634 lines
23 KiB
C++
634 lines
23 KiB
C++
//===- BytecodeWriter.cpp - MLIR Bytecode Writer --------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Bytecode/BytecodeWriter.h"
|
|
#include "../Encoding.h"
|
|
#include "IRNumbering.h"
|
|
#include "mlir/Bytecode/BytecodeImplementation.h"
|
|
#include "mlir/IR/BuiltinDialect.h"
|
|
#include "mlir/IR/OpImplementation.h"
|
|
#include "llvm/ADT/CachedHashString.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <random>
|
|
|
|
#define DEBUG_TYPE "mlir-bytecode-writer"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::bytecode::detail;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// EncodingEmitter
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// This class functions as the underlying encoding emitter for the bytecode
|
|
/// writer. This class is a bit different compared to other types of encoders;
|
|
/// it does not use a single buffer, but instead may contain several buffers
|
|
/// (some owned by the writer, and some not) that get concatted during the final
|
|
/// emission.
|
|
class EncodingEmitter {
|
|
public:
|
|
EncodingEmitter() = default;
|
|
EncodingEmitter(const EncodingEmitter &) = delete;
|
|
EncodingEmitter &operator=(const EncodingEmitter &) = delete;
|
|
|
|
/// Write the current contents to the provided stream.
|
|
void writeTo(raw_ostream &os) const;
|
|
|
|
/// Return the current size of the encoded buffer.
|
|
size_t size() const { return prevResultSize + currentResult.size(); }
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Emission
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Backpatch a byte in the result buffer at the given offset.
|
|
void patchByte(uint64_t offset, uint8_t value) {
|
|
assert(offset < size() && offset >= prevResultSize &&
|
|
"cannot patch previously emitted data");
|
|
currentResult[offset - prevResultSize] = value;
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Integer Emission
|
|
|
|
/// Emit a single byte.
|
|
template <typename T>
|
|
void emitByte(T byte) {
|
|
currentResult.push_back(static_cast<uint8_t>(byte));
|
|
}
|
|
|
|
/// Emit a range of bytes.
|
|
void emitBytes(ArrayRef<uint8_t> bytes) {
|
|
llvm::append_range(currentResult, bytes);
|
|
}
|
|
|
|
/// Emit a variable length integer. The first encoded byte contains a prefix
|
|
/// in the low bits indicating the encoded length of the value. This length
|
|
/// prefix is a bit sequence of '0's followed by a '1'. The number of '0' bits
|
|
/// indicate the number of _additional_ bytes (not including the prefix byte).
|
|
/// All remaining bits in the first byte, along with all of the bits in
|
|
/// additional bytes, provide the value of the integer encoded in
|
|
/// little-endian order.
|
|
void emitVarInt(uint64_t value) {
|
|
// In the most common case, the value can be represented in a single byte.
|
|
// Given how hot this case is, explicitly handle that here.
|
|
if ((value >> 7) == 0)
|
|
return emitByte((value << 1) | 0x1);
|
|
emitMultiByteVarInt(value);
|
|
}
|
|
|
|
/// Emit a signed variable length integer. Signed varints are encoded using
|
|
/// a varint with zigzag encoding, meaning that we use the low bit of the
|
|
/// value to indicate the sign of the value. This allows for more efficient
|
|
/// encoding of negative values by limiting the number of active bits
|
|
void emitSignedVarInt(uint64_t value) {
|
|
emitVarInt((value << 1) ^ (uint64_t)((int64_t)value >> 63));
|
|
}
|
|
|
|
/// Emit a variable length integer whose low bit is used to encode the
|
|
/// provided flag, i.e. encoded as: (value << 1) | (flag ? 1 : 0).
|
|
void emitVarIntWithFlag(uint64_t value, bool flag) {
|
|
emitVarInt((value << 1) | (flag ? 1 : 0));
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// String Emission
|
|
|
|
/// Emit the given string as a nul terminated string.
|
|
void emitNulTerminatedString(StringRef str) {
|
|
emitString(str);
|
|
emitByte(0);
|
|
}
|
|
|
|
/// Emit the given string without a nul terminator.
|
|
void emitString(StringRef str) {
|
|
emitBytes({reinterpret_cast<const uint8_t *>(str.data()), str.size()});
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Section Emission
|
|
|
|
/// Emit a nested section of the given code, whose contents are encoded in the
|
|
/// provided emitter.
|
|
void emitSection(bytecode::Section::ID code, EncodingEmitter &&emitter) {
|
|
// Emit the section code and length.
|
|
emitByte(code);
|
|
emitVarInt(emitter.size());
|
|
|
|
// Push our current buffer and then merge the provided section body into
|
|
// ours.
|
|
appendResult(std::move(currentResult));
|
|
for (std::vector<uint8_t> &result : emitter.prevResultStorage)
|
|
appendResult(std::move(result));
|
|
appendResult(std::move(emitter.currentResult));
|
|
}
|
|
|
|
private:
|
|
/// Emit the given value using a variable width encoding. This method is a
|
|
/// fallback when the number of bytes needed to encode the value is greater
|
|
/// than 1. We mark it noinline here so that the single byte hot path isn't
|
|
/// pessimized.
|
|
LLVM_ATTRIBUTE_NOINLINE void emitMultiByteVarInt(uint64_t value);
|
|
|
|
/// Append a new result buffer to the current contents.
|
|
void appendResult(std::vector<uint8_t> &&result) {
|
|
prevResultSize += result.size();
|
|
prevResultStorage.emplace_back(std::move(result));
|
|
prevResultList.emplace_back(prevResultStorage.back());
|
|
}
|
|
|
|
/// The result of the emitter currently being built. We refrain from building
|
|
/// a single buffer to simplify emitting sections, large data, and more. The
|
|
/// result is thus represented using multiple distinct buffers, some of which
|
|
/// we own (via prevResultStorage), and some of which are just pointers into
|
|
/// externally owned buffers.
|
|
std::vector<uint8_t> currentResult;
|
|
std::vector<ArrayRef<uint8_t>> prevResultList;
|
|
std::vector<std::vector<uint8_t>> prevResultStorage;
|
|
|
|
/// An up-to-date total size of all of the buffers within `prevResultList`.
|
|
/// This enables O(1) size checks of the current encoding.
|
|
size_t prevResultSize = 0;
|
|
};
|
|
|
|
/// A simple raw_ostream wrapper around a EncodingEmitter. This removes the need
|
|
/// to go through an intermediate buffer when interacting with code that wants a
|
|
/// raw_ostream.
|
|
class raw_emitter_ostream : public raw_ostream {
|
|
public:
|
|
explicit raw_emitter_ostream(EncodingEmitter &emitter) : emitter(emitter) {
|
|
SetUnbuffered();
|
|
}
|
|
|
|
private:
|
|
void write_impl(const char *ptr, size_t size) override {
|
|
emitter.emitBytes({reinterpret_cast<const uint8_t *>(ptr), size});
|
|
}
|
|
uint64_t current_pos() const override { return emitter.size(); }
|
|
|
|
/// The section being emitted to.
|
|
EncodingEmitter &emitter;
|
|
};
|
|
} // namespace
|
|
|
|
void EncodingEmitter::writeTo(raw_ostream &os) const {
|
|
for (auto &prevResult : prevResultList)
|
|
os.write((const char *)prevResult.data(), prevResult.size());
|
|
os.write((const char *)currentResult.data(), currentResult.size());
|
|
}
|
|
|
|
void EncodingEmitter::emitMultiByteVarInt(uint64_t value) {
|
|
// Compute the number of bytes needed to encode the value. Each byte can hold
|
|
// up to 7-bits of data. We only check up to the number of bits we can encode
|
|
// in the first byte (8).
|
|
uint64_t it = value >> 7;
|
|
for (size_t numBytes = 2; numBytes < 9; ++numBytes) {
|
|
if (LLVM_LIKELY(it >>= 7) == 0) {
|
|
uint64_t encodedValue = (value << 1) | 0x1;
|
|
encodedValue <<= (numBytes - 1);
|
|
emitBytes({reinterpret_cast<uint8_t *>(&encodedValue), numBytes});
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If the value is too large to encode in a single byte, emit a special all
|
|
// zero marker byte and splat the value directly.
|
|
emitByte(0);
|
|
emitBytes({reinterpret_cast<uint8_t *>(&value), sizeof(value)});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// StringSectionBuilder
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// This class is used to simplify the process of emitting the string section.
|
|
class StringSectionBuilder {
|
|
public:
|
|
/// Add the given string to the string section, and return the index of the
|
|
/// string within the section.
|
|
size_t insert(StringRef str) {
|
|
auto it = strings.insert({llvm::CachedHashStringRef(str), strings.size()});
|
|
return it.first->second;
|
|
}
|
|
|
|
/// Write the current set of strings to the given emitter.
|
|
void write(EncodingEmitter &emitter) {
|
|
emitter.emitVarInt(strings.size());
|
|
|
|
// Emit the sizes in reverse order, so that we don't need to backpatch an
|
|
// offset to the string data or have a separate section.
|
|
for (const auto &it : llvm::reverse(strings))
|
|
emitter.emitVarInt(it.first.size() + 1);
|
|
// Emit the string data itself.
|
|
for (const auto &it : strings)
|
|
emitter.emitNulTerminatedString(it.first.val());
|
|
}
|
|
|
|
private:
|
|
/// A set of strings referenced within the bytecode. The value of the map is
|
|
/// unused.
|
|
llvm::MapVector<llvm::CachedHashStringRef, size_t> strings;
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Bytecode Writer
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class BytecodeWriter {
|
|
public:
|
|
BytecodeWriter(Operation *op) : numberingState(op) {}
|
|
|
|
/// Write the bytecode for the given root operation.
|
|
void write(Operation *rootOp, raw_ostream &os, StringRef producer);
|
|
|
|
private:
|
|
//===--------------------------------------------------------------------===//
|
|
// Dialects
|
|
|
|
void writeDialectSection(EncodingEmitter &emitter);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Attributes and Types
|
|
|
|
void writeAttrTypeSection(EncodingEmitter &emitter);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Operations
|
|
|
|
void writeBlock(EncodingEmitter &emitter, Block *block);
|
|
void writeOp(EncodingEmitter &emitter, Operation *op);
|
|
void writeRegion(EncodingEmitter &emitter, Region *region);
|
|
void writeIRSection(EncodingEmitter &emitter, Operation *op);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Strings
|
|
|
|
void writeStringSection(EncodingEmitter &emitter);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Fields
|
|
|
|
/// The builder used for the string section.
|
|
StringSectionBuilder stringSection;
|
|
|
|
/// The IR numbering state generated for the root operation.
|
|
IRNumberingState numberingState;
|
|
};
|
|
} // namespace
|
|
|
|
void BytecodeWriter::write(Operation *rootOp, raw_ostream &os,
|
|
StringRef producer) {
|
|
EncodingEmitter emitter;
|
|
|
|
// Emit the bytecode file header. This is how we identify the output as a
|
|
// bytecode file.
|
|
emitter.emitString("ML\xefR");
|
|
|
|
// Emit the bytecode version.
|
|
emitter.emitVarInt(bytecode::kVersion);
|
|
|
|
// Emit the producer.
|
|
emitter.emitNulTerminatedString(producer);
|
|
|
|
// Emit the dialect section.
|
|
writeDialectSection(emitter);
|
|
|
|
// Emit the attributes and types section.
|
|
writeAttrTypeSection(emitter);
|
|
|
|
// Emit the IR section.
|
|
writeIRSection(emitter, rootOp);
|
|
|
|
// Emit the string section.
|
|
writeStringSection(emitter);
|
|
|
|
// Write the generated bytecode to the provided output stream.
|
|
emitter.writeTo(os);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Dialects
|
|
|
|
/// Write the given entries in contiguous groups with the same parent dialect.
|
|
/// Each dialect sub-group is encoded with the parent dialect and number of
|
|
/// elements, followed by the encoding for the entries. The given callback is
|
|
/// invoked to encode each individual entry.
|
|
template <typename EntriesT, typename EntryCallbackT>
|
|
static void writeDialectGrouping(EncodingEmitter &emitter, EntriesT &&entries,
|
|
EntryCallbackT &&callback) {
|
|
for (auto it = entries.begin(), e = entries.end(); it != e;) {
|
|
auto groupStart = it++;
|
|
|
|
// Find the end of the group that shares the same parent dialect.
|
|
DialectNumbering *currentDialect = groupStart->dialect;
|
|
it = std::find_if(it, e, [&](const auto &entry) {
|
|
return entry.dialect != currentDialect;
|
|
});
|
|
|
|
// Emit the dialect and number of elements.
|
|
emitter.emitVarInt(currentDialect->number);
|
|
emitter.emitVarInt(std::distance(groupStart, it));
|
|
|
|
// Emit the entries within the group.
|
|
for (auto &entry : llvm::make_range(groupStart, it))
|
|
callback(entry);
|
|
}
|
|
}
|
|
|
|
void BytecodeWriter::writeDialectSection(EncodingEmitter &emitter) {
|
|
EncodingEmitter dialectEmitter;
|
|
|
|
// Emit the referenced dialects.
|
|
auto dialects = numberingState.getDialects();
|
|
dialectEmitter.emitVarInt(llvm::size(dialects));
|
|
for (DialectNumbering &dialect : dialects)
|
|
dialectEmitter.emitVarInt(stringSection.insert(dialect.name));
|
|
|
|
// Emit the referenced operation names grouped by dialect.
|
|
auto emitOpName = [&](OpNameNumbering &name) {
|
|
dialectEmitter.emitVarInt(stringSection.insert(name.name.stripDialect()));
|
|
};
|
|
writeDialectGrouping(dialectEmitter, numberingState.getOpNames(), emitOpName);
|
|
|
|
emitter.emitSection(bytecode::Section::kDialect, std::move(dialectEmitter));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Attributes and Types
|
|
|
|
namespace {
|
|
class DialectWriter : public DialectBytecodeWriter {
|
|
public:
|
|
DialectWriter(EncodingEmitter &emitter, IRNumberingState &numberingState,
|
|
StringSectionBuilder &stringSection)
|
|
: emitter(emitter), numberingState(numberingState),
|
|
stringSection(stringSection) {}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// IR
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
void writeAttribute(Attribute attr) override {
|
|
emitter.emitVarInt(numberingState.getNumber(attr));
|
|
}
|
|
void writeType(Type type) override {
|
|
emitter.emitVarInt(numberingState.getNumber(type));
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Primitives
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
void writeVarInt(uint64_t value) override { emitter.emitVarInt(value); }
|
|
|
|
void writeSignedVarInt(int64_t value) override {
|
|
emitter.emitSignedVarInt(value);
|
|
}
|
|
|
|
void writeAPIntWithKnownWidth(const APInt &value) override {
|
|
size_t bitWidth = value.getBitWidth();
|
|
|
|
// If the value is a single byte, just emit it directly without going
|
|
// through a varint.
|
|
if (bitWidth <= 8)
|
|
return emitter.emitByte(value.getLimitedValue());
|
|
|
|
// If the value fits within a single varint, emit it directly.
|
|
if (bitWidth <= 64)
|
|
return emitter.emitSignedVarInt(value.getLimitedValue());
|
|
|
|
// Otherwise, we need to encode a variable number of active words. We use
|
|
// active words instead of the number of total words under the observation
|
|
// that smaller values will be more common.
|
|
unsigned numActiveWords = value.getActiveWords();
|
|
emitter.emitVarInt(numActiveWords);
|
|
|
|
const uint64_t *rawValueData = value.getRawData();
|
|
for (unsigned i = 0; i < numActiveWords; ++i)
|
|
emitter.emitSignedVarInt(rawValueData[i]);
|
|
}
|
|
|
|
void writeAPFloatWithKnownSemantics(const APFloat &value) override {
|
|
writeAPIntWithKnownWidth(value.bitcastToAPInt());
|
|
}
|
|
|
|
void writeOwnedString(StringRef str) override {
|
|
emitter.emitVarInt(stringSection.insert(str));
|
|
}
|
|
|
|
private:
|
|
EncodingEmitter &emitter;
|
|
IRNumberingState &numberingState;
|
|
StringSectionBuilder &stringSection;
|
|
};
|
|
} // namespace
|
|
|
|
void BytecodeWriter::writeAttrTypeSection(EncodingEmitter &emitter) {
|
|
EncodingEmitter attrTypeEmitter;
|
|
EncodingEmitter offsetEmitter;
|
|
offsetEmitter.emitVarInt(llvm::size(numberingState.getAttributes()));
|
|
offsetEmitter.emitVarInt(llvm::size(numberingState.getTypes()));
|
|
|
|
// A functor used to emit an attribute or type entry.
|
|
uint64_t prevOffset = 0;
|
|
auto emitAttrOrType = [&](auto &entry) {
|
|
auto entryValue = entry.getValue();
|
|
|
|
// First, try to emit this entry using the dialect bytecode interface.
|
|
bool hasCustomEncoding = false;
|
|
if (const BytecodeDialectInterface *interface = entry.dialect->interface) {
|
|
// The writer used when emitting using a custom bytecode encoding.
|
|
DialectWriter dialectWriter(attrTypeEmitter, numberingState,
|
|
stringSection);
|
|
|
|
if constexpr (std::is_same_v<std::decay_t<decltype(entryValue)>, Type>) {
|
|
// TODO: We don't currently support custom encoded mutable types.
|
|
hasCustomEncoding =
|
|
!entryValue.template hasTrait<TypeTrait::IsMutable>() &&
|
|
succeeded(interface->writeType(entryValue, dialectWriter));
|
|
} else {
|
|
// TODO: We don't currently support custom encoded mutable attributes.
|
|
hasCustomEncoding =
|
|
!entryValue.template hasTrait<AttributeTrait::IsMutable>() &&
|
|
succeeded(interface->writeAttribute(entryValue, dialectWriter));
|
|
}
|
|
}
|
|
|
|
// If the entry was not emitted using the dialect interface, emit it using
|
|
// the textual format.
|
|
if (!hasCustomEncoding) {
|
|
raw_emitter_ostream(attrTypeEmitter) << entryValue;
|
|
attrTypeEmitter.emitByte(0);
|
|
}
|
|
|
|
// Record the offset of this entry.
|
|
uint64_t curOffset = attrTypeEmitter.size();
|
|
offsetEmitter.emitVarIntWithFlag(curOffset - prevOffset, hasCustomEncoding);
|
|
prevOffset = curOffset;
|
|
};
|
|
|
|
// Emit the attribute and type entries for each dialect.
|
|
writeDialectGrouping(offsetEmitter, numberingState.getAttributes(),
|
|
emitAttrOrType);
|
|
writeDialectGrouping(offsetEmitter, numberingState.getTypes(),
|
|
emitAttrOrType);
|
|
|
|
// Emit the sections to the stream.
|
|
emitter.emitSection(bytecode::Section::kAttrTypeOffset,
|
|
std::move(offsetEmitter));
|
|
emitter.emitSection(bytecode::Section::kAttrType, std::move(attrTypeEmitter));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Operations
|
|
|
|
void BytecodeWriter::writeBlock(EncodingEmitter &emitter, Block *block) {
|
|
ArrayRef<BlockArgument> args = block->getArguments();
|
|
bool hasArgs = !args.empty();
|
|
|
|
// Emit the number of operations in this block, and if it has arguments. We
|
|
// use the low bit of the operation count to indicate if the block has
|
|
// arguments.
|
|
unsigned numOps = numberingState.getOperationCount(block);
|
|
emitter.emitVarIntWithFlag(numOps, hasArgs);
|
|
|
|
// Emit the arguments of the block.
|
|
if (hasArgs) {
|
|
emitter.emitVarInt(args.size());
|
|
for (BlockArgument arg : args) {
|
|
emitter.emitVarInt(numberingState.getNumber(arg.getType()));
|
|
emitter.emitVarInt(numberingState.getNumber(arg.getLoc()));
|
|
}
|
|
}
|
|
|
|
// Emit the operations within the block.
|
|
for (Operation &op : *block)
|
|
writeOp(emitter, &op);
|
|
}
|
|
|
|
void BytecodeWriter::writeOp(EncodingEmitter &emitter, Operation *op) {
|
|
emitter.emitVarInt(numberingState.getNumber(op->getName()));
|
|
|
|
// Emit a mask for the operation components. We need to fill this in later
|
|
// (when we actually know what needs to be emitted), so emit a placeholder for
|
|
// now.
|
|
uint64_t maskOffset = emitter.size();
|
|
uint8_t opEncodingMask = 0;
|
|
emitter.emitByte(0);
|
|
|
|
// Emit the location for this operation.
|
|
emitter.emitVarInt(numberingState.getNumber(op->getLoc()));
|
|
|
|
// Emit the attributes of this operation.
|
|
DictionaryAttr attrs = op->getAttrDictionary();
|
|
if (!attrs.empty()) {
|
|
opEncodingMask |= bytecode::OpEncodingMask::kHasAttrs;
|
|
emitter.emitVarInt(numberingState.getNumber(op->getAttrDictionary()));
|
|
}
|
|
|
|
// Emit the result types of the operation.
|
|
if (unsigned numResults = op->getNumResults()) {
|
|
opEncodingMask |= bytecode::OpEncodingMask::kHasResults;
|
|
emitter.emitVarInt(numResults);
|
|
for (Type type : op->getResultTypes())
|
|
emitter.emitVarInt(numberingState.getNumber(type));
|
|
}
|
|
|
|
// Emit the operands of the operation.
|
|
if (unsigned numOperands = op->getNumOperands()) {
|
|
opEncodingMask |= bytecode::OpEncodingMask::kHasOperands;
|
|
emitter.emitVarInt(numOperands);
|
|
for (Value operand : op->getOperands())
|
|
emitter.emitVarInt(numberingState.getNumber(operand));
|
|
}
|
|
|
|
// Emit the successors of the operation.
|
|
if (unsigned numSuccessors = op->getNumSuccessors()) {
|
|
opEncodingMask |= bytecode::OpEncodingMask::kHasSuccessors;
|
|
emitter.emitVarInt(numSuccessors);
|
|
for (Block *successor : op->getSuccessors())
|
|
emitter.emitVarInt(numberingState.getNumber(successor));
|
|
}
|
|
|
|
// Check for regions.
|
|
unsigned numRegions = op->getNumRegions();
|
|
if (numRegions)
|
|
opEncodingMask |= bytecode::OpEncodingMask::kHasInlineRegions;
|
|
|
|
// Update the mask for the operation.
|
|
emitter.patchByte(maskOffset, opEncodingMask);
|
|
|
|
// With the mask emitted, we can now emit the regions of the operation. We do
|
|
// this after mask emission to avoid offset complications that may arise by
|
|
// emitting the regions first (e.g. if the regions are huge, backpatching the
|
|
// op encoding mask is more annoying).
|
|
if (numRegions) {
|
|
bool isIsolatedFromAbove = op->hasTrait<OpTrait::IsIsolatedFromAbove>();
|
|
emitter.emitVarIntWithFlag(numRegions, isIsolatedFromAbove);
|
|
|
|
for (Region ®ion : op->getRegions())
|
|
writeRegion(emitter, ®ion);
|
|
}
|
|
}
|
|
|
|
void BytecodeWriter::writeRegion(EncodingEmitter &emitter, Region *region) {
|
|
// If the region is empty, we only need to emit the number of blocks (which is
|
|
// zero).
|
|
if (region->empty())
|
|
return emitter.emitVarInt(/*numBlocks*/ 0);
|
|
|
|
// Emit the number of blocks and values within the region.
|
|
unsigned numBlocks, numValues;
|
|
std::tie(numBlocks, numValues) = numberingState.getBlockValueCount(region);
|
|
emitter.emitVarInt(numBlocks);
|
|
emitter.emitVarInt(numValues);
|
|
|
|
// Emit the blocks within the region.
|
|
for (Block &block : *region)
|
|
writeBlock(emitter, &block);
|
|
}
|
|
|
|
void BytecodeWriter::writeIRSection(EncodingEmitter &emitter, Operation *op) {
|
|
EncodingEmitter irEmitter;
|
|
|
|
// Write the IR section the same way as a block with no arguments. Note that
|
|
// the low-bit of the operation count for a block is used to indicate if the
|
|
// block has arguments, which in this case is always false.
|
|
irEmitter.emitVarIntWithFlag(/*numOps*/ 1, /*hasArgs*/ false);
|
|
|
|
// Emit the operations.
|
|
writeOp(irEmitter, op);
|
|
|
|
emitter.emitSection(bytecode::Section::kIR, std::move(irEmitter));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Strings
|
|
|
|
void BytecodeWriter::writeStringSection(EncodingEmitter &emitter) {
|
|
EncodingEmitter stringEmitter;
|
|
stringSection.write(stringEmitter);
|
|
emitter.emitSection(bytecode::Section::kString, std::move(stringEmitter));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Entry Points
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void mlir::writeBytecodeToFile(Operation *op, raw_ostream &os,
|
|
StringRef producer) {
|
|
BytecodeWriter writer(op);
|
|
writer.write(op, os, producer);
|
|
}
|