if (DILocationIt == ScopeToDILocation.end())
|
|
continue;
|
|
|
|
getBlocksForScope(DILocationIt->second, BlocksToExplore,
|
|
ScopeToAssignBlocks.find(WS)->second);
|
|
for (const auto *MBB : BlocksToExplore)
|
|
if (WS->getDFSOut() == EjectionMap[MBB->getNumber()])
|
|
EjectBlock(const_cast<MachineBasicBlock &>(*MBB));
|
|
|
|
BlocksToExplore.clear();
|
|
}
|
|
}
|
|
|
|
// Some artificial blocks may not have been ejected, meaning they're not
|
|
// connected to an actual legitimate scope. This can technically happen
|
|
// with things like the entry block. In theory, we shouldn't need to do
|
|
// anything for such out-of-scope blocks, but for the sake of being similar
|
|
// to VarLocBasedLDV, eject these too.
|
|
for (auto *MBB : ArtificialBlocks)
|
|
if (MOutLocs[MBB->getNumber()])
|
|
EjectBlock(*MBB);
|
|
|
|
return emitTransfers(AllVarsNumbering);
|
|
}
|
|
|
|
bool InstrRefBasedLDV::emitTransfers(
|
|
DenseMap<DebugVariable, unsigned> &AllVarsNumbering) {
|
|
// Go through all the transfers recorded in the TransferTracker -- this is
|
|
// both the live-ins to a block, and any movements of values that happen
|
|
// in the middle.
|
|
for (const auto &P : TTracker->Transfers) {
|
|
// We have to insert DBG_VALUEs in a consistent order, otherwise they
|
|
// appear in DWARF in different orders. Use the order that they appear
|
|
// when walking through each block / each instruction, stored in
|
|
// AllVarsNumbering.
|
|
SmallVector<std::pair<unsigned, MachineInstr *>> Insts;
|
|
for (MachineInstr *MI : P.Insts) {
|
|
DebugVariable Var(MI->getDebugVariable(), MI->getDebugExpression(),
|
|
MI->getDebugLoc()->getInlinedAt());
|
|
Insts.emplace_back(AllVarsNumbering.find(Var)->second, MI);
|
|
}
|
|
llvm::sort(Insts, llvm::less_first());
|
|
|
|
// Insert either before or after the designated point...
|
|
if (P.MBB) {
|
|
MachineBasicBlock &MBB = *P.MBB;
|
|
for (const auto &Pair : Insts)
|
|
MBB.insert(P.Pos, Pair.second);
|
|
} else {
|
|
// Terminators, like tail calls, can clobber things. Don't try and place
|
|
// transfers after them.
|
|
if (P.Pos->isTerminator())
|
|
continue;
|
|
|
|
MachineBasicBlock &MBB = *P.Pos->getParent();
|
|
for (const auto &Pair : Insts)
|
|
MBB.insertAfterBundle(P.Pos, Pair.second);
|
|
}
|
|
}
|
|
|
|
return TTracker->Transfers.size() != 0;
|
|
}
|
|
|
|
/// Calculate the liveness information for the given machine function and
|
|
/// extend ranges across basic blocks.
|
|
bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
|
|
MachineDominatorTree *DomTree,
|
|
TargetPassConfig *TPC,
|
|
unsigned InputBBLimit,
|
|
unsigned InputDbgValLimit) {
|
|
// No subprogram means this function contains no debuginfo.
|
|
if (!MF.getFunction().getSubprogram())
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
|
|
this->TPC = TPC;
|
|
|
|
this->DomTree = DomTree;
|
|
TRI = MF.getSubtarget().getRegisterInfo();
|
|
MRI = &MF.getRegInfo();
|
|
TII = MF.getSubtarget().getInstrInfo();
|
|
TFI = MF.getSubtarget().getFrameLowering();
|
|
TFI->getCalleeSaves(MF, CalleeSavedRegs);
|
|
MFI = &MF.getFrameInfo();
|
|
LS.initialize(MF);
|
|
|
|
const auto &STI = MF.getSubtarget();
|
|
AdjustsStackInCalls = MFI->adjustsStack() &&
|
|
STI.getFrameLowering()->stackProbeFunctionModifiesSP();
|
|
if (AdjustsStackInCalls)
|
|
StackProbeSymbolName = STI.getTargetLowering()->getStackProbeSymbolName(MF);
|
|
|
|
MTracker =
|
|
new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
|
|
VTracker = nullptr;
|
|
TTracker = nullptr;
|
|
|
|
SmallVector<MLocTransferMap, 32> MLocTransfer;
|
|
SmallVector<VLocTracker, 8> vlocs;
|
|
LiveInsT SavedLiveIns;
|
|
|
|
int MaxNumBlocks = -1;
|
|
for (auto &MBB : MF)
|
|
MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
|
|
assert(MaxNumBlocks >= 0);
|
|
++MaxNumBlocks;
|
|
|
|
initialSetup(MF);
|
|
|
|
MLocTransfer.resize(MaxNumBlocks);
|
|
vlocs.resize(MaxNumBlocks, VLocTracker(OverlapFragments, EmptyExpr));
|
|
SavedLiveIns.resize(MaxNumBlocks);
|
|
|
|
produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
|
|
|
|
// Allocate and initialize two array-of-arrays for the live-in and live-out
|
|
// machine values. The outer dimension is the block number; while the inner
|
|
// dimension is a LocIdx from MLocTracker.
|
|
FuncValueTable MOutLocs = std::make_unique<ValueTable[]>(MaxNumBlocks);
|
|
FuncValueTable MInLocs = std::make_unique<ValueTable[]>(MaxNumBlocks);
|
|
unsigned NumLocs = MTracker->getNumLocs();
|
|
for (int i = 0; i < MaxNumBlocks; ++i) {
|
|
// These all auto-initialize to ValueIDNum::EmptyValue
|
|
MOutLocs[i] = std::make_unique<ValueIDNum[]>(NumLocs);
|
|
MInLocs[i] = std::make_unique<ValueIDNum[]>(NumLocs);
|
|
}
|
|
|
|
// Solve the machine value dataflow problem using the MLocTransfer function,
|
|
// storing the computed live-ins / live-outs into the array-of-arrays. We use
|
|
// both live-ins and live-outs for decision making in the variable value
|
|
// dataflow problem.
|
|
buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer);
|
|
|
|
// Patch up debug phi numbers, turning unknown block-live-in values into
|
|
// either live-through machine values, or PHIs.
|
|
for (auto &DBG_PHI : DebugPHINumToValue) {
|
|
// Identify unresolved block-live-ins.
|
|
if (!DBG_PHI.ValueRead)
|
|
continue;
|
|
|
|
ValueIDNum &Num = *DBG_PHI.ValueRead;
|
|
if (!Num.isPHI())
|
|
continue;
|
|
|
|
unsigned BlockNo = Num.getBlock();
|
|
LocIdx LocNo = Num.getLoc();
|
|
Num = MInLocs[BlockNo][LocNo.asU64()];
|
|
}
|
|
// Later, we'll be looking up ranges of instruction numbers.
|
|
llvm::sort(DebugPHINumToValue);
|
|
|
|
// Walk back through each block / instruction, collecting DBG_VALUE
|
|
// instructions and recording what machine value their operands refer to.
|
|
for (auto &OrderPair : OrderToBB) {
|
|
MachineBasicBlock &MBB = *OrderPair.second;
|
|
CurBB = MBB.getNumber();
|
|
VTracker = &vlocs[CurBB];
|
|
VTracker->MBB = &MBB;
|
|
MTracker->loadFromArray(MInLocs[CurBB], CurBB);
|
|
CurInst = 1;
|
|
for (auto &MI : MBB) {
|
|
process(MI, MOutLocs.get(), MInLocs.get());
|
|
++CurInst;
|
|
}
|
|
MTracker->reset();
|
|
}
|
|
|
|
// Number all variables in the order that they appear, to be used as a stable
|
|
// insertion order later.
|
|
DenseMap<DebugVariable, unsigned> AllVarsNumbering;
|
|
|
|
// Map from one LexicalScope to all the variables in that scope.
|
|
ScopeToVarsT ScopeToVars;
|
|
|
|
// Map from One lexical scope to all blocks where assignments happen for
|
|
// that scope.
|
|
ScopeToAssignBlocksT ScopeToAssignBlocks;
|
|
|
|
// Store map of DILocations that describes scopes.
|
|
ScopeToDILocT ScopeToDILocation;
|
|
|
|
// To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
|
|
// the order is unimportant, it just has to be stable.
|
|
unsigned VarAssignCount = 0;
|
|
for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
|
|
auto *MBB = OrderToBB[I];
|
|
auto *VTracker = &vlocs[MBB->getNumber()];
|
|
// Collect each variable with a DBG_VALUE in this block.
|
|
for (auto &idx : VTracker->Vars) {
|
|
const auto &Var = idx.first;
|
|
const DILocation *ScopeLoc = VTracker->Scopes[Var];
|
|
assert(ScopeLoc != nullptr);
|
|
auto *Scope = LS.findLexicalScope(ScopeLoc);
|
|
|
|
// No insts in scope -> shouldn't have been recorded.
|
|
assert(Scope != nullptr);
|
|
|
|
AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
|
|
ScopeToVars[Scope].insert(Var);
|
|
ScopeToAssignBlocks[Scope].insert(VTracker->MBB);
|
|
ScopeToDILocation[Scope] = ScopeLoc;
|
|
++VarAssignCount;
|
|
}
|
|
}
|
|
|
|
bool Changed = false;
|
|
|
|
// If we have an extremely large number of variable assignments and blocks,
|
|
// bail out at this point. We've burnt some time doing analysis already,
|
|
// however we should cut our losses.
|
|
if ((unsigned)MaxNumBlocks > InputBBLimit &&
|
|
VarAssignCount > InputDbgValLimit) {
|
|
LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
|
|
<< " has " << MaxNumBlocks << " basic blocks and "
|
|
<< VarAssignCount
|
|
<< " variable assignments, exceeding limits.\n");
|
|
} else {
|
|
// Optionally, solve the variable value problem and emit to blocks by using
|
|
// a lexical-scope-depth search. It should be functionally identical to
|
|
// the "else" block of this condition.
|
|
Changed = depthFirstVLocAndEmit(
|
|
MaxNumBlocks, ScopeToDILocation, ScopeToVars, ScopeToAssignBlocks,
|
|
SavedLiveIns, MOutLocs, MInLocs, vlocs, MF, AllVarsNumbering, *TPC);
|
|
}
|
|
|
|
delete MTracker;
|
|
delete TTracker;
|
|
MTracker = nullptr;
|
|
VTracker = nullptr;
|
|
TTracker = nullptr;
|
|
|
|
ArtificialBlocks.clear();
|
|
OrderToBB.clear();
|
|
BBToOrder.clear();
|
|
BBNumToRPO.clear();
|
|
DebugInstrNumToInstr.clear();
|
|
DebugPHINumToValue.clear();
|
|
OverlapFragments.clear();
|
|
SeenFragments.clear();
|
|
SeenDbgPHIs.clear();
|
|
DbgOpStore.clear();
|
|
|
|
return Changed;
|
|
}
|
|
|
|
LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
|
|
return new InstrRefBasedLDV();
|
|
}
|
|
|
|
namespace {
|
|
class LDVSSABlock;
|
|
class LDVSSAUpdater;
|
|
|
|
// Pick a type to identify incoming block values as we construct SSA. We
|
|
// can't use anything more robust than an integer unfortunately, as SSAUpdater
|
|
// expects to zero-initialize the type.
|
|
typedef uint64_t BlockValueNum;
|
|
|
|
/// Represents an SSA PHI node for the SSA updater class. Contains the block
|
|
/// this PHI is in, the value number it would have, and the expected incoming
|
|
/// values from parent blocks.
|
|
class LDVSSAPhi {
|
|
public:
|
|
SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
|
|
LDVSSABlock *ParentBlock;
|
|
BlockValueNum PHIValNum;
|
|
LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
|
|
: ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
|
|
|
|
LDVSSABlock *getParent() { return ParentBlock; }
|
|
};
|
|
|
|
/// Thin wrapper around a block predecessor iterator. Only difference from a
|
|
/// normal block iterator is that it dereferences to an LDVSSABlock.
|
|
class LDVSSABlockIterator {
|
|
public:
|
|
MachineBasicBlock::pred_iterator PredIt;
|
|
LDVSSAUpdater &Updater;
|
|
|
|
LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
|
|
LDVSSAUpdater &Updater)
|
|
: PredIt(PredIt), Updater(Updater) {}
|
|
|
|
bool operator!=(const LDVSSABlockIterator &OtherIt) const {
|
|
return OtherIt.PredIt != PredIt;
|
|
}
|
|
|
|
LDVSSABlockIterator &operator++() {
|
|
++PredIt;
|
|
return *this;
|
|
}
|
|
|
|
LDVSSABlock *operator*();
|
|
};
|
|
|
|
/// Thin wrapper around a block for SSA Updater interface. Necessary because
|
|
/// we need to track the PHI value(s) that we may have observed as necessary
|
|
/// in this block.
|
|
class LDVSSABlock {
|
|
public:
|
|
MachineBasicBlock &BB;
|
|
LDVSSAUpdater &Updater;
|
|
using PHIListT = SmallVector<LDVSSAPhi, 1>;
|
|
/// List of PHIs in this block. There should only ever be one.
|
|
PHIListT PHIList;
|
|
|
|
LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
|
|
: BB(BB), Updater(Updater) {}
|
|
|
|
LDVSSABlockIterator succ_begin() {
|
|
return LDVSSABlockIterator(BB.succ_begin(), Updater);
|
|
}
|
|
|
|
LDVSSABlockIterator succ_end() {
|
|
return LDVSSABlockIterator(BB.succ_end(), Updater);
|
|
}
|
|
|
|
/// SSAUpdater has requested a PHI: create that within this block record.
|
|
LDVSSAPhi *newPHI(BlockValueNum Value) {
|
|
PHIList.emplace_back(Value, this);
|
|
return &PHIList.back();
|
|
}
|
|
|
|
/// SSAUpdater wishes to know what PHIs already exist in this block.
|
|
PHIListT &phis() { return PHIList; }
|
|
};
|
|
|
|
/// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
|
|
/// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
|
|
// SSAUpdaterTraits<LDVSSAUpdater>.
|
|
class LDVSSAUpdater {
|
|
public:
|
|
/// Map of value numbers to PHI records.
|
|
DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
|
|
/// Map of which blocks generate Undef values -- blocks that are not
|
|
/// dominated by any Def.
|
|
DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
|
|
/// Map of machine blocks to our own records of them.
|
|
DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
|
|
/// Machine location where any PHI must occur.
|
|
LocIdx Loc;
|
|
/// Table of live-in machine value numbers for blocks / locations.
|
|
const ValueTable *MLiveIns;
|
|
|
|
LDVSSAUpdater(LocIdx L, const ValueTable *MLiveIns)
|
|
: Loc(L), MLiveIns(MLiveIns) {}
|
|
|
|
void reset() {
|
|
for (auto &Block : BlockMap)
|
|
delete Block.second;
|
|
|
|
PHIs.clear();
|
|
UndefMap.clear();
|
|
BlockMap.clear();
|
|
}
|
|
|
|
~LDVSSAUpdater() { reset(); }
|
|
|
|
/// For a given MBB, create a wrapper block for it. Stores it in the
|
|
/// LDVSSAUpdater block map.
|
|
LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
|
|
auto it = BlockMap.find(BB);
|
|
if (it == BlockMap.end()) {
|
|
BlockMap[BB] = new LDVSSABlock(*BB, *this);
|
|
it = BlockMap.find(BB);
|
|
}
|
|
return it->second;
|
|
}
|
|
|
|
/// Find the live-in value number for the given block. Looks up the value at
|
|
/// the PHI location on entry.
|
|
BlockValueNum getValue(LDVSSABlock *LDVBB) {
|
|
return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
|
|
}
|
|
};
|
|
|
|
LDVSSABlock *LDVSSABlockIterator::operator*() {
|
|
return Updater.getSSALDVBlock(*PredIt);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
|
|
raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
|
|
out << "SSALDVPHI " << PHI.PHIValNum;
|
|
return out;
|
|
}
|
|
|
|
#endif
|
|
|
|
} // namespace
|
|
|
|
namespace llvm {
|
|
|
|
/// Template specialization to give SSAUpdater access to CFG and value
|
|
/// information. SSAUpdater calls methods in these traits, passing in the
|
|
/// LDVSSAUpdater object, to learn about blocks and the values they define.
|
|
/// It also provides methods to create PHI nodes and track them.
|
|
template <> class SSAUpdaterTraits<LDVSSAUpdater> {
|
|
public:
|
|
using BlkT = LDVSSABlock;
|
|
using ValT = BlockValueNum;
|
|
using PhiT = LDVSSAPhi;
|
|
using BlkSucc_iterator = LDVSSABlockIterator;
|
|
|
|
// Methods to access block successors -- dereferencing to our wrapper class.
|
|
static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
|
|
static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
|
|
|
|
/// Iterator for PHI operands.
|
|
class PHI_iterator {
|
|
private:
|
|
LDVSSAPhi *PHI;
|
|
unsigned Idx;
|
|
|
|
public:
|
|
explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
|
|
: PHI(P), Idx(0) {}
|
|
PHI_iterator(LDVSSAPhi *P, bool) // end iterator
|
|
: PHI(P), Idx(PHI->IncomingValues.size()) {}
|
|
|
|
PHI_iterator &operator++() {
|
|
Idx++;
|
|
return *this;
|
|
}
|
|
bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
|
|
bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
|
|
|
|
BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
|
|
|
|
LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
|
|
};
|
|
|
|
static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
|
|
|
|
static inline PHI_iterator PHI_end(PhiT *PHI) {
|
|
return PHI_iterator(PHI, true);
|
|
}
|
|
|
|
/// FindPredecessorBlocks - Put the predecessors of BB into the Preds
|
|
/// vector.
|
|
static void FindPredecessorBlocks(LDVSSABlock *BB,
|
|
SmallVectorImpl<LDVSSABlock *> *Preds) {
|
|
for (MachineBasicBlock *Pred : BB->BB.predecessors())
|
|
Preds->push_back(BB->Updater.getSSALDVBlock(Pred));
|
|
}
|
|
|
|
/// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
|
|
/// register. For LiveDebugValues, represents a block identified as not having
|
|
/// any DBG_PHI predecessors.
|
|
static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
|
|
// Create a value number for this block -- it needs to be unique and in the
|
|
// "undef" collection, so that we know it's not real. Use a number
|
|
// representing a PHI into this block.
|
|
BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
|
|
Updater->UndefMap[&BB->BB] = Num;
|
|
return Num;
|
|
}
|
|
|
|
/// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
|
|
/// SSAUpdater will populate it with information about incoming values. The
|
|
/// value number of this PHI is whatever the machine value number problem
|
|
/// solution determined it to be. This includes non-phi values if SSAUpdater
|
|
/// tries to create a PHI where the incoming values are identical.
|
|
static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
|
|
LDVSSAUpdater *Updater) {
|
|
BlockValueNum PHIValNum = Updater->getValue(BB);
|
|
LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
|
|
Updater->PHIs[PHIValNum] = PHI;
|
|
return PHIValNum;
|
|
}
|
|
|
|
/// AddPHIOperand - Add the specified value as an operand of the PHI for
|
|
/// the specified predecessor block.
|
|
static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
|
|
PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
|
|
}
|
|
|
|
/// ValueIsPHI - Check if the instruction that defines the specified value
|
|
/// is a PHI instruction.
|
|
static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
|
|
auto PHIIt = Updater->PHIs.find(Val);
|
|
if (PHIIt == Updater->PHIs.end())
|
|
return nullptr;
|
|
return PHIIt->second;
|
|
}
|
|
|
|
/// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
|
|
/// operands, i.e., it was just added.
|
|
static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
|
|
LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
|
|
if (PHI && PHI->IncomingValues.size() == 0)
|
|
return PHI;
|
|
return nullptr;
|
|
}
|
|
|
|
/// GetPHIValue - For the specified PHI instruction, return the value
|
|
/// that it defines.
|
|
static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(
|
|
MachineFunction &MF, const ValueTable *MLiveOuts,
|
|
const ValueTable *MLiveIns, MachineInstr &Here, uint64_t InstrNum) {
|
|
assert(MLiveOuts && MLiveIns &&
|
|
"Tried to resolve DBG_PHI before location "
|
|
"tables allocated?");
|
|
|
|
// This function will be called twice per DBG_INSTR_REF, and might end up
|
|
// computing lots of SSA information: memoize it.
|
|
auto SeenDbgPHIIt = SeenDbgPHIs.find(&Here);
|
|
if (SeenDbgPHIIt != SeenDbgPHIs.end())
|
|
return SeenDbgPHIIt->second;
|
|
|
|
Optional<ValueIDNum> Result =
|
|
resolveDbgPHIsImpl(MF, MLiveOuts, MLiveIns, Here, InstrNum);
|
|
SeenDbgPHIs.insert({&Here, Result});
|
|
return Result;
|
|
}
|
|
|
|
Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIsImpl(
|
|
MachineFunction &MF, const ValueTable *MLiveOuts,
|
|
const ValueTable *MLiveIns, MachineInstr &Here, uint64_t InstrNum) {
|
|
// Pick out records of DBG_PHI instructions that have been observed. If there
|
|
// are none, then we cannot compute a value number.
|
|
auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
|
|
DebugPHINumToValue.end(), InstrNum);
|
|
auto LowerIt = RangePair.first;
|
|
auto UpperIt = RangePair.second;
|
|
|
|
// No DBG_PHI means there can be no location.
|
|
if (LowerIt == UpperIt)
|
|
return None;
|
|
|
|
// If any DBG_PHIs referred to a location we didn't understand, don't try to
|
|
// compute a value. There might be scenarios where we could recover a value
|
|
// for some range of DBG_INSTR_REFs, but at this point we can have high
|
|
// confidence that we've seen a bug.
|
|
auto DBGPHIRange = make_range(LowerIt, UpperIt);
|
|
for (const DebugPHIRecord &DBG_PHI : DBGPHIRange)
|
|
if (!DBG_PHI.ValueRead)
|
|
return None;
|
|
|
|
// If there's only one DBG_PHI, then that is our value number.
|
|
if (std::distance(LowerIt, UpperIt) == 1)
|
|
return *LowerIt->ValueRead;
|
|
|
|
// Pick out the location (physreg, slot) where any PHIs must occur. It's
|
|
// technically possible for us to merge values in different registers in each
|
|
// block, but highly unlikely that LLVM will generate such code after register
|
|
// allocation.
|
|
LocIdx Loc = *LowerIt->ReadLoc;
|
|
|
|
// We have several DBG_PHIs, and a use position (the Here inst). All each
|
|
// DBG_PHI does is identify a value at a program position. We can treat each
|
|
// DBG_PHI like it's a Def of a value, and the use position is a Use of a
|
|
// value, just like SSA. We use the bulk-standard LLVM SSA updater class to
|
|
// determine which Def is used at the Use, and any PHIs that happen along
|
|
// the way.
|
|
// Adapted LLVM SSA Updater:
|
|
LDVSSAUpdater Updater(Loc, MLiveIns);
|
|
// Map of which Def or PHI is the current value in each block.
|
|
DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
|
|
// Set of PHIs that we have created along the way.
|
|
SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
|
|
|
|
// Each existing DBG_PHI is a Def'd value under this model. Record these Defs
|
|
// for the SSAUpdater.
|
|
for (const auto &DBG_PHI : DBGPHIRange) {
|
|
LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
|
|
const ValueIDNum &Num = *DBG_PHI.ValueRead;
|
|
AvailableValues.insert(std::make_pair(Block, Num.asU64()));
|
|
}
|
|
|
|
LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
|
|
const auto &AvailIt = AvailableValues.find(HereBlock);
|
|
if (AvailIt != AvailableValues.end()) {
|
|
// Actually, we already know what the value is -- the Use is in the same
|
|
// block as the Def.
|
|
return ValueIDNum::fromU64(AvailIt->second);
|
|
}
|
|
|
|
// Otherwise, we must use the SSA Updater. It will identify the value number
|
|
// that we are to use, and the PHIs that must happen along the way.
|
|
SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
|
|
BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
|
|
ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
|
|
|
|
// We have the number for a PHI, or possibly live-through value, to be used
|
|
// at this Use. There are a number of things we have to check about it though:
|
|
// * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
|
|
// Use was not completely dominated by DBG_PHIs and we should abort.
|
|
// * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
|
|
// we've left SSA form. Validate that the inputs to each PHI are the
|
|
// expected values.
|
|
// * Is a PHI we've created actually a merging of values, or are all the
|
|
// predecessor values the same, leading to a non-PHI machine value number?
|
|
// (SSAUpdater doesn't know that either). Remap validated PHIs into the
|
|
// the ValidatedValues collection below to sort this out.
|
|
DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
|
|
|
|
// Define all the input DBG_PHI values in ValidatedValues.
|
|
for (const auto &DBG_PHI : DBGPHIRange) {
|
|
LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
|
|
const ValueIDNum &Num = *DBG_PHI.ValueRead;
|
|
ValidatedValues.insert(std::make_pair(Block, Num));
|
|
}
|
|
|
|
// Sort PHIs to validate into RPO-order.
|
|
SmallVector<LDVSSAPhi *, 8> SortedPHIs;
|
|
for (auto &PHI : CreatedPHIs)
|
|
SortedPHIs.push_back(PHI);
|
|
|
|
llvm::sort(SortedPHIs, [&](LDVSSAPhi *A, LDVSSAPhi *B) {
|
|
return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
|
|
});
|
|
|
|
for (auto &PHI : SortedPHIs) {
|
|
ValueIDNum ThisBlockValueNum =
|
|
MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
|
|
|
|
// Are all these things actually defined?
|
|
for (auto &PHIIt : PHI->IncomingValues) {
|
|
// Any undef input means DBG_PHIs didn't dominate the use point.
|
|
if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
|
|
return None;
|
|
|
|
ValueIDNum ValueToCheck;
|
|
const ValueTable &BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
|
|
|
|
auto VVal = ValidatedValues.find(PHIIt.first);
|
|
if (VVal == ValidatedValues.end()) {
|
|
// We cross a loop, and this is a backedge. LLVMs tail duplication
|
|
// happens so late that DBG_PHI instructions should not be able to
|
|
// migrate into loops -- meaning we can only be live-through this
|
|
// loop.
|
|
ValueToCheck = ThisBlockValueNum;
|
|
} else {
|
|
// Does the block have as a live-out, in the location we're examining,
|
|
// the value that we expect? If not, it's been moved or clobbered.
|
|
ValueToCheck = VVal->second;
|
|
}
|
|
|
|
if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
|
|
return None;
|
|
}
|
|
|
|
// Record this value as validated.
|
|
ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
|
|
}
|
|
|
|
// All the PHIs are valid: we can return what the SSAUpdater said our value
|
|
// number was.
|
|
return Result;
|
|
}
|