1376 lines
49 KiB
C++
1376 lines
49 KiB
C++
//===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This contains a MachineSchedStrategy implementation for maximizing wave
|
|
/// occupancy on GCN hardware.
|
|
///
|
|
/// This pass will apply multiple scheduling stages to the same function.
|
|
/// Regions are first recorded in GCNScheduleDAGMILive::schedule. The actual
|
|
/// entry point for the scheduling of those regions is
|
|
/// GCNScheduleDAGMILive::runSchedStages.
|
|
|
|
/// Generally, the reason for having multiple scheduling stages is to account
|
|
/// for the kernel-wide effect of register usage on occupancy. Usually, only a
|
|
/// few scheduling regions will have register pressure high enough to limit
|
|
/// occupancy for the kernel, so constraints can be relaxed to improve ILP in
|
|
/// other regions.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "GCNSchedStrategy.h"
|
|
#include "AMDGPUIGroupLP.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "llvm/CodeGen/RegisterClassInfo.h"
|
|
|
|
#define DEBUG_TYPE "machine-scheduler"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool>
|
|
DisableUnclusterHighRP("amdgpu-disable-unclustred-high-rp-reschedule",
|
|
cl::Hidden,
|
|
cl::desc("Disable unclustred high register pressure "
|
|
"reduction scheduling stage."),
|
|
cl::init(false));
|
|
|
|
GCNSchedStrategy::GCNSchedStrategy(const MachineSchedContext *C)
|
|
: GenericScheduler(C), TargetOccupancy(0), MF(nullptr),
|
|
HasHighPressure(false) {}
|
|
|
|
void GCNSchedStrategy::initialize(ScheduleDAGMI *DAG) {
|
|
GenericScheduler::initialize(DAG);
|
|
|
|
MF = &DAG->MF;
|
|
|
|
const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
|
|
|
|
SGPRExcessLimit =
|
|
Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass);
|
|
VGPRExcessLimit =
|
|
Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass);
|
|
|
|
SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>();
|
|
// Set the initial TargetOccupnacy to the maximum occupancy that we can
|
|
// achieve for this function. This effectively sets a lower bound on the
|
|
// 'Critical' register limits in the scheduler.
|
|
TargetOccupancy = MFI.getOccupancy();
|
|
SGPRCriticalLimit =
|
|
std::min(ST.getMaxNumSGPRs(TargetOccupancy, true), SGPRExcessLimit);
|
|
VGPRCriticalLimit =
|
|
std::min(ST.getMaxNumVGPRs(TargetOccupancy), VGPRExcessLimit);
|
|
|
|
// Subtract error margin from register limits and avoid overflow.
|
|
SGPRCriticalLimit =
|
|
std::min(SGPRCriticalLimit - ErrorMargin, SGPRCriticalLimit);
|
|
VGPRCriticalLimit =
|
|
std::min(VGPRCriticalLimit - ErrorMargin, VGPRCriticalLimit);
|
|
SGPRExcessLimit = std::min(SGPRExcessLimit - ErrorMargin, SGPRExcessLimit);
|
|
VGPRExcessLimit = std::min(VGPRExcessLimit - ErrorMargin, VGPRExcessLimit);
|
|
}
|
|
|
|
void GCNSchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
|
|
bool AtTop,
|
|
const RegPressureTracker &RPTracker,
|
|
const SIRegisterInfo *SRI,
|
|
unsigned SGPRPressure,
|
|
unsigned VGPRPressure) {
|
|
Cand.SU = SU;
|
|
Cand.AtTop = AtTop;
|
|
|
|
if (!DAG->isTrackingPressure())
|
|
return;
|
|
|
|
// getDownwardPressure() and getUpwardPressure() make temporary changes to
|
|
// the tracker, so we need to pass those function a non-const copy.
|
|
RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
|
|
|
|
Pressure.clear();
|
|
MaxPressure.clear();
|
|
|
|
if (AtTop)
|
|
TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
|
|
else {
|
|
// FIXME: I think for bottom up scheduling, the register pressure is cached
|
|
// and can be retrieved by DAG->getPressureDif(SU).
|
|
TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
|
|
}
|
|
|
|
unsigned NewSGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32];
|
|
unsigned NewVGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32];
|
|
|
|
// If two instructions increase the pressure of different register sets
|
|
// by the same amount, the generic scheduler will prefer to schedule the
|
|
// instruction that increases the set with the least amount of registers,
|
|
// which in our case would be SGPRs. This is rarely what we want, so
|
|
// when we report excess/critical register pressure, we do it either
|
|
// only for VGPRs or only for SGPRs.
|
|
|
|
// FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
|
|
const unsigned MaxVGPRPressureInc = 16;
|
|
bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
|
|
bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;
|
|
|
|
|
|
// FIXME: We have to enter REG-EXCESS before we reach the actual threshold
|
|
// to increase the likelihood we don't go over the limits. We should improve
|
|
// the analysis to look through dependencies to find the path with the least
|
|
// register pressure.
|
|
|
|
// We only need to update the RPDelta for instructions that increase register
|
|
// pressure. Instructions that decrease or keep reg pressure the same will be
|
|
// marked as RegExcess in tryCandidate() when they are compared with
|
|
// instructions that increase the register pressure.
|
|
if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
|
|
HasHighPressure = true;
|
|
Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::VGPR_32);
|
|
Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
|
|
}
|
|
|
|
if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
|
|
HasHighPressure = true;
|
|
Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::SReg_32);
|
|
Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
|
|
}
|
|
|
|
// Register pressure is considered 'CRITICAL' if it is approaching a value
|
|
// that would reduce the wave occupancy for the execution unit. When
|
|
// register pressure is 'CRITICAL', increasing SGPR and VGPR pressure both
|
|
// has the same cost, so we don't need to prefer one over the other.
|
|
|
|
int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
|
|
int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;
|
|
|
|
if (SGPRDelta >= 0 || VGPRDelta >= 0) {
|
|
HasHighPressure = true;
|
|
if (SGPRDelta > VGPRDelta) {
|
|
Cand.RPDelta.CriticalMax =
|
|
PressureChange(AMDGPU::RegisterPressureSets::SReg_32);
|
|
Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
|
|
} else {
|
|
Cand.RPDelta.CriticalMax =
|
|
PressureChange(AMDGPU::RegisterPressureSets::VGPR_32);
|
|
Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function is mostly cut and pasted from
|
|
// GenericScheduler::pickNodeFromQueue()
|
|
void GCNSchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
|
|
const CandPolicy &ZonePolicy,
|
|
const RegPressureTracker &RPTracker,
|
|
SchedCandidate &Cand) {
|
|
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
|
|
ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
|
|
unsigned SGPRPressure = 0;
|
|
unsigned VGPRPressure = 0;
|
|
if (DAG->isTrackingPressure()) {
|
|
SGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32];
|
|
VGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32];
|
|
}
|
|
ReadyQueue &Q = Zone.Available;
|
|
for (SUnit *SU : Q) {
|
|
|
|
SchedCandidate TryCand(ZonePolicy);
|
|
initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
|
|
SGPRPressure, VGPRPressure);
|
|
// Pass SchedBoundary only when comparing nodes from the same boundary.
|
|
SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
|
|
tryCandidate(Cand, TryCand, ZoneArg);
|
|
if (TryCand.Reason != NoCand) {
|
|
// Initialize resource delta if needed in case future heuristics query it.
|
|
if (TryCand.ResDelta == SchedResourceDelta())
|
|
TryCand.initResourceDelta(Zone.DAG, SchedModel);
|
|
Cand.setBest(TryCand);
|
|
LLVM_DEBUG(traceCandidate(Cand));
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function is mostly cut and pasted from
|
|
// GenericScheduler::pickNodeBidirectional()
|
|
SUnit *GCNSchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
|
|
// Schedule as far as possible in the direction of no choice. This is most
|
|
// efficient, but also provides the best heuristics for CriticalPSets.
|
|
if (SUnit *SU = Bot.pickOnlyChoice()) {
|
|
IsTopNode = false;
|
|
return SU;
|
|
}
|
|
if (SUnit *SU = Top.pickOnlyChoice()) {
|
|
IsTopNode = true;
|
|
return SU;
|
|
}
|
|
// Set the bottom-up policy based on the state of the current bottom zone and
|
|
// the instructions outside the zone, including the top zone.
|
|
CandPolicy BotPolicy;
|
|
setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
|
|
// Set the top-down policy based on the state of the current top zone and
|
|
// the instructions outside the zone, including the bottom zone.
|
|
CandPolicy TopPolicy;
|
|
setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
|
|
|
|
// See if BotCand is still valid (because we previously scheduled from Top).
|
|
LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
|
|
if (!BotCand.isValid() || BotCand.SU->isScheduled ||
|
|
BotCand.Policy != BotPolicy) {
|
|
BotCand.reset(CandPolicy());
|
|
pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
|
|
assert(BotCand.Reason != NoCand && "failed to find the first candidate");
|
|
} else {
|
|
LLVM_DEBUG(traceCandidate(BotCand));
|
|
#ifndef NDEBUG
|
|
if (VerifyScheduling) {
|
|
SchedCandidate TCand;
|
|
TCand.reset(CandPolicy());
|
|
pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
|
|
assert(TCand.SU == BotCand.SU &&
|
|
"Last pick result should correspond to re-picking right now");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Check if the top Q has a better candidate.
|
|
LLVM_DEBUG(dbgs() << "Picking from Top:\n");
|
|
if (!TopCand.isValid() || TopCand.SU->isScheduled ||
|
|
TopCand.Policy != TopPolicy) {
|
|
TopCand.reset(CandPolicy());
|
|
pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
|
|
assert(TopCand.Reason != NoCand && "failed to find the first candidate");
|
|
} else {
|
|
LLVM_DEBUG(traceCandidate(TopCand));
|
|
#ifndef NDEBUG
|
|
if (VerifyScheduling) {
|
|
SchedCandidate TCand;
|
|
TCand.reset(CandPolicy());
|
|
pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
|
|
assert(TCand.SU == TopCand.SU &&
|
|
"Last pick result should correspond to re-picking right now");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Pick best from BotCand and TopCand.
|
|
LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand);
|
|
dbgs() << "Bot Cand: "; traceCandidate(BotCand););
|
|
SchedCandidate Cand = BotCand;
|
|
TopCand.Reason = NoCand;
|
|
tryCandidate(Cand, TopCand, nullptr);
|
|
if (TopCand.Reason != NoCand) {
|
|
Cand.setBest(TopCand);
|
|
}
|
|
LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand););
|
|
|
|
IsTopNode = Cand.AtTop;
|
|
return Cand.SU;
|
|
}
|
|
|
|
// This function is mostly cut and pasted from
|
|
// GenericScheduler::pickNode()
|
|
SUnit *GCNSchedStrategy::pickNode(bool &IsTopNode) {
|
|
if (DAG->top() == DAG->bottom()) {
|
|
assert(Top.Available.empty() && Top.Pending.empty() &&
|
|
Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
|
|
return nullptr;
|
|
}
|
|
SUnit *SU;
|
|
do {
|
|
if (RegionPolicy.OnlyTopDown) {
|
|
SU = Top.pickOnlyChoice();
|
|
if (!SU) {
|
|
CandPolicy NoPolicy;
|
|
TopCand.reset(NoPolicy);
|
|
pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
|
|
assert(TopCand.Reason != NoCand && "failed to find a candidate");
|
|
SU = TopCand.SU;
|
|
}
|
|
IsTopNode = true;
|
|
} else if (RegionPolicy.OnlyBottomUp) {
|
|
SU = Bot.pickOnlyChoice();
|
|
if (!SU) {
|
|
CandPolicy NoPolicy;
|
|
BotCand.reset(NoPolicy);
|
|
pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
|
|
assert(BotCand.Reason != NoCand && "failed to find a candidate");
|
|
SU = BotCand.SU;
|
|
}
|
|
IsTopNode = false;
|
|
} else {
|
|
SU = pickNodeBidirectional(IsTopNode);
|
|
}
|
|
} while (SU->isScheduled);
|
|
|
|
if (SU->isTopReady())
|
|
Top.removeReady(SU);
|
|
if (SU->isBottomReady())
|
|
Bot.removeReady(SU);
|
|
|
|
LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
|
|
<< *SU->getInstr());
|
|
return SU;
|
|
}
|
|
|
|
GCNSchedStageID GCNSchedStrategy::getCurrentStage() {
|
|
assert(CurrentStage && CurrentStage != SchedStages.end());
|
|
return *CurrentStage;
|
|
}
|
|
|
|
bool GCNSchedStrategy::advanceStage() {
|
|
assert(CurrentStage != SchedStages.end());
|
|
if (!CurrentStage)
|
|
CurrentStage = SchedStages.begin();
|
|
else
|
|
CurrentStage++;
|
|
|
|
return CurrentStage != SchedStages.end();
|
|
}
|
|
|
|
bool GCNSchedStrategy::hasNextStage() const {
|
|
assert(CurrentStage);
|
|
return std::next(CurrentStage) != SchedStages.end();
|
|
}
|
|
|
|
GCNSchedStageID GCNSchedStrategy::getNextStage() const {
|
|
assert(CurrentStage && std::next(CurrentStage) != SchedStages.end());
|
|
return *std::next(CurrentStage);
|
|
}
|
|
|
|
GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
|
|
const MachineSchedContext *C)
|
|
: GCNSchedStrategy(C) {
|
|
SchedStages.push_back(GCNSchedStageID::OccInitialSchedule);
|
|
SchedStages.push_back(GCNSchedStageID::UnclusteredHighRPReschedule);
|
|
SchedStages.push_back(GCNSchedStageID::ClusteredLowOccupancyReschedule);
|
|
SchedStages.push_back(GCNSchedStageID::PreRARematerialize);
|
|
}
|
|
|
|
GCNMaxILPSchedStrategy::GCNMaxILPSchedStrategy(const MachineSchedContext *C)
|
|
: GCNSchedStrategy(C) {
|
|
SchedStages.push_back(GCNSchedStageID::ILPInitialSchedule);
|
|
}
|
|
|
|
bool GCNMaxILPSchedStrategy::tryCandidate(SchedCandidate &Cand,
|
|
SchedCandidate &TryCand,
|
|
SchedBoundary *Zone) const {
|
|
// Initialize the candidate if needed.
|
|
if (!Cand.isValid()) {
|
|
TryCand.Reason = NodeOrder;
|
|
return true;
|
|
}
|
|
|
|
// Avoid spilling by exceeding the register limit.
|
|
if (DAG->isTrackingPressure() &&
|
|
tryPressure(TryCand.RPDelta.Excess, Cand.RPDelta.Excess, TryCand, Cand,
|
|
RegExcess, TRI, DAG->MF))
|
|
return TryCand.Reason != NoCand;
|
|
|
|
// Bias PhysReg Defs and copies to their uses and defined respectively.
|
|
if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
|
|
biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
|
|
return TryCand.Reason != NoCand;
|
|
|
|
bool SameBoundary = Zone != nullptr;
|
|
if (SameBoundary) {
|
|
// Prioritize instructions that read unbuffered resources by stall cycles.
|
|
if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
|
|
Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
|
|
return TryCand.Reason != NoCand;
|
|
|
|
// Avoid critical resource consumption and balance the schedule.
|
|
TryCand.initResourceDelta(DAG, SchedModel);
|
|
if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
|
|
TryCand, Cand, ResourceReduce))
|
|
return TryCand.Reason != NoCand;
|
|
if (tryGreater(TryCand.ResDelta.DemandedResources,
|
|
Cand.ResDelta.DemandedResources, TryCand, Cand,
|
|
ResourceDemand))
|
|
return TryCand.Reason != NoCand;
|
|
|
|
// Unconditionally try to reduce latency.
|
|
if (tryLatency(TryCand, Cand, *Zone))
|
|
return TryCand.Reason != NoCand;
|
|
|
|
// Weak edges are for clustering and other constraints.
|
|
if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
|
|
getWeakLeft(Cand.SU, Cand.AtTop), TryCand, Cand, Weak))
|
|
return TryCand.Reason != NoCand;
|
|
}
|
|
|
|
// Keep clustered nodes together to encourage downstream peephole
|
|
// optimizations which may reduce resource requirements.
|
|
//
|
|
// This is a best effort to set things up for a post-RA pass. Optimizations
|
|
// like generating loads of multiple registers should ideally be done within
|
|
// the scheduler pass by combining the loads during DAG postprocessing.
|
|
const SUnit *CandNextClusterSU =
|
|
Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
|
|
const SUnit *TryCandNextClusterSU =
|
|
TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
|
|
if (tryGreater(TryCand.SU == TryCandNextClusterSU,
|
|
Cand.SU == CandNextClusterSU, TryCand, Cand, Cluster))
|
|
return TryCand.Reason != NoCand;
|
|
|
|
// Avoid increasing the max critical pressure in the scheduled region.
|
|
if (DAG->isTrackingPressure() &&
|
|
tryPressure(TryCand.RPDelta.CriticalMax, Cand.RPDelta.CriticalMax,
|
|
TryCand, Cand, RegCritical, TRI, DAG->MF))
|
|
return TryCand.Reason != NoCand;
|
|
|
|
// Avoid increasing the max pressure of the entire region.
|
|
if (DAG->isTrackingPressure() &&
|
|
tryPressure(TryCand.RPDelta.CurrentMax, Cand.RPDelta.CurrentMax, TryCand,
|
|
Cand, RegMax, TRI, DAG->MF))
|
|
return TryCand.Reason != NoCand;
|
|
|
|
if (SameBoundary) {
|
|
// Fall through to original instruction order.
|
|
if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) ||
|
|
(!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
|
|
TryCand.Reason = NodeOrder;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
GCNScheduleDAGMILive::GCNScheduleDAGMILive(
|
|
MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S)
|
|
: ScheduleDAGMILive(C, std::move(S)), ST(MF.getSubtarget<GCNSubtarget>()),
|
|
MFI(*MF.getInfo<SIMachineFunctionInfo>()),
|
|
StartingOccupancy(MFI.getOccupancy()), MinOccupancy(StartingOccupancy) {
|
|
|
|
LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n");
|
|
}
|
|
|
|
std::unique_ptr<GCNSchedStage>
|
|
GCNScheduleDAGMILive::createSchedStage(GCNSchedStageID SchedStageID) {
|
|
switch (SchedStageID) {
|
|
case GCNSchedStageID::OccInitialSchedule:
|
|
return std::make_unique<OccInitialScheduleStage>(SchedStageID, *this);
|
|
case GCNSchedStageID::UnclusteredHighRPReschedule:
|
|
return std::make_unique<UnclusteredHighRPStage>(SchedStageID, *this);
|
|
case GCNSchedStageID::ClusteredLowOccupancyReschedule:
|
|
return std::make_unique<ClusteredLowOccStage>(SchedStageID, *this);
|
|
case GCNSchedStageID::PreRARematerialize:
|
|
return std::make_unique<PreRARematStage>(SchedStageID, *this);
|
|
case GCNSchedStageID::ILPInitialSchedule:
|
|
return std::make_unique<ILPInitialScheduleStage>(SchedStageID, *this);
|
|
}
|
|
|
|
llvm_unreachable("Unknown SchedStageID.");
|
|
}
|
|
|
|
void GCNScheduleDAGMILive::schedule() {
|
|
// Collect all scheduling regions. The actual scheduling is performed in
|
|
// GCNScheduleDAGMILive::finalizeSchedule.
|
|
Regions.push_back(std::make_pair(RegionBegin, RegionEnd));
|
|
}
|
|
|
|
GCNRegPressure
|
|
GCNScheduleDAGMILive::getRealRegPressure(unsigned RegionIdx) const {
|
|
GCNDownwardRPTracker RPTracker(*LIS);
|
|
RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]);
|
|
return RPTracker.moveMaxPressure();
|
|
}
|
|
|
|
void GCNScheduleDAGMILive::computeBlockPressure(unsigned RegionIdx,
|
|
const MachineBasicBlock *MBB) {
|
|
GCNDownwardRPTracker RPTracker(*LIS);
|
|
|
|
// If the block has the only successor then live-ins of that successor are
|
|
// live-outs of the current block. We can reuse calculated live set if the
|
|
// successor will be sent to scheduling past current block.
|
|
const MachineBasicBlock *OnlySucc = nullptr;
|
|
if (MBB->succ_size() == 1 && !(*MBB->succ_begin())->empty()) {
|
|
SlotIndexes *Ind = LIS->getSlotIndexes();
|
|
if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(*MBB->succ_begin()))
|
|
OnlySucc = *MBB->succ_begin();
|
|
}
|
|
|
|
// Scheduler sends regions from the end of the block upwards.
|
|
size_t CurRegion = RegionIdx;
|
|
for (size_t E = Regions.size(); CurRegion != E; ++CurRegion)
|
|
if (Regions[CurRegion].first->getParent() != MBB)
|
|
break;
|
|
--CurRegion;
|
|
|
|
auto I = MBB->begin();
|
|
auto LiveInIt = MBBLiveIns.find(MBB);
|
|
auto &Rgn = Regions[CurRegion];
|
|
auto *NonDbgMI = &*skipDebugInstructionsForward(Rgn.first, Rgn.second);
|
|
if (LiveInIt != MBBLiveIns.end()) {
|
|
auto LiveIn = std::move(LiveInIt->second);
|
|
RPTracker.reset(*MBB->begin(), &LiveIn);
|
|
MBBLiveIns.erase(LiveInIt);
|
|
} else {
|
|
I = Rgn.first;
|
|
auto LRS = BBLiveInMap.lookup(NonDbgMI);
|
|
#ifdef EXPENSIVE_CHECKS
|
|
assert(isEqual(getLiveRegsBefore(*NonDbgMI, *LIS), LRS));
|
|
#endif
|
|
RPTracker.reset(*I, &LRS);
|
|
}
|
|
|
|
for (;;) {
|
|
I = RPTracker.getNext();
|
|
|
|
if (Regions[CurRegion].first == I || NonDbgMI == I) {
|
|
LiveIns[CurRegion] = RPTracker.getLiveRegs();
|
|
RPTracker.clearMaxPressure();
|
|
}
|
|
|
|
if (Regions[CurRegion].second == I) {
|
|
Pressure[CurRegion] = RPTracker.moveMaxPressure();
|
|
if (CurRegion-- == RegionIdx)
|
|
break;
|
|
}
|
|
RPTracker.advanceToNext();
|
|
RPTracker.advanceBeforeNext();
|
|
}
|
|
|
|
if (OnlySucc) {
|
|
if (I != MBB->end()) {
|
|
RPTracker.advanceToNext();
|
|
RPTracker.advance(MBB->end());
|
|
}
|
|
RPTracker.reset(*OnlySucc->begin(), &RPTracker.getLiveRegs());
|
|
RPTracker.advanceBeforeNext();
|
|
MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs();
|
|
}
|
|
}
|
|
|
|
DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet>
|
|
GCNScheduleDAGMILive::getBBLiveInMap() const {
|
|
assert(!Regions.empty());
|
|
std::vector<MachineInstr *> BBStarters;
|
|
BBStarters.reserve(Regions.size());
|
|
auto I = Regions.rbegin(), E = Regions.rend();
|
|
auto *BB = I->first->getParent();
|
|
do {
|
|
auto *MI = &*skipDebugInstructionsForward(I->first, I->second);
|
|
BBStarters.push_back(MI);
|
|
do {
|
|
++I;
|
|
} while (I != E && I->first->getParent() == BB);
|
|
} while (I != E);
|
|
return getLiveRegMap(BBStarters, false /*After*/, *LIS);
|
|
}
|
|
|
|
void GCNScheduleDAGMILive::finalizeSchedule() {
|
|
// Start actual scheduling here. This function is called by the base
|
|
// MachineScheduler after all regions have been recorded by
|
|
// GCNScheduleDAGMILive::schedule().
|
|
LiveIns.resize(Regions.size());
|
|
Pressure.resize(Regions.size());
|
|
RescheduleRegions.resize(Regions.size());
|
|
RegionsWithHighRP.resize(Regions.size());
|
|
RegionsWithExcessRP.resize(Regions.size());
|
|
RegionsWithMinOcc.resize(Regions.size());
|
|
RegionsWithIGLPInstrs.resize(Regions.size());
|
|
RescheduleRegions.set();
|
|
RegionsWithHighRP.reset();
|
|
RegionsWithExcessRP.reset();
|
|
RegionsWithMinOcc.reset();
|
|
RegionsWithIGLPInstrs.reset();
|
|
|
|
runSchedStages();
|
|
}
|
|
|
|
void GCNScheduleDAGMILive::runSchedStages() {
|
|
LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n");
|
|
|
|
if (!Regions.empty())
|
|
BBLiveInMap = getBBLiveInMap();
|
|
|
|
GCNSchedStrategy &S = static_cast<GCNSchedStrategy &>(*SchedImpl);
|
|
while (S.advanceStage()) {
|
|
auto Stage = createSchedStage(S.getCurrentStage());
|
|
if (!Stage->initGCNSchedStage())
|
|
continue;
|
|
|
|
for (auto Region : Regions) {
|
|
RegionBegin = Region.first;
|
|
RegionEnd = Region.second;
|
|
// Setup for scheduling the region and check whether it should be skipped.
|
|
if (!Stage->initGCNRegion()) {
|
|
Stage->advanceRegion();
|
|
exitRegion();
|
|
continue;
|
|
}
|
|
|
|
ScheduleDAGMILive::schedule();
|
|
Stage->finalizeGCNRegion();
|
|
}
|
|
|
|
Stage->finalizeGCNSchedStage();
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
raw_ostream &llvm::operator<<(raw_ostream &OS, const GCNSchedStageID &StageID) {
|
|
switch (StageID) {
|
|
case GCNSchedStageID::OccInitialSchedule:
|
|
OS << "Max Occupancy Initial Schedule";
|
|
break;
|
|
case GCNSchedStageID::UnclusteredHighRPReschedule:
|
|
OS << "Unclustered High Register Pressure Reschedule";
|
|
break;
|
|
case GCNSchedStageID::ClusteredLowOccupancyReschedule:
|
|
OS << "Clustered Low Occupancy Reschedule";
|
|
break;
|
|
case GCNSchedStageID::PreRARematerialize:
|
|
OS << "Pre-RA Rematerialize";
|
|
break;
|
|
case GCNSchedStageID::ILPInitialSchedule:
|
|
OS << "Max ILP Initial Schedule";
|
|
break;
|
|
}
|
|
|
|
return OS;
|
|
}
|
|
#endif
|
|
|
|
GCNSchedStage::GCNSchedStage(GCNSchedStageID StageID, GCNScheduleDAGMILive &DAG)
|
|
: DAG(DAG), S(static_cast<GCNSchedStrategy &>(*DAG.SchedImpl)), MF(DAG.MF),
|
|
MFI(DAG.MFI), ST(DAG.ST), StageID(StageID) {}
|
|
|
|
bool GCNSchedStage::initGCNSchedStage() {
|
|
if (!DAG.LIS)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "Starting scheduling stage: " << StageID << "\n");
|
|
return true;
|
|
}
|
|
|
|
bool UnclusteredHighRPStage::initGCNSchedStage() {
|
|
if (DisableUnclusterHighRP)
|
|
return false;
|
|
|
|
if (!GCNSchedStage::initGCNSchedStage())
|
|
return false;
|
|
|
|
if (DAG.RegionsWithHighRP.none() && DAG.RegionsWithExcessRP.none())
|
|
return false;
|
|
|
|
SavedMutations.swap(DAG.Mutations);
|
|
DAG.addMutation(createIGroupLPDAGMutation());
|
|
|
|
InitialOccupancy = DAG.MinOccupancy;
|
|
// Aggressivly try to reduce register pressure in the unclustered high RP
|
|
// stage. Temporarily increase occupancy target in the region.
|
|
S.ErrorMargin = S.HighRPErrorMargin;
|
|
if (MFI.getMaxWavesPerEU() > DAG.MinOccupancy)
|
|
MFI.increaseOccupancy(MF, ++DAG.MinOccupancy);
|
|
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "Retrying function scheduling without clustering. "
|
|
"Aggressivly try to reduce register pressure to achieve occupancy "
|
|
<< DAG.MinOccupancy << ".\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ClusteredLowOccStage::initGCNSchedStage() {
|
|
if (!GCNSchedStage::initGCNSchedStage())
|
|
return false;
|
|
|
|
// Don't bother trying to improve ILP in lower RP regions if occupancy has not
|
|
// been dropped. All regions will have already been scheduled with the ideal
|
|
// occupancy targets.
|
|
if (DAG.StartingOccupancy <= DAG.MinOccupancy)
|
|
return false;
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "Retrying function scheduling with lowest recorded occupancy "
|
|
<< DAG.MinOccupancy << ".\n");
|
|
return true;
|
|
}
|
|
|
|
bool PreRARematStage::initGCNSchedStage() {
|
|
if (!GCNSchedStage::initGCNSchedStage())
|
|
return false;
|
|
|
|
if (DAG.RegionsWithMinOcc.none() || DAG.Regions.size() == 1)
|
|
return false;
|
|
|
|
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
|
|
// Check maximum occupancy
|
|
if (ST.computeOccupancy(MF.getFunction(), MFI.getLDSSize()) ==
|
|
DAG.MinOccupancy)
|
|
return false;
|
|
|
|
// FIXME: This pass will invalidate cached MBBLiveIns for regions
|
|
// inbetween the defs and region we sinked the def to. Cached pressure
|
|
// for regions where a def is sinked from will also be invalidated. Will
|
|
// need to be fixed if there is another pass after this pass.
|
|
assert(!S.hasNextStage());
|
|
|
|
collectRematerializableInstructions();
|
|
if (RematerializableInsts.empty() || !sinkTriviallyRematInsts(ST, TII))
|
|
return false;
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "Retrying function scheduling with improved occupancy of "
|
|
<< DAG.MinOccupancy << " from rematerializing\n");
|
|
return true;
|
|
}
|
|
|
|
void GCNSchedStage::finalizeGCNSchedStage() {
|
|
DAG.finishBlock();
|
|
LLVM_DEBUG(dbgs() << "Ending scheduling stage: " << StageID << "\n");
|
|
}
|
|
|
|
void UnclusteredHighRPStage::finalizeGCNSchedStage() {
|
|
SavedMutations.swap(DAG.Mutations);
|
|
S.ErrorMargin = S.DefaultErrorMargin;
|
|
if (DAG.MinOccupancy > InitialOccupancy) {
|
|
for (unsigned IDX = 0; IDX < DAG.Pressure.size(); ++IDX)
|
|
DAG.RegionsWithMinOcc[IDX] =
|
|
DAG.Pressure[IDX].getOccupancy(DAG.ST) == DAG.MinOccupancy;
|
|
|
|
LLVM_DEBUG(dbgs() << StageID
|
|
<< " stage successfully increased occupancy to "
|
|
<< DAG.MinOccupancy << '\n');
|
|
}
|
|
|
|
GCNSchedStage::finalizeGCNSchedStage();
|
|
}
|
|
|
|
bool GCNSchedStage::initGCNRegion() {
|
|
// Check whether this new region is also a new block.
|
|
if (DAG.RegionBegin->getParent() != CurrentMBB)
|
|
setupNewBlock();
|
|
|
|
unsigned NumRegionInstrs = std::distance(DAG.begin(), DAG.end());
|
|
DAG.enterRegion(CurrentMBB, DAG.begin(), DAG.end(), NumRegionInstrs);
|
|
|
|
// Skip empty scheduling regions (0 or 1 schedulable instructions).
|
|
if (DAG.begin() == DAG.end() || DAG.begin() == std::prev(DAG.end()))
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
|
|
LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*CurrentMBB)
|
|
<< " " << CurrentMBB->getName()
|
|
<< "\n From: " << *DAG.begin() << " To: ";
|
|
if (DAG.RegionEnd != CurrentMBB->end()) dbgs() << *DAG.RegionEnd;
|
|
else dbgs() << "End";
|
|
dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
|
|
|
|
// Save original instruction order before scheduling for possible revert.
|
|
Unsched.clear();
|
|
Unsched.reserve(DAG.NumRegionInstrs);
|
|
if (StageID == GCNSchedStageID::OccInitialSchedule ||
|
|
StageID == GCNSchedStageID::ILPInitialSchedule) {
|
|
for (auto &I : DAG) {
|
|
Unsched.push_back(&I);
|
|
if (I.getOpcode() == AMDGPU::SCHED_GROUP_BARRIER ||
|
|
I.getOpcode() == AMDGPU::IGLP_OPT)
|
|
DAG.RegionsWithIGLPInstrs[RegionIdx] = true;
|
|
}
|
|
} else {
|
|
for (auto &I : DAG)
|
|
Unsched.push_back(&I);
|
|
}
|
|
|
|
PressureBefore = DAG.Pressure[RegionIdx];
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "Pressure before scheduling:\nRegion live-ins:";
|
|
GCNRPTracker::printLiveRegs(dbgs(), DAG.LiveIns[RegionIdx], DAG.MRI);
|
|
dbgs() << "Region live-in pressure: ";
|
|
llvm::getRegPressure(DAG.MRI, DAG.LiveIns[RegionIdx]).print(dbgs());
|
|
dbgs() << "Region register pressure: "; PressureBefore.print(dbgs()));
|
|
|
|
S.HasHighPressure = false;
|
|
|
|
if (DAG.RegionsWithIGLPInstrs[RegionIdx] &&
|
|
StageID != GCNSchedStageID::UnclusteredHighRPReschedule) {
|
|
SavedMutations.clear();
|
|
SavedMutations.swap(DAG.Mutations);
|
|
DAG.addMutation(createIGroupLPDAGMutation());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool UnclusteredHighRPStage::initGCNRegion() {
|
|
// Only reschedule regions with the minimum occupancy or regions that may have
|
|
// spilling (excess register pressure).
|
|
if ((!DAG.RegionsWithMinOcc[RegionIdx] ||
|
|
DAG.MinOccupancy <= InitialOccupancy) &&
|
|
!DAG.RegionsWithExcessRP[RegionIdx])
|
|
return false;
|
|
|
|
return GCNSchedStage::initGCNRegion();
|
|
}
|
|
|
|
bool ClusteredLowOccStage::initGCNRegion() {
|
|
// We may need to reschedule this region if it wasn't rescheduled in the last
|
|
// stage, or if we found it was testing critical register pressure limits in
|
|
// the unclustered reschedule stage. The later is because we may not have been
|
|
// able to raise the min occupancy in the previous stage so the region may be
|
|
// overly constrained even if it was already rescheduled.
|
|
if (!DAG.RegionsWithHighRP[RegionIdx])
|
|
return false;
|
|
|
|
return GCNSchedStage::initGCNRegion();
|
|
}
|
|
|
|
bool PreRARematStage::initGCNRegion() {
|
|
if (!DAG.RescheduleRegions[RegionIdx])
|
|
return false;
|
|
|
|
return GCNSchedStage::initGCNRegion();
|
|
}
|
|
|
|
void GCNSchedStage::setupNewBlock() {
|
|
if (CurrentMBB)
|
|
DAG.finishBlock();
|
|
|
|
CurrentMBB = DAG.RegionBegin->getParent();
|
|
DAG.startBlock(CurrentMBB);
|
|
// Get real RP for the region if it hasn't be calculated before. After the
|
|
// initial schedule stage real RP will be collected after scheduling.
|
|
if (StageID == GCNSchedStageID::OccInitialSchedule)
|
|
DAG.computeBlockPressure(RegionIdx, CurrentMBB);
|
|
}
|
|
|
|
void GCNSchedStage::finalizeGCNRegion() {
|
|
DAG.Regions[RegionIdx] = std::make_pair(DAG.RegionBegin, DAG.RegionEnd);
|
|
DAG.RescheduleRegions[RegionIdx] = false;
|
|
if (S.HasHighPressure)
|
|
DAG.RegionsWithHighRP[RegionIdx] = true;
|
|
|
|
// Revert scheduling if we have dropped occupancy or there is some other
|
|
// reason that the original schedule is better.
|
|
checkScheduling();
|
|
|
|
if (DAG.RegionsWithIGLPInstrs[RegionIdx] &&
|
|
StageID != GCNSchedStageID::UnclusteredHighRPReschedule)
|
|
SavedMutations.swap(DAG.Mutations);
|
|
|
|
DAG.exitRegion();
|
|
RegionIdx++;
|
|
}
|
|
|
|
void GCNSchedStage::checkScheduling() {
|
|
// Check the results of scheduling.
|
|
PressureAfter = DAG.getRealRegPressure(RegionIdx);
|
|
LLVM_DEBUG(dbgs() << "Pressure after scheduling: ";
|
|
PressureAfter.print(dbgs()));
|
|
|
|
if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit &&
|
|
PressureAfter.getVGPRNum(ST.hasGFX90AInsts()) <= S.VGPRCriticalLimit) {
|
|
DAG.Pressure[RegionIdx] = PressureAfter;
|
|
DAG.RegionsWithMinOcc[RegionIdx] =
|
|
PressureAfter.getOccupancy(ST) == DAG.MinOccupancy;
|
|
|
|
// Early out if we have achieve the occupancy target.
|
|
LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n");
|
|
return;
|
|
}
|
|
|
|
unsigned WavesAfter =
|
|
std::min(S.getTargetOccupancy(), PressureAfter.getOccupancy(ST));
|
|
unsigned WavesBefore =
|
|
std::min(S.getTargetOccupancy(), PressureBefore.getOccupancy(ST));
|
|
LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore
|
|
<< ", after " << WavesAfter << ".\n");
|
|
|
|
// We may not be able to keep the current target occupancy because of the just
|
|
// scheduled region. We might still be able to revert scheduling if the
|
|
// occupancy before was higher, or if the current schedule has register
|
|
// pressure higher than the excess limits which could lead to more spilling.
|
|
unsigned NewOccupancy = std::max(WavesAfter, WavesBefore);
|
|
|
|
// Allow memory bound functions to drop to 4 waves if not limited by an
|
|
// attribute.
|
|
if (WavesAfter < WavesBefore && WavesAfter < DAG.MinOccupancy &&
|
|
WavesAfter >= MFI.getMinAllowedOccupancy()) {
|
|
LLVM_DEBUG(dbgs() << "Function is memory bound, allow occupancy drop up to "
|
|
<< MFI.getMinAllowedOccupancy() << " waves\n");
|
|
NewOccupancy = WavesAfter;
|
|
}
|
|
|
|
if (NewOccupancy < DAG.MinOccupancy) {
|
|
DAG.MinOccupancy = NewOccupancy;
|
|
MFI.limitOccupancy(DAG.MinOccupancy);
|
|
DAG.RegionsWithMinOcc.reset();
|
|
LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to "
|
|
<< DAG.MinOccupancy << ".\n");
|
|
}
|
|
|
|
unsigned MaxVGPRs = ST.getMaxNumVGPRs(MF);
|
|
unsigned MaxSGPRs = ST.getMaxNumSGPRs(MF);
|
|
if (PressureAfter.getVGPRNum(false) > MaxVGPRs ||
|
|
PressureAfter.getAGPRNum() > MaxVGPRs ||
|
|
PressureAfter.getSGPRNum() > MaxSGPRs) {
|
|
DAG.RescheduleRegions[RegionIdx] = true;
|
|
DAG.RegionsWithHighRP[RegionIdx] = true;
|
|
DAG.RegionsWithExcessRP[RegionIdx] = true;
|
|
}
|
|
|
|
// Revert if this region's schedule would cause a drop in occupancy or
|
|
// spilling.
|
|
if (shouldRevertScheduling(WavesAfter)) {
|
|
revertScheduling();
|
|
} else {
|
|
DAG.Pressure[RegionIdx] = PressureAfter;
|
|
DAG.RegionsWithMinOcc[RegionIdx] =
|
|
PressureAfter.getOccupancy(ST) == DAG.MinOccupancy;
|
|
}
|
|
}
|
|
|
|
bool GCNSchedStage::shouldRevertScheduling(unsigned WavesAfter) {
|
|
if (WavesAfter < DAG.MinOccupancy)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool OccInitialScheduleStage::shouldRevertScheduling(unsigned WavesAfter) {
|
|
if (GCNSchedStage::shouldRevertScheduling(WavesAfter))
|
|
return true;
|
|
|
|
if (mayCauseSpilling(WavesAfter))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool UnclusteredHighRPStage::shouldRevertScheduling(unsigned WavesAfter) {
|
|
// If RP is not reduced in the unclustred reschedule stage, revert to the
|
|
// old schedule.
|
|
if ((WavesAfter <= PressureBefore.getOccupancy(ST) &&
|
|
mayCauseSpilling(WavesAfter)) ||
|
|
GCNSchedStage::shouldRevertScheduling(WavesAfter)) {
|
|
LLVM_DEBUG(dbgs() << "Unclustered reschedule did not help.\n");
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ClusteredLowOccStage::shouldRevertScheduling(unsigned WavesAfter) {
|
|
if (GCNSchedStage::shouldRevertScheduling(WavesAfter))
|
|
return true;
|
|
|
|
if (mayCauseSpilling(WavesAfter))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool PreRARematStage::shouldRevertScheduling(unsigned WavesAfter) {
|
|
if (GCNSchedStage::shouldRevertScheduling(WavesAfter))
|
|
return true;
|
|
|
|
if (mayCauseSpilling(WavesAfter))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ILPInitialScheduleStage::shouldRevertScheduling(unsigned WavesAfter) {
|
|
if (mayCauseSpilling(WavesAfter))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool GCNSchedStage::mayCauseSpilling(unsigned WavesAfter) {
|
|
if (WavesAfter <= MFI.getMinWavesPerEU() &&
|
|
!PressureAfter.less(ST, PressureBefore) &&
|
|
DAG.RegionsWithExcessRP[RegionIdx]) {
|
|
LLVM_DEBUG(dbgs() << "New pressure will result in more spilling.\n");
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void GCNSchedStage::revertScheduling() {
|
|
DAG.RegionsWithMinOcc[RegionIdx] =
|
|
PressureBefore.getOccupancy(ST) == DAG.MinOccupancy;
|
|
LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n");
|
|
DAG.RescheduleRegions[RegionIdx] =
|
|
S.hasNextStage() &&
|
|
S.getNextStage() != GCNSchedStageID::UnclusteredHighRPReschedule;
|
|
DAG.RegionEnd = DAG.RegionBegin;
|
|
int SkippedDebugInstr = 0;
|
|
for (MachineInstr *MI : Unsched) {
|
|
if (MI->isDebugInstr()) {
|
|
++SkippedDebugInstr;
|
|
continue;
|
|
}
|
|
|
|
if (MI->getIterator() != DAG.RegionEnd) {
|
|
DAG.BB->remove(MI);
|
|
DAG.BB->insert(DAG.RegionEnd, MI);
|
|
if (!MI->isDebugInstr())
|
|
DAG.LIS->handleMove(*MI, true);
|
|
}
|
|
|
|
// Reset read-undef flags and update them later.
|
|
for (auto &Op : MI->operands())
|
|
if (Op.isReg() && Op.isDef())
|
|
Op.setIsUndef(false);
|
|
RegisterOperands RegOpers;
|
|
RegOpers.collect(*MI, *DAG.TRI, DAG.MRI, DAG.ShouldTrackLaneMasks, false);
|
|
if (!MI->isDebugInstr()) {
|
|
if (DAG.ShouldTrackLaneMasks) {
|
|
// Adjust liveness and add missing dead+read-undef flags.
|
|
SlotIndex SlotIdx = DAG.LIS->getInstructionIndex(*MI).getRegSlot();
|
|
RegOpers.adjustLaneLiveness(*DAG.LIS, DAG.MRI, SlotIdx, MI);
|
|
} else {
|
|
// Adjust for missing dead-def flags.
|
|
RegOpers.detectDeadDefs(*MI, *DAG.LIS);
|
|
}
|
|
}
|
|
DAG.RegionEnd = MI->getIterator();
|
|
++DAG.RegionEnd;
|
|
LLVM_DEBUG(dbgs() << "Scheduling " << *MI);
|
|
}
|
|
|
|
// After reverting schedule, debug instrs will now be at the end of the block
|
|
// and RegionEnd will point to the first debug instr. Increment RegionEnd
|
|
// pass debug instrs to the actual end of the scheduling region.
|
|
while (SkippedDebugInstr-- > 0)
|
|
++DAG.RegionEnd;
|
|
|
|
// If Unsched.front() instruction is a debug instruction, this will actually
|
|
// shrink the region since we moved all debug instructions to the end of the
|
|
// block. Find the first instruction that is not a debug instruction.
|
|
DAG.RegionBegin = Unsched.front()->getIterator();
|
|
if (DAG.RegionBegin->isDebugInstr()) {
|
|
for (MachineInstr *MI : Unsched) {
|
|
if (MI->isDebugInstr())
|
|
continue;
|
|
DAG.RegionBegin = MI->getIterator();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Then move the debug instructions back into their correct place and set
|
|
// RegionBegin and RegionEnd if needed.
|
|
DAG.placeDebugValues();
|
|
|
|
DAG.Regions[RegionIdx] = std::make_pair(DAG.RegionBegin, DAG.RegionEnd);
|
|
}
|
|
|
|
void PreRARematStage::collectRematerializableInstructions() {
|
|
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo *>(DAG.TRI);
|
|
for (unsigned I = 0, E = DAG.MRI.getNumVirtRegs(); I != E; ++I) {
|
|
Register Reg = Register::index2VirtReg(I);
|
|
if (!DAG.LIS->hasInterval(Reg))
|
|
continue;
|
|
|
|
// TODO: Handle AGPR and SGPR rematerialization
|
|
if (!SRI->isVGPRClass(DAG.MRI.getRegClass(Reg)) ||
|
|
!DAG.MRI.hasOneDef(Reg) || !DAG.MRI.hasOneNonDBGUse(Reg))
|
|
continue;
|
|
|
|
MachineOperand *Op = DAG.MRI.getOneDef(Reg);
|
|
MachineInstr *Def = Op->getParent();
|
|
if (Op->getSubReg() != 0 || !isTriviallyReMaterializable(*Def))
|
|
continue;
|
|
|
|
MachineInstr *UseI = &*DAG.MRI.use_instr_nodbg_begin(Reg);
|
|
if (Def->getParent() == UseI->getParent())
|
|
continue;
|
|
|
|
// We are only collecting defs that are defined in another block and are
|
|
// live-through or used inside regions at MinOccupancy. This means that the
|
|
// register must be in the live-in set for the region.
|
|
bool AddedToRematList = false;
|
|
for (unsigned I = 0, E = DAG.Regions.size(); I != E; ++I) {
|
|
auto It = DAG.LiveIns[I].find(Reg);
|
|
if (It != DAG.LiveIns[I].end() && !It->second.none()) {
|
|
if (DAG.RegionsWithMinOcc[I]) {
|
|
RematerializableInsts[I][Def] = UseI;
|
|
AddedToRematList = true;
|
|
}
|
|
|
|
// Collect regions with rematerializable reg as live-in to avoid
|
|
// searching later when updating RP.
|
|
RematDefToLiveInRegions[Def].push_back(I);
|
|
}
|
|
}
|
|
if (!AddedToRematList)
|
|
RematDefToLiveInRegions.erase(Def);
|
|
}
|
|
}
|
|
|
|
bool PreRARematStage::sinkTriviallyRematInsts(const GCNSubtarget &ST,
|
|
const TargetInstrInfo *TII) {
|
|
// Temporary copies of cached variables we will be modifying and replacing if
|
|
// sinking succeeds.
|
|
SmallVector<
|
|
std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>, 32>
|
|
NewRegions;
|
|
DenseMap<unsigned, GCNRPTracker::LiveRegSet> NewLiveIns;
|
|
DenseMap<unsigned, GCNRegPressure> NewPressure;
|
|
BitVector NewRescheduleRegions;
|
|
LiveIntervals *LIS = DAG.LIS;
|
|
|
|
NewRegions.resize(DAG.Regions.size());
|
|
NewRescheduleRegions.resize(DAG.Regions.size());
|
|
|
|
// Collect only regions that has a rematerializable def as a live-in.
|
|
SmallSet<unsigned, 16> ImpactedRegions;
|
|
for (const auto &It : RematDefToLiveInRegions)
|
|
ImpactedRegions.insert(It.second.begin(), It.second.end());
|
|
|
|
// Make copies of register pressure and live-ins cache that will be updated
|
|
// as we rematerialize.
|
|
for (auto Idx : ImpactedRegions) {
|
|
NewPressure[Idx] = DAG.Pressure[Idx];
|
|
NewLiveIns[Idx] = DAG.LiveIns[Idx];
|
|
}
|
|
NewRegions = DAG.Regions;
|
|
NewRescheduleRegions.reset();
|
|
|
|
DenseMap<MachineInstr *, MachineInstr *> InsertedMIToOldDef;
|
|
bool Improved = false;
|
|
for (auto I : ImpactedRegions) {
|
|
if (!DAG.RegionsWithMinOcc[I])
|
|
continue;
|
|
|
|
Improved = false;
|
|
int VGPRUsage = NewPressure[I].getVGPRNum(ST.hasGFX90AInsts());
|
|
int SGPRUsage = NewPressure[I].getSGPRNum();
|
|
|
|
// TODO: Handle occupancy drop due to AGPR and SGPR.
|
|
// Check if cause of occupancy drop is due to VGPR usage and not SGPR.
|
|
if (ST.getOccupancyWithNumSGPRs(SGPRUsage) == DAG.MinOccupancy)
|
|
break;
|
|
|
|
// The occupancy of this region could have been improved by a previous
|
|
// iteration's sinking of defs.
|
|
if (NewPressure[I].getOccupancy(ST) > DAG.MinOccupancy) {
|
|
NewRescheduleRegions[I] = true;
|
|
Improved = true;
|
|
continue;
|
|
}
|
|
|
|
// First check if we have enough trivially rematerializable instructions to
|
|
// improve occupancy. Optimistically assume all instructions we are able to
|
|
// sink decreased RP.
|
|
int TotalSinkableRegs = 0;
|
|
for (const auto &It : RematerializableInsts[I]) {
|
|
MachineInstr *Def = It.first;
|
|
Register DefReg = Def->getOperand(0).getReg();
|
|
TotalSinkableRegs +=
|
|
SIRegisterInfo::getNumCoveredRegs(NewLiveIns[I][DefReg]);
|
|
}
|
|
int VGPRsAfterSink = VGPRUsage - TotalSinkableRegs;
|
|
unsigned OptimisticOccupancy = ST.getOccupancyWithNumVGPRs(VGPRsAfterSink);
|
|
// If in the most optimistic scenario, we cannot improve occupancy, then do
|
|
// not attempt to sink any instructions.
|
|
if (OptimisticOccupancy <= DAG.MinOccupancy)
|
|
break;
|
|
|
|
unsigned ImproveOccupancy = 0;
|
|
SmallVector<MachineInstr *, 4> SinkedDefs;
|
|
for (auto &It : RematerializableInsts[I]) {
|
|
MachineInstr *Def = It.first;
|
|
MachineBasicBlock::iterator InsertPos =
|
|
MachineBasicBlock::iterator(It.second);
|
|
Register Reg = Def->getOperand(0).getReg();
|
|
// Rematerialize MI to its use block. Since we are only rematerializing
|
|
// instructions that do not have any virtual reg uses, we do not need to
|
|
// call LiveRangeEdit::allUsesAvailableAt() and
|
|
// LiveRangeEdit::canRematerializeAt().
|
|
TII->reMaterialize(*InsertPos->getParent(), InsertPos, Reg,
|
|
Def->getOperand(0).getSubReg(), *Def, *DAG.TRI);
|
|
MachineInstr *NewMI = &*(--InsertPos);
|
|
LIS->InsertMachineInstrInMaps(*NewMI);
|
|
LIS->removeInterval(Reg);
|
|
LIS->createAndComputeVirtRegInterval(Reg);
|
|
InsertedMIToOldDef[NewMI] = Def;
|
|
|
|
// Update region boundaries in scheduling region we sinked from since we
|
|
// may sink an instruction that was at the beginning or end of its region
|
|
DAG.updateRegionBoundaries(NewRegions, Def, /*NewMI =*/nullptr,
|
|
/*Removing =*/true);
|
|
|
|
// Update region boundaries in region we sinked to.
|
|
DAG.updateRegionBoundaries(NewRegions, InsertPos, NewMI);
|
|
|
|
LaneBitmask PrevMask = NewLiveIns[I][Reg];
|
|
// FIXME: Also update cached pressure for where the def was sinked from.
|
|
// Update RP for all regions that has this reg as a live-in and remove
|
|
// the reg from all regions as a live-in.
|
|
for (auto Idx : RematDefToLiveInRegions[Def]) {
|
|
NewLiveIns[Idx].erase(Reg);
|
|
if (InsertPos->getParent() != DAG.Regions[Idx].first->getParent()) {
|
|
// Def is live-through and not used in this block.
|
|
NewPressure[Idx].inc(Reg, PrevMask, LaneBitmask::getNone(), DAG.MRI);
|
|
} else {
|
|
// Def is used and rematerialized into this block.
|
|
GCNDownwardRPTracker RPT(*LIS);
|
|
auto *NonDbgMI = &*skipDebugInstructionsForward(
|
|
NewRegions[Idx].first, NewRegions[Idx].second);
|
|
RPT.reset(*NonDbgMI, &NewLiveIns[Idx]);
|
|
RPT.advance(NewRegions[Idx].second);
|
|
NewPressure[Idx] = RPT.moveMaxPressure();
|
|
}
|
|
}
|
|
|
|
SinkedDefs.push_back(Def);
|
|
ImproveOccupancy = NewPressure[I].getOccupancy(ST);
|
|
if (ImproveOccupancy > DAG.MinOccupancy)
|
|
break;
|
|
}
|
|
|
|
// Remove defs we just sinked from all regions' list of sinkable defs
|
|
for (auto &Def : SinkedDefs)
|
|
for (auto TrackedIdx : RematDefToLiveInRegions[Def])
|
|
RematerializableInsts[TrackedIdx].erase(Def);
|
|
|
|
if (ImproveOccupancy <= DAG.MinOccupancy)
|
|
break;
|
|
|
|
NewRescheduleRegions[I] = true;
|
|
Improved = true;
|
|
}
|
|
|
|
if (!Improved) {
|
|
// Occupancy was not improved for all regions that were at MinOccupancy.
|
|
// Undo sinking and remove newly rematerialized instructions.
|
|
for (auto &Entry : InsertedMIToOldDef) {
|
|
MachineInstr *MI = Entry.first;
|
|
MachineInstr *OldMI = Entry.second;
|
|
Register Reg = MI->getOperand(0).getReg();
|
|
LIS->RemoveMachineInstrFromMaps(*MI);
|
|
MI->eraseFromParent();
|
|
OldMI->clearRegisterDeads(Reg);
|
|
LIS->removeInterval(Reg);
|
|
LIS->createAndComputeVirtRegInterval(Reg);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Occupancy was improved for all regions.
|
|
for (auto &Entry : InsertedMIToOldDef) {
|
|
MachineInstr *MI = Entry.first;
|
|
MachineInstr *OldMI = Entry.second;
|
|
|
|
// Remove OldMI from BBLiveInMap since we are sinking it from its MBB.
|
|
DAG.BBLiveInMap.erase(OldMI);
|
|
|
|
// Remove OldMI and update LIS
|
|
Register Reg = MI->getOperand(0).getReg();
|
|
LIS->RemoveMachineInstrFromMaps(*OldMI);
|
|
OldMI->eraseFromParent();
|
|
LIS->removeInterval(Reg);
|
|
LIS->createAndComputeVirtRegInterval(Reg);
|
|
}
|
|
|
|
// Update live-ins, register pressure, and regions caches.
|
|
for (auto Idx : ImpactedRegions) {
|
|
DAG.LiveIns[Idx] = NewLiveIns[Idx];
|
|
DAG.Pressure[Idx] = NewPressure[Idx];
|
|
DAG.MBBLiveIns.erase(DAG.Regions[Idx].first->getParent());
|
|
}
|
|
DAG.Regions = NewRegions;
|
|
DAG.RescheduleRegions = NewRescheduleRegions;
|
|
|
|
SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
|
|
MFI.increaseOccupancy(MF, ++DAG.MinOccupancy);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Copied from MachineLICM
|
|
bool PreRARematStage::isTriviallyReMaterializable(const MachineInstr &MI) {
|
|
if (!DAG.TII->isTriviallyReMaterializable(MI))
|
|
return false;
|
|
|
|
for (const MachineOperand &MO : MI.operands())
|
|
if (MO.isReg() && MO.isUse() && MO.getReg().isVirtual())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// When removing, we will have to check both beginning and ending of the region.
|
|
// When inserting, we will only have to check if we are inserting NewMI in front
|
|
// of a scheduling region and do not need to check the ending since we will only
|
|
// ever be inserting before an already existing MI.
|
|
void GCNScheduleDAGMILive::updateRegionBoundaries(
|
|
SmallVectorImpl<std::pair<MachineBasicBlock::iterator,
|
|
MachineBasicBlock::iterator>> &RegionBoundaries,
|
|
MachineBasicBlock::iterator MI, MachineInstr *NewMI, bool Removing) {
|
|
unsigned I = 0, E = RegionBoundaries.size();
|
|
// Search for first region of the block where MI is located
|
|
while (I != E && MI->getParent() != RegionBoundaries[I].first->getParent())
|
|
++I;
|
|
|
|
for (; I != E; ++I) {
|
|
if (MI->getParent() != RegionBoundaries[I].first->getParent())
|
|
return;
|
|
|
|
if (Removing && MI == RegionBoundaries[I].first &&
|
|
MI == RegionBoundaries[I].second) {
|
|
// MI is in a region with size 1, after removing, the region will be
|
|
// size 0, set RegionBegin and RegionEnd to pass end of block iterator.
|
|
RegionBoundaries[I] =
|
|
std::make_pair(MI->getParent()->end(), MI->getParent()->end());
|
|
return;
|
|
}
|
|
if (MI == RegionBoundaries[I].first) {
|
|
if (Removing)
|
|
RegionBoundaries[I] =
|
|
std::make_pair(std::next(MI), RegionBoundaries[I].second);
|
|
else
|
|
// Inserted NewMI in front of region, set new RegionBegin to NewMI
|
|
RegionBoundaries[I] = std::make_pair(MachineBasicBlock::iterator(NewMI),
|
|
RegionBoundaries[I].second);
|
|
return;
|
|
}
|
|
if (Removing && MI == RegionBoundaries[I].second) {
|
|
RegionBoundaries[I] =
|
|
std::make_pair(RegionBoundaries[I].first, std::prev(MI));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool hasIGLPInstrs(ScheduleDAGInstrs *DAG) {
|
|
return std::any_of(
|
|
DAG->begin(), DAG->end(), [](MachineBasicBlock::iterator MI) {
|
|
unsigned Opc = MI->getOpcode();
|
|
return Opc == AMDGPU::SCHED_GROUP_BARRIER || Opc == AMDGPU::IGLP_OPT;
|
|
});
|
|
}
|
|
|
|
GCNPostScheduleDAGMILive::GCNPostScheduleDAGMILive(
|
|
MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S,
|
|
bool RemoveKillFlags)
|
|
: ScheduleDAGMI(C, std::move(S), RemoveKillFlags) {}
|
|
|
|
void GCNPostScheduleDAGMILive::schedule() {
|
|
HasIGLPInstrs = hasIGLPInstrs(this);
|
|
if (HasIGLPInstrs) {
|
|
SavedMutations.clear();
|
|
SavedMutations.swap(Mutations);
|
|
addMutation(createIGroupLPDAGMutation());
|
|
}
|
|
|
|
ScheduleDAGMI::schedule();
|
|
}
|
|
|
|
void GCNPostScheduleDAGMILive::finalizeSchedule() {
|
|
if (HasIGLPInstrs)
|
|
SavedMutations.swap(Mutations);
|
|
|
|
ScheduleDAGMI::finalizeSchedule();
|
|
}
|