526 lines
21 KiB
C++
526 lines
21 KiB
C++
//===- BufferizableOpInterfaceImpl.cpp - Impl. of BufferizableOpInterface -===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Bufferization/Transforms/FuncBufferizableOpInterfaceImpl.h"
|
|
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/IR/Dialect.h"
|
|
#include "mlir/IR/Operation.h"
|
|
|
|
namespace mlir {
|
|
namespace bufferization {
|
|
namespace func_ext {
|
|
|
|
void FuncAnalysisState::startFunctionAnalysis(FuncOp funcOp) {
|
|
analyzedFuncOps[funcOp] = FuncOpAnalysisState::InProgress;
|
|
auto createdEquiv = equivalentFuncArgs.try_emplace(funcOp, IndexMapping());
|
|
auto createdAliasingOperands =
|
|
aliasingFuncArgs.try_emplace(funcOp, IndexToIndexListMapping());
|
|
auto createdAliasingResults =
|
|
aliasingReturnVals.try_emplace(funcOp, IndexToIndexListMapping());
|
|
auto createdRead = readBbArgs.try_emplace(funcOp, BbArgIndexSet());
|
|
auto createdWritten = writtenBbArgs.try_emplace(funcOp, BbArgIndexSet());
|
|
(void)createdEquiv;
|
|
(void)createdAliasingOperands;
|
|
(void)createdAliasingResults;
|
|
(void)createdRead;
|
|
(void)createdWritten;
|
|
#ifndef NDEBUG
|
|
assert(createdEquiv.second && "equivalence info exists already");
|
|
assert(createdAliasingOperands.second && "aliasing info exists already");
|
|
assert(createdAliasingResults.second && "aliasing info exists already");
|
|
assert(createdRead.second && "bbarg access info exists already");
|
|
assert(createdWritten.second && "bbarg access info exists already");
|
|
#endif // NDEBUG
|
|
}
|
|
|
|
/// Return the unique ReturnOp that terminates `funcOp`.
|
|
/// Return nullptr if there is no such unique ReturnOp.
|
|
static func::ReturnOp getAssumedUniqueReturnOp(FuncOp funcOp) {
|
|
func::ReturnOp returnOp;
|
|
for (Block &b : funcOp.getBody()) {
|
|
if (auto candidateOp = dyn_cast<func::ReturnOp>(b.getTerminator())) {
|
|
if (returnOp)
|
|
return nullptr;
|
|
returnOp = candidateOp;
|
|
}
|
|
}
|
|
return returnOp;
|
|
}
|
|
|
|
/// Return the index-th bufferized function argument type. This assumes that the
|
|
/// specified argument is a tensor. If the tensor is ranked, a layout map may be
|
|
/// specified by the user. If no layout map is specified, the default layout map
|
|
/// (as per `options.functionBoundaryTypeConversion`) is used.
|
|
static BaseMemRefType
|
|
getBufferizedFunctionArgType(FuncOp funcOp, int64_t index,
|
|
const BufferizationOptions &options) {
|
|
auto tensorType =
|
|
funcOp.getFunctionType().getInput(index).dyn_cast<TensorType>();
|
|
assert(tensorType && "expected TensorType");
|
|
|
|
BaseMemRefType memrefType;
|
|
if (options.functionBoundaryTypeConversion ==
|
|
LayoutMapOption::IdentityLayoutMap) {
|
|
memrefType = getMemRefTypeWithStaticIdentityLayout(tensorType);
|
|
} else {
|
|
// Note: Layout maps on function parameters cannot be inferred. The best we
|
|
// can do at the moment is "fully dynamic".
|
|
memrefType = getMemRefTypeWithFullyDynamicLayout(tensorType);
|
|
}
|
|
|
|
auto layoutAttr = funcOp.getArgAttrOfType<AffineMapAttr>(
|
|
index, BufferizationDialect::kBufferLayoutAttrName);
|
|
if (!layoutAttr)
|
|
return memrefType;
|
|
|
|
auto rankedMemrefType = memrefType.dyn_cast<MemRefType>();
|
|
assert(rankedMemrefType && "buffer layout not supported on unranked tensors");
|
|
return MemRefType::get(
|
|
rankedMemrefType.getShape(), rankedMemrefType.getElementType(),
|
|
layoutAttr.getValue(), rankedMemrefType.getMemorySpace());
|
|
}
|
|
|
|
/// Return the FuncOp called by `callOp`.
|
|
static FuncOp getCalledFunction(CallOpInterface callOp) {
|
|
SymbolRefAttr sym = callOp.getCallableForCallee().dyn_cast<SymbolRefAttr>();
|
|
if (!sym)
|
|
return nullptr;
|
|
return dyn_cast_or_null<FuncOp>(
|
|
SymbolTable::lookupNearestSymbolFrom(callOp, sym));
|
|
}
|
|
|
|
/// Get FuncAnalysisState.
|
|
static const FuncAnalysisState &
|
|
getFuncAnalysisState(const AnalysisState &state) {
|
|
assert(isa<OneShotAnalysisState>(state) && "expected OneShotAnalysisState");
|
|
auto *result = static_cast<const OneShotAnalysisState &>(state)
|
|
.getExtension<FuncAnalysisState>();
|
|
assert(result && "FuncAnalysisState does not exist");
|
|
return *result;
|
|
}
|
|
|
|
/// Return the state (phase) of analysis of the FuncOp.
|
|
static FuncOpAnalysisState getFuncOpAnalysisState(const AnalysisState &state,
|
|
FuncOp funcOp) {
|
|
if (!isa<OneShotAnalysisState>(state))
|
|
return FuncOpAnalysisState::NotAnalyzed;
|
|
auto *funcState = static_cast<const OneShotAnalysisState &>(state)
|
|
.getExtension<FuncAnalysisState>();
|
|
if (!funcState)
|
|
return FuncOpAnalysisState::NotAnalyzed;
|
|
const auto &analyzedFuncOps = funcState->analyzedFuncOps;
|
|
auto it = analyzedFuncOps.find(funcOp);
|
|
if (it == analyzedFuncOps.end())
|
|
return FuncOpAnalysisState::NotAnalyzed;
|
|
return it->second;
|
|
}
|
|
|
|
/// Return the index of the bbArg in the given FuncOp that is equivalent to the
|
|
/// specified return value (if any).
|
|
static Optional<int64_t> getEquivalentFuncArgIdx(FuncOp funcOp,
|
|
const FuncAnalysisState &state,
|
|
int64_t returnValIdx) {
|
|
auto funcOpIt = state.equivalentFuncArgs.find(funcOp);
|
|
if (funcOpIt == state.equivalentFuncArgs.end())
|
|
// No equivalence info stores for funcOp.
|
|
return std::nullopt;
|
|
|
|
auto retValIt = funcOpIt->getSecond().find(returnValIdx);
|
|
if (retValIt == funcOpIt->getSecond().end())
|
|
// Return value has no equivalent bbArg.
|
|
return std::nullopt;
|
|
|
|
return retValIt->getSecond();
|
|
}
|
|
|
|
struct CallOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<CallOpInterface,
|
|
func::CallOp> {
|
|
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
func::CallOp callOp = cast<func::CallOp>(op);
|
|
FuncOp funcOp = getCalledFunction(callOp);
|
|
assert(funcOp && "expected CallOp to a FuncOp");
|
|
|
|
if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed)
|
|
// FuncOp not analyzed yet. Assume that OpOperand is read.
|
|
return true;
|
|
|
|
const FuncAnalysisState &funcState = getFuncAnalysisState(state);
|
|
return funcState.readBbArgs.lookup(funcOp).contains(
|
|
opOperand.getOperandNumber());
|
|
}
|
|
|
|
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
func::CallOp callOp = cast<func::CallOp>(op);
|
|
FuncOp funcOp = getCalledFunction(callOp);
|
|
assert(funcOp && "expected CallOp to a FuncOp");
|
|
|
|
if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed)
|
|
// FuncOp not analyzed yet. Assume that OpOperand is written.
|
|
return true;
|
|
|
|
const FuncAnalysisState &funcState = getFuncAnalysisState(state);
|
|
return funcState.writtenBbArgs.lookup(funcOp).contains(
|
|
opOperand.getOperandNumber());
|
|
}
|
|
|
|
SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
func::CallOp callOp = cast<func::CallOp>(op);
|
|
FuncOp funcOp = getCalledFunction(callOp);
|
|
assert(funcOp && "expected CallOp to a FuncOp");
|
|
if (getFuncOpAnalysisState(state, funcOp) !=
|
|
FuncOpAnalysisState::Analyzed) {
|
|
// FuncOp not analyzed yet. Any OpResult may be aliasing.
|
|
SmallVector<OpResult> result;
|
|
for (OpResult opResult : op->getOpResults())
|
|
if (opResult.getType().isa<TensorType>())
|
|
result.push_back(opResult);
|
|
return result;
|
|
}
|
|
|
|
// Get aliasing results from state.
|
|
const FuncAnalysisState &funcState = getFuncAnalysisState(state);
|
|
auto aliasingReturnVals =
|
|
funcState.aliasingReturnVals.lookup(funcOp).lookup(
|
|
opOperand.getOperandNumber());
|
|
SmallVector<OpResult> result;
|
|
for (int64_t resultIdx : aliasingReturnVals)
|
|
result.push_back(callOp->getOpResult(resultIdx));
|
|
return result;
|
|
}
|
|
|
|
SmallVector<OpOperand *>
|
|
getAliasingOpOperand(Operation *op, OpResult opResult,
|
|
const AnalysisState &state) const {
|
|
func::CallOp callOp = cast<func::CallOp>(op);
|
|
FuncOp funcOp = getCalledFunction(callOp);
|
|
assert(funcOp && "expected CallOp to a FuncOp");
|
|
if (getFuncOpAnalysisState(state, funcOp) !=
|
|
FuncOpAnalysisState::Analyzed) {
|
|
// FuncOp not analyzed yet. Any OpOperand may be aliasing.
|
|
SmallVector<OpOperand *> result;
|
|
for (OpOperand &opOperand : op->getOpOperands())
|
|
if (opOperand.get().getType().isa<TensorType>())
|
|
result.push_back(&opOperand);
|
|
return result;
|
|
}
|
|
|
|
// Get aliasing bbArgs from state.
|
|
const FuncAnalysisState &funcState = getFuncAnalysisState(state);
|
|
auto aliasingFuncArgs = funcState.aliasingFuncArgs.lookup(funcOp).lookup(
|
|
opResult.getResultNumber());
|
|
SmallVector<OpOperand *> result;
|
|
for (int64_t bbArgIdx : aliasingFuncArgs)
|
|
result.push_back(&callOp->getOpOperand(bbArgIdx));
|
|
return result;
|
|
}
|
|
|
|
BufferRelation bufferRelation(Operation *op, OpResult opResult,
|
|
const AnalysisState &state) const {
|
|
func::CallOp callOp = cast<func::CallOp>(op);
|
|
FuncOp funcOp = getCalledFunction(callOp);
|
|
assert(funcOp && "expected CallOp to a FuncOp");
|
|
if (getFuncOpAnalysisState(state, funcOp) !=
|
|
FuncOpAnalysisState::Analyzed) {
|
|
// Function not analyzed yet. The conservative answer is "None".
|
|
return BufferRelation::None;
|
|
}
|
|
|
|
const FuncAnalysisState &funcState = getFuncAnalysisState(state);
|
|
Optional<int64_t> maybeEquiv =
|
|
getEquivalentFuncArgIdx(funcOp, funcState, opResult.getResultNumber());
|
|
if (maybeEquiv) {
|
|
#ifndef NDEBUG
|
|
SmallVector<OpOperand *> aliasingOpOperands =
|
|
getAliasingOpOperand(op, opResult, state);
|
|
assert(aliasingOpOperands.size() == 1 &&
|
|
"expected exactly 1 aliasing OpOperand");
|
|
assert(aliasingOpOperands.front()->getOperandNumber() == *maybeEquiv &&
|
|
"inconsistent analysis state");
|
|
#endif
|
|
return BufferRelation::Equivalent;
|
|
}
|
|
return BufferRelation::None;
|
|
}
|
|
|
|
/// All function arguments are writable. It is the responsibility of the
|
|
/// CallOp to insert buffer copies where necessary.
|
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
|
const BufferizationOptions &options) const {
|
|
func::CallOp callOp = cast<func::CallOp>(op);
|
|
unsigned numResults = callOp.getNumResults();
|
|
unsigned numOperands = callOp->getNumOperands();
|
|
FuncOp funcOp = getCalledFunction(callOp);
|
|
assert(funcOp && "expected CallOp to a FuncOp");
|
|
FunctionType funcType = funcOp.getFunctionType();
|
|
|
|
// Result types of the bufferized CallOp.
|
|
SmallVector<Type> resultTypes;
|
|
// Replacement values for the existing CallOp. These are usually the results
|
|
// of the bufferized CallOp, unless a tensor result folds onto an operand.
|
|
SmallVector<Value> replacementValues(numResults, Value());
|
|
// For non-tensor results: A mapping from return val indices of the old
|
|
// CallOp to return val indices of the bufferized CallOp.
|
|
SmallVector<Optional<unsigned>> retValMapping(numResults, std::nullopt);
|
|
// Operands of the bufferized CallOp.
|
|
SmallVector<Value> newOperands(numOperands, Value());
|
|
|
|
// 1. Compute the result types of the new CallOp.
|
|
for (const auto &it : llvm::enumerate(callOp.getResultTypes())) {
|
|
unsigned returnValIdx = it.index();
|
|
Type returnType = it.value();
|
|
if (!returnType.isa<TensorType>()) {
|
|
// Non-tensor values are returned.
|
|
retValMapping[returnValIdx] = resultTypes.size();
|
|
resultTypes.push_back(returnType);
|
|
continue;
|
|
}
|
|
|
|
// Returning a memref.
|
|
retValMapping[returnValIdx] = resultTypes.size();
|
|
resultTypes.push_back(funcType.getResult(resultTypes.size()));
|
|
}
|
|
|
|
// 2. Rewrite tensor operands as memrefs based on `bufferizedFuncType`.
|
|
for (OpOperand &opOperand : callOp->getOpOperands()) {
|
|
unsigned idx = opOperand.getOperandNumber();
|
|
Value tensorOperand = opOperand.get();
|
|
|
|
// Non-tensor operands are just copied.
|
|
if (!tensorOperand.getType().isa<TensorType>()) {
|
|
newOperands[idx] = tensorOperand;
|
|
continue;
|
|
}
|
|
|
|
// Retrieve buffers for tensor operands.
|
|
Value buffer = newOperands[idx];
|
|
if (!buffer) {
|
|
FailureOr<Value> maybeBuffer =
|
|
getBuffer(rewriter, opOperand.get(), options);
|
|
if (failed(maybeBuffer))
|
|
return failure();
|
|
buffer = *maybeBuffer;
|
|
}
|
|
|
|
// Caller / callee type mismatch is handled with a CastOp.
|
|
auto memRefType = funcType.getInput(idx);
|
|
// Since we don't yet have a clear layout story, to_memref may
|
|
// conservatively turn tensors into more dynamic memref than necessary.
|
|
// If the memref type of the callee fails, introduce an extra memref.cast
|
|
// that will either canonicalize away or fail compilation until we can do
|
|
// something better.
|
|
if (buffer.getType() != memRefType) {
|
|
assert(
|
|
memref::CastOp::areCastCompatible(buffer.getType(), memRefType) &&
|
|
"CallOp::bufferize: cast incompatible");
|
|
Value castBuffer = rewriter.create<memref::CastOp>(callOp.getLoc(),
|
|
memRefType, buffer);
|
|
buffer = castBuffer;
|
|
}
|
|
newOperands[idx] = buffer;
|
|
}
|
|
|
|
// 3. Create the new CallOp.
|
|
Operation *newCallOp = rewriter.create<func::CallOp>(
|
|
callOp.getLoc(), funcOp.getSymName(), resultTypes, newOperands);
|
|
newCallOp->setAttrs(callOp->getAttrs());
|
|
// Get replacement values.
|
|
for (unsigned i = 0; i < replacementValues.size(); ++i) {
|
|
if (replacementValues[i])
|
|
continue;
|
|
replacementValues[i] = newCallOp->getResult(*retValMapping[i]);
|
|
}
|
|
|
|
// 4. Replace the old op with the new op.
|
|
replaceOpWithBufferizedValues(rewriter, callOp, replacementValues);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct ReturnOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<ReturnOpInterface,
|
|
func::ReturnOp> {
|
|
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return true;
|
|
}
|
|
|
|
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return false;
|
|
}
|
|
|
|
SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return {};
|
|
}
|
|
|
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
|
const BufferizationOptions &options) const {
|
|
#ifndef NDEBUG
|
|
auto returnOp = cast<func::ReturnOp>(op);
|
|
assert(isa<FuncOp>(returnOp->getParentOp()) &&
|
|
"only support FuncOp parent for ReturnOp");
|
|
#endif // NDEBUG
|
|
|
|
// ReturnOps are bufferized as part of FuncOps.
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct FuncOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<FuncOpInterface, FuncOp> {
|
|
/// Rewrite function bbArgs and return values into buffer form. This function
|
|
/// bufferizes the function signature and the ReturnOp. When the entire
|
|
/// function body has been bufferized, function return types can be switched
|
|
/// to more concise memref types as part of `foldMemRefCasts`.
|
|
///
|
|
/// All function bbArgs are writable unless they are explicitly marked as
|
|
/// read-only. Callers must insert copies when needed.
|
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
|
const BufferizationOptions &options) const {
|
|
auto funcOp = cast<FuncOp>(op);
|
|
FunctionType funcType = funcOp.getFunctionType();
|
|
|
|
// Construct the bufferized function type.
|
|
SmallVector<Type> argTypes;
|
|
for (const auto &it : llvm::enumerate(funcType.getInputs())) {
|
|
Type argType = it.value();
|
|
if (auto tensorType = argType.dyn_cast<TensorType>()) {
|
|
argTypes.push_back(
|
|
getBufferizedFunctionArgType(funcOp, it.index(), options));
|
|
continue;
|
|
}
|
|
argTypes.push_back(argType);
|
|
}
|
|
|
|
// Bodiless functions are assumed opaque and we cannot know the
|
|
// bufferization contract they want to enforce. As a consequence, only
|
|
// support functions that don't return any tensors atm.
|
|
if (funcOp.getBody().empty()) {
|
|
SmallVector<Type> retTypes;
|
|
for (Type resultType : funcType.getResults()) {
|
|
if (resultType.isa<TensorType>())
|
|
return funcOp->emitError() << "cannot bufferize bodiless function "
|
|
<< "that returns a tensor";
|
|
retTypes.push_back(resultType);
|
|
}
|
|
funcOp.setType(FunctionType::get(op->getContext(), argTypes, retTypes));
|
|
return success();
|
|
}
|
|
|
|
// TODO: Support functions with multiple returns.
|
|
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
|
|
assert(returnOp && "expected func with single return op");
|
|
Location loc = returnOp.getLoc();
|
|
|
|
// 1. Rewrite the bbArgs. Turn every tensor bbArg into a memref bbArg.
|
|
Block &frontBlock = funcOp.getBody().front();
|
|
for (BlockArgument &bbArg : frontBlock.getArguments()) {
|
|
auto tensorType = bbArg.getType().dyn_cast<TensorType>();
|
|
// Non-tensor types stay the same.
|
|
if (!tensorType)
|
|
continue;
|
|
|
|
// Collect all uses of the bbArg.
|
|
SmallVector<OpOperand *> bbArgUses;
|
|
for (OpOperand &use : bbArg.getUses())
|
|
bbArgUses.push_back(&use);
|
|
|
|
// Change the bbArg type to memref.
|
|
Type memrefType =
|
|
getBufferizedFunctionArgType(funcOp, bbArg.getArgNumber(), options);
|
|
bbArg.setType(memrefType);
|
|
|
|
// Replace all uses of the original tensor bbArg.
|
|
rewriter.setInsertionPointToStart(&frontBlock);
|
|
if (!bbArgUses.empty()) {
|
|
// Insert to_tensor because the remaining function body has not been
|
|
// bufferized yet.
|
|
Value toTensorOp =
|
|
rewriter.create<bufferization::ToTensorOp>(funcOp.getLoc(), bbArg);
|
|
for (OpOperand *use : bbArgUses)
|
|
use->set(toTensorOp);
|
|
}
|
|
}
|
|
|
|
// 2. For each result, keep track of which inplace argument it reuses.
|
|
SmallVector<Value> returnValues;
|
|
for (OpOperand &returnOperand : returnOp->getOpOperands()) {
|
|
Value returnVal = returnOperand.get();
|
|
auto tensorType = returnVal.getType().dyn_cast<TensorType>();
|
|
rewriter.setInsertionPoint(returnOp);
|
|
|
|
// If not a tensor type just forward it.
|
|
if (!tensorType) {
|
|
returnValues.push_back(returnVal);
|
|
continue;
|
|
}
|
|
|
|
BaseMemRefType resultType;
|
|
if (options.functionBoundaryTypeConversion ==
|
|
LayoutMapOption::IdentityLayoutMap) {
|
|
resultType = getMemRefTypeWithStaticIdentityLayout(tensorType);
|
|
} else {
|
|
// Note: If `InferLayoutMap`, cast are later folded away.
|
|
resultType = getMemRefTypeWithFullyDynamicLayout(tensorType);
|
|
}
|
|
Value toMemrefOp = rewriter.create<bufferization::ToMemrefOp>(
|
|
loc, resultType, returnVal);
|
|
returnValues.push_back(toMemrefOp);
|
|
}
|
|
|
|
// 3. Rewrite the terminator without the in-place bufferizable values.
|
|
returnOp.getOperandsMutable().assign(returnValues);
|
|
|
|
// 4. Rewrite the FuncOp type to buffer form.
|
|
funcOp.setType(FunctionType::get(op->getContext(), argTypes,
|
|
ValueRange(returnValues).getTypes()));
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Return `true` if the given function argument is writable.
|
|
bool isWritable(Operation *op, Value value,
|
|
const AnalysisState &state) const {
|
|
auto funcOp = cast<FuncOp>(op);
|
|
BlockArgument bbArg = value.dyn_cast<BlockArgument>();
|
|
assert(bbArg && "expected BlockArgument");
|
|
|
|
// "bufferization.writable" overrides other writability decisions. This is
|
|
// currently used for testing only.
|
|
if (BoolAttr writable = funcOp.getArgAttrOfType<BoolAttr>(
|
|
bbArg.getArgNumber(), BufferizationDialect::kWritableAttrName))
|
|
return writable.getValue();
|
|
|
|
// All function arguments are writable by default.
|
|
return true;
|
|
}
|
|
};
|
|
|
|
} // namespace func_ext
|
|
} // namespace bufferization
|
|
} // namespace mlir
|
|
|
|
void mlir::bufferization::func_ext::
|
|
registerBufferizableOpInterfaceExternalModels(DialectRegistry ®istry) {
|
|
registry.addExtension(+[](MLIRContext *ctx, func::FuncDialect *dialect) {
|
|
func::CallOp::attachInterface<func_ext::CallOpInterface>(*ctx);
|
|
func::FuncOp::attachInterface<func_ext::FuncOpInterface>(*ctx);
|
|
func::ReturnOp::attachInterface<func_ext::ReturnOpInterface>(*ctx);
|
|
});
|
|
}
|