llvm-project/mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp

1374 lines
55 KiB
C++

//===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
#include "mlir/Conversion/LLVMCommon/VectorPattern.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Target/LLVMIR/TypeToLLVM.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
using namespace mlir::vector;
// Helper to reduce vector type by one rank at front.
static VectorType reducedVectorTypeFront(VectorType tp) {
assert((tp.getRank() > 1) && "unlowerable vector type");
unsigned numScalableDims = tp.getNumScalableDims();
if (tp.getShape().size() == numScalableDims)
--numScalableDims;
return VectorType::get(tp.getShape().drop_front(), tp.getElementType(),
numScalableDims);
}
// Helper to reduce vector type by *all* but one rank at back.
static VectorType reducedVectorTypeBack(VectorType tp) {
assert((tp.getRank() > 1) && "unlowerable vector type");
unsigned numScalableDims = tp.getNumScalableDims();
if (numScalableDims > 0)
--numScalableDims;
return VectorType::get(tp.getShape().take_back(), tp.getElementType(),
numScalableDims);
}
// Helper that picks the proper sequence for inserting.
static Value insertOne(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
Value val1, Value val2, Type llvmType, int64_t rank,
int64_t pos) {
assert(rank > 0 && "0-D vector corner case should have been handled already");
if (rank == 1) {
auto idxType = rewriter.getIndexType();
auto constant = rewriter.create<LLVM::ConstantOp>(
loc, typeConverter.convertType(idxType),
rewriter.getIntegerAttr(idxType, pos));
return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2,
constant);
}
return rewriter.create<LLVM::InsertValueOp>(loc, val1, val2, pos);
}
// Helper that picks the proper sequence for extracting.
static Value extractOne(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
Value val, Type llvmType, int64_t rank, int64_t pos) {
if (rank <= 1) {
auto idxType = rewriter.getIndexType();
auto constant = rewriter.create<LLVM::ConstantOp>(
loc, typeConverter.convertType(idxType),
rewriter.getIntegerAttr(idxType, pos));
return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val,
constant);
}
return rewriter.create<LLVM::ExtractValueOp>(loc, val, pos);
}
// Helper that returns data layout alignment of a memref.
LogicalResult getMemRefAlignment(LLVMTypeConverter &typeConverter,
MemRefType memrefType, unsigned &align) {
Type elementTy = typeConverter.convertType(memrefType.getElementType());
if (!elementTy)
return failure();
// TODO: this should use the MLIR data layout when it becomes available and
// stop depending on translation.
llvm::LLVMContext llvmContext;
align = LLVM::TypeToLLVMIRTranslator(llvmContext)
.getPreferredAlignment(elementTy, typeConverter.getDataLayout());
return success();
}
// Check if the last stride is non-unit or the memory space is not zero.
static LogicalResult isMemRefTypeSupported(MemRefType memRefType) {
int64_t offset;
SmallVector<int64_t, 4> strides;
auto successStrides = getStridesAndOffset(memRefType, strides, offset);
if (failed(successStrides) || strides.back() != 1 ||
memRefType.getMemorySpaceAsInt() != 0)
return failure();
return success();
}
// Add an index vector component to a base pointer.
static Value getIndexedPtrs(ConversionPatternRewriter &rewriter, Location loc,
MemRefType memRefType, Value llvmMemref, Value base,
Value index, uint64_t vLen) {
assert(succeeded(isMemRefTypeSupported(memRefType)) &&
"unsupported memref type");
auto pType = MemRefDescriptor(llvmMemref).getElementPtrType();
auto ptrsType = LLVM::getFixedVectorType(pType, vLen);
return rewriter.create<LLVM::GEPOp>(loc, ptrsType, base, index);
}
// Casts a strided element pointer to a vector pointer. The vector pointer
// will be in the same address space as the incoming memref type.
static Value castDataPtr(ConversionPatternRewriter &rewriter, Location loc,
Value ptr, MemRefType memRefType, Type vt) {
auto pType = LLVM::LLVMPointerType::get(vt, memRefType.getMemorySpaceAsInt());
return rewriter.create<LLVM::BitcastOp>(loc, pType, ptr);
}
namespace {
/// Trivial Vector to LLVM conversions
using VectorScaleOpConversion =
OneToOneConvertToLLVMPattern<vector::VectorScaleOp, LLVM::vscale>;
/// Conversion pattern for a vector.bitcast.
class VectorBitCastOpConversion
: public ConvertOpToLLVMPattern<vector::BitCastOp> {
public:
using ConvertOpToLLVMPattern<vector::BitCastOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::BitCastOp bitCastOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only 0-D and 1-D vectors can be lowered to LLVM.
VectorType resultTy = bitCastOp.getResultVectorType();
if (resultTy.getRank() > 1)
return failure();
Type newResultTy = typeConverter->convertType(resultTy);
rewriter.replaceOpWithNewOp<LLVM::BitcastOp>(bitCastOp, newResultTy,
adaptor.getOperands()[0]);
return success();
}
};
/// Conversion pattern for a vector.matrix_multiply.
/// This is lowered directly to the proper llvm.intr.matrix.multiply.
class VectorMatmulOpConversion
: public ConvertOpToLLVMPattern<vector::MatmulOp> {
public:
using ConvertOpToLLVMPattern<vector::MatmulOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::MatmulOp matmulOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<LLVM::MatrixMultiplyOp>(
matmulOp, typeConverter->convertType(matmulOp.getRes().getType()),
adaptor.getLhs(), adaptor.getRhs(), matmulOp.getLhsRows(),
matmulOp.getLhsColumns(), matmulOp.getRhsColumns());
return success();
}
};
/// Conversion pattern for a vector.flat_transpose.
/// This is lowered directly to the proper llvm.intr.matrix.transpose.
class VectorFlatTransposeOpConversion
: public ConvertOpToLLVMPattern<vector::FlatTransposeOp> {
public:
using ConvertOpToLLVMPattern<vector::FlatTransposeOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::FlatTransposeOp transOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<LLVM::MatrixTransposeOp>(
transOp, typeConverter->convertType(transOp.getRes().getType()),
adaptor.getMatrix(), transOp.getRows(), transOp.getColumns());
return success();
}
};
/// Overloaded utility that replaces a vector.load, vector.store,
/// vector.maskedload and vector.maskedstore with their respective LLVM
/// couterparts.
static void replaceLoadOrStoreOp(vector::LoadOp loadOp,
vector::LoadOpAdaptor adaptor,
VectorType vectorTy, Value ptr, unsigned align,
ConversionPatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, ptr, align);
}
static void replaceLoadOrStoreOp(vector::MaskedLoadOp loadOp,
vector::MaskedLoadOpAdaptor adaptor,
VectorType vectorTy, Value ptr, unsigned align,
ConversionPatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>(
loadOp, vectorTy, ptr, adaptor.getMask(), adaptor.getPassThru(), align);
}
static void replaceLoadOrStoreOp(vector::StoreOp storeOp,
vector::StoreOpAdaptor adaptor,
VectorType vectorTy, Value ptr, unsigned align,
ConversionPatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<LLVM::StoreOp>(storeOp, adaptor.getValueToStore(),
ptr, align);
}
static void replaceLoadOrStoreOp(vector::MaskedStoreOp storeOp,
vector::MaskedStoreOpAdaptor adaptor,
VectorType vectorTy, Value ptr, unsigned align,
ConversionPatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>(
storeOp, adaptor.getValueToStore(), ptr, adaptor.getMask(), align);
}
/// Conversion pattern for a vector.load, vector.store, vector.maskedload, and
/// vector.maskedstore.
template <class LoadOrStoreOp, class LoadOrStoreOpAdaptor>
class VectorLoadStoreConversion : public ConvertOpToLLVMPattern<LoadOrStoreOp> {
public:
using ConvertOpToLLVMPattern<LoadOrStoreOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(LoadOrStoreOp loadOrStoreOp,
typename LoadOrStoreOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only 1-D vectors can be lowered to LLVM.
VectorType vectorTy = loadOrStoreOp.getVectorType();
if (vectorTy.getRank() > 1)
return failure();
auto loc = loadOrStoreOp->getLoc();
MemRefType memRefTy = loadOrStoreOp.getMemRefType();
// Resolve alignment.
unsigned align;
if (failed(getMemRefAlignment(*this->getTypeConverter(), memRefTy, align)))
return failure();
// Resolve address.
auto vtype = this->typeConverter->convertType(loadOrStoreOp.getVectorType())
.template cast<VectorType>();
Value dataPtr = this->getStridedElementPtr(loc, memRefTy, adaptor.getBase(),
adaptor.getIndices(), rewriter);
Value ptr = castDataPtr(rewriter, loc, dataPtr, memRefTy, vtype);
replaceLoadOrStoreOp(loadOrStoreOp, adaptor, vtype, ptr, align, rewriter);
return success();
}
};
/// Conversion pattern for a vector.gather.
class VectorGatherOpConversion
: public ConvertOpToLLVMPattern<vector::GatherOp> {
public:
using ConvertOpToLLVMPattern<vector::GatherOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::GatherOp gather, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
MemRefType memRefType = gather.getBaseType().dyn_cast<MemRefType>();
assert(memRefType && "The base should be bufferized");
if (failed(isMemRefTypeSupported(memRefType)))
return failure();
auto loc = gather->getLoc();
// Resolve alignment.
unsigned align;
if (failed(getMemRefAlignment(*getTypeConverter(), memRefType, align)))
return failure();
Value ptr = getStridedElementPtr(loc, memRefType, adaptor.getBase(),
adaptor.getIndices(), rewriter);
Value base = adaptor.getBase();
auto llvmNDVectorTy = adaptor.getIndexVec().getType();
// Handle the simple case of 1-D vector.
if (!llvmNDVectorTy.isa<LLVM::LLVMArrayType>()) {
auto vType = gather.getVectorType();
// Resolve address.
Value ptrs = getIndexedPtrs(rewriter, loc, memRefType, base, ptr,
adaptor.getIndexVec(),
/*vLen=*/vType.getDimSize(0));
// Replace with the gather intrinsic.
rewriter.replaceOpWithNewOp<LLVM::masked_gather>(
gather, typeConverter->convertType(vType), ptrs, adaptor.getMask(),
adaptor.getPassThru(), rewriter.getI32IntegerAttr(align));
return success();
}
auto callback = [align, memRefType, base, ptr, loc, &rewriter](
Type llvm1DVectorTy, ValueRange vectorOperands) {
// Resolve address.
Value ptrs = getIndexedPtrs(
rewriter, loc, memRefType, base, ptr, /*index=*/vectorOperands[0],
LLVM::getVectorNumElements(llvm1DVectorTy).getFixedValue());
// Create the gather intrinsic.
return rewriter.create<LLVM::masked_gather>(
loc, llvm1DVectorTy, ptrs, /*mask=*/vectorOperands[1],
/*passThru=*/vectorOperands[2], rewriter.getI32IntegerAttr(align));
};
SmallVector<Value> vectorOperands = {
adaptor.getIndexVec(), adaptor.getMask(), adaptor.getPassThru()};
return LLVM::detail::handleMultidimensionalVectors(
gather, vectorOperands, *getTypeConverter(), callback, rewriter);
}
};
/// Conversion pattern for a vector.scatter.
class VectorScatterOpConversion
: public ConvertOpToLLVMPattern<vector::ScatterOp> {
public:
using ConvertOpToLLVMPattern<vector::ScatterOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ScatterOp scatter, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = scatter->getLoc();
MemRefType memRefType = scatter.getMemRefType();
if (failed(isMemRefTypeSupported(memRefType)))
return failure();
// Resolve alignment.
unsigned align;
if (failed(getMemRefAlignment(*getTypeConverter(), memRefType, align)))
return failure();
// Resolve address.
VectorType vType = scatter.getVectorType();
Value ptr = getStridedElementPtr(loc, memRefType, adaptor.getBase(),
adaptor.getIndices(), rewriter);
Value ptrs =
getIndexedPtrs(rewriter, loc, memRefType, adaptor.getBase(), ptr,
adaptor.getIndexVec(), /*vLen=*/vType.getDimSize(0));
// Replace with the scatter intrinsic.
rewriter.replaceOpWithNewOp<LLVM::masked_scatter>(
scatter, adaptor.getValueToStore(), ptrs, adaptor.getMask(),
rewriter.getI32IntegerAttr(align));
return success();
}
};
/// Conversion pattern for a vector.expandload.
class VectorExpandLoadOpConversion
: public ConvertOpToLLVMPattern<vector::ExpandLoadOp> {
public:
using ConvertOpToLLVMPattern<vector::ExpandLoadOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ExpandLoadOp expand, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = expand->getLoc();
MemRefType memRefType = expand.getMemRefType();
// Resolve address.
auto vtype = typeConverter->convertType(expand.getVectorType());
Value ptr = getStridedElementPtr(loc, memRefType, adaptor.getBase(),
adaptor.getIndices(), rewriter);
rewriter.replaceOpWithNewOp<LLVM::masked_expandload>(
expand, vtype, ptr, adaptor.getMask(), adaptor.getPassThru());
return success();
}
};
/// Conversion pattern for a vector.compressstore.
class VectorCompressStoreOpConversion
: public ConvertOpToLLVMPattern<vector::CompressStoreOp> {
public:
using ConvertOpToLLVMPattern<vector::CompressStoreOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::CompressStoreOp compress, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = compress->getLoc();
MemRefType memRefType = compress.getMemRefType();
// Resolve address.
Value ptr = getStridedElementPtr(loc, memRefType, adaptor.getBase(),
adaptor.getIndices(), rewriter);
rewriter.replaceOpWithNewOp<LLVM::masked_compressstore>(
compress, adaptor.getValueToStore(), ptr, adaptor.getMask());
return success();
}
};
/// Helper method to lower a `vector.reduction` op that performs an arithmetic
/// operation like add,mul, etc.. `VectorOp` is the LLVM vector intrinsic to use
/// and `ScalarOp` is the scalar operation used to add the accumulation value if
/// non-null.
template <class VectorOp, class ScalarOp>
static Value createIntegerReductionArithmeticOpLowering(
ConversionPatternRewriter &rewriter, Location loc, Type llvmType,
Value vectorOperand, Value accumulator) {
Value result = rewriter.create<VectorOp>(loc, llvmType, vectorOperand);
if (accumulator)
result = rewriter.create<ScalarOp>(loc, accumulator, result);
return result;
}
/// Helper method to lower a `vector.reduction` operation that performs
/// a comparison operation like `min`/`max`. `VectorOp` is the LLVM vector
/// intrinsic to use and `predicate` is the predicate to use to compare+combine
/// the accumulator value if non-null.
template <class VectorOp>
static Value createIntegerReductionComparisonOpLowering(
ConversionPatternRewriter &rewriter, Location loc, Type llvmType,
Value vectorOperand, Value accumulator, LLVM::ICmpPredicate predicate) {
Value result = rewriter.create<VectorOp>(loc, llvmType, vectorOperand);
if (accumulator) {
Value cmp =
rewriter.create<LLVM::ICmpOp>(loc, predicate, accumulator, result);
result = rewriter.create<LLVM::SelectOp>(loc, cmp, accumulator, result);
}
return result;
}
/// Create lowering of minf/maxf op. We cannot use llvm.maximum/llvm.minimum
/// with vector types.
static Value createMinMaxF(OpBuilder &builder, Location loc, Value lhs,
Value rhs, bool isMin) {
auto floatType = getElementTypeOrSelf(lhs.getType()).cast<FloatType>();
Type i1Type = builder.getI1Type();
if (auto vecType = lhs.getType().dyn_cast<VectorType>())
i1Type = VectorType::get(vecType.getShape(), i1Type);
Value cmp = builder.create<LLVM::FCmpOp>(
loc, i1Type, isMin ? LLVM::FCmpPredicate::olt : LLVM::FCmpPredicate::ogt,
lhs, rhs);
Value sel = builder.create<LLVM::SelectOp>(loc, cmp, lhs, rhs);
Value isNan = builder.create<LLVM::FCmpOp>(
loc, i1Type, LLVM::FCmpPredicate::uno, lhs, rhs);
Value nan = builder.create<LLVM::ConstantOp>(
loc, lhs.getType(),
builder.getFloatAttr(floatType,
APFloat::getQNaN(floatType.getFloatSemantics())));
return builder.create<LLVM::SelectOp>(loc, isNan, nan, sel);
}
/// Conversion pattern for all vector reductions.
class VectorReductionOpConversion
: public ConvertOpToLLVMPattern<vector::ReductionOp> {
public:
explicit VectorReductionOpConversion(LLVMTypeConverter &typeConv,
bool reassociateFPRed)
: ConvertOpToLLVMPattern<vector::ReductionOp>(typeConv),
reassociateFPReductions(reassociateFPRed) {}
LogicalResult
matchAndRewrite(vector::ReductionOp reductionOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto kind = reductionOp.getKind();
Type eltType = reductionOp.getDest().getType();
Type llvmType = typeConverter->convertType(eltType);
Value operand = adaptor.getVector();
Value acc = adaptor.getAcc();
Location loc = reductionOp.getLoc();
if (eltType.isIntOrIndex()) {
// Integer reductions: add/mul/min/max/and/or/xor.
Value result;
switch (kind) {
case vector::CombiningKind::ADD:
result =
createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_add,
LLVM::AddOp>(
rewriter, loc, llvmType, operand, acc);
break;
case vector::CombiningKind::MUL:
result =
createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_mul,
LLVM::MulOp>(
rewriter, loc, llvmType, operand, acc);
break;
case vector::CombiningKind::MINUI:
result = createIntegerReductionComparisonOpLowering<
LLVM::vector_reduce_umin>(rewriter, loc, llvmType, operand, acc,
LLVM::ICmpPredicate::ule);
break;
case vector::CombiningKind::MINSI:
result = createIntegerReductionComparisonOpLowering<
LLVM::vector_reduce_smin>(rewriter, loc, llvmType, operand, acc,
LLVM::ICmpPredicate::sle);
break;
case vector::CombiningKind::MAXUI:
result = createIntegerReductionComparisonOpLowering<
LLVM::vector_reduce_umax>(rewriter, loc, llvmType, operand, acc,
LLVM::ICmpPredicate::uge);
break;
case vector::CombiningKind::MAXSI:
result = createIntegerReductionComparisonOpLowering<
LLVM::vector_reduce_smax>(rewriter, loc, llvmType, operand, acc,
LLVM::ICmpPredicate::sge);
break;
case vector::CombiningKind::AND:
result =
createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_and,
LLVM::AndOp>(
rewriter, loc, llvmType, operand, acc);
break;
case vector::CombiningKind::OR:
result =
createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_or,
LLVM::OrOp>(
rewriter, loc, llvmType, operand, acc);
break;
case vector::CombiningKind::XOR:
result =
createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_xor,
LLVM::XOrOp>(
rewriter, loc, llvmType, operand, acc);
break;
default:
return failure();
}
rewriter.replaceOp(reductionOp, result);
return success();
}
if (!eltType.isa<FloatType>())
return failure();
// Floating-point reductions: add/mul/min/max
if (kind == vector::CombiningKind::ADD) {
// Optional accumulator (or zero).
Value acc = adaptor.getOperands().size() > 1
? adaptor.getOperands()[1]
: rewriter.create<LLVM::ConstantOp>(
reductionOp->getLoc(), llvmType,
rewriter.getZeroAttr(eltType));
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fadd>(
reductionOp, llvmType, acc, operand,
rewriter.getBoolAttr(reassociateFPReductions));
} else if (kind == vector::CombiningKind::MUL) {
// Optional accumulator (or one).
Value acc = adaptor.getOperands().size() > 1
? adaptor.getOperands()[1]
: rewriter.create<LLVM::ConstantOp>(
reductionOp->getLoc(), llvmType,
rewriter.getFloatAttr(eltType, 1.0));
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmul>(
reductionOp, llvmType, acc, operand,
rewriter.getBoolAttr(reassociateFPReductions));
} else if (kind == vector::CombiningKind::MINF) {
// FIXME: MLIR's 'minf' and LLVM's 'vector_reduce_fmin' do not handle
// NaNs/-0.0/+0.0 in the same way.
Value result =
rewriter.create<LLVM::vector_reduce_fmin>(loc, llvmType, operand);
if (acc)
result = createMinMaxF(rewriter, loc, result, acc, /*isMin=*/true);
rewriter.replaceOp(reductionOp, result);
} else if (kind == vector::CombiningKind::MAXF) {
// FIXME: MLIR's 'maxf' and LLVM's 'vector_reduce_fmax' do not handle
// NaNs/-0.0/+0.0 in the same way.
Value result =
rewriter.create<LLVM::vector_reduce_fmax>(loc, llvmType, operand);
if (acc)
result = createMinMaxF(rewriter, loc, result, acc, /*isMin=*/false);
rewriter.replaceOp(reductionOp, result);
} else
return failure();
return success();
}
private:
const bool reassociateFPReductions;
};
class VectorShuffleOpConversion
: public ConvertOpToLLVMPattern<vector::ShuffleOp> {
public:
using ConvertOpToLLVMPattern<vector::ShuffleOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ShuffleOp shuffleOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = shuffleOp->getLoc();
auto v1Type = shuffleOp.getV1VectorType();
auto v2Type = shuffleOp.getV2VectorType();
auto vectorType = shuffleOp.getVectorType();
Type llvmType = typeConverter->convertType(vectorType);
auto maskArrayAttr = shuffleOp.getMask();
// Bail if result type cannot be lowered.
if (!llvmType)
return failure();
// Get rank and dimension sizes.
int64_t rank = vectorType.getRank();
#ifndef NDEBUG
bool wellFormed0DCase =
v1Type.getRank() == 0 && v2Type.getRank() == 0 && rank == 1;
bool wellFormedNDCase =
v1Type.getRank() == rank && v2Type.getRank() == rank;
assert((wellFormed0DCase || wellFormedNDCase) && "op is not well-formed");
#endif
// For rank 0 and 1, where both operands have *exactly* the same vector
// type, there is direct shuffle support in LLVM. Use it!
if (rank <= 1 && v1Type == v2Type) {
Value llvmShuffleOp = rewriter.create<LLVM::ShuffleVectorOp>(
loc, adaptor.getV1(), adaptor.getV2(),
LLVM::convertArrayToIndices<int32_t>(maskArrayAttr));
rewriter.replaceOp(shuffleOp, llvmShuffleOp);
return success();
}
// For all other cases, insert the individual values individually.
int64_t v1Dim = v1Type.getDimSize(0);
Type eltType;
if (auto arrayType = llvmType.dyn_cast<LLVM::LLVMArrayType>())
eltType = arrayType.getElementType();
else
eltType = llvmType.cast<VectorType>().getElementType();
Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType);
int64_t insPos = 0;
for (const auto &en : llvm::enumerate(maskArrayAttr)) {
int64_t extPos = en.value().cast<IntegerAttr>().getInt();
Value value = adaptor.getV1();
if (extPos >= v1Dim) {
extPos -= v1Dim;
value = adaptor.getV2();
}
Value extract = extractOne(rewriter, *getTypeConverter(), loc, value,
eltType, rank, extPos);
insert = insertOne(rewriter, *getTypeConverter(), loc, insert, extract,
llvmType, rank, insPos++);
}
rewriter.replaceOp(shuffleOp, insert);
return success();
}
};
class VectorExtractElementOpConversion
: public ConvertOpToLLVMPattern<vector::ExtractElementOp> {
public:
using ConvertOpToLLVMPattern<
vector::ExtractElementOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ExtractElementOp extractEltOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto vectorType = extractEltOp.getVectorType();
auto llvmType = typeConverter->convertType(vectorType.getElementType());
// Bail if result type cannot be lowered.
if (!llvmType)
return failure();
if (vectorType.getRank() == 0) {
Location loc = extractEltOp.getLoc();
auto idxType = rewriter.getIndexType();
auto zero = rewriter.create<LLVM::ConstantOp>(
loc, typeConverter->convertType(idxType),
rewriter.getIntegerAttr(idxType, 0));
rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>(
extractEltOp, llvmType, adaptor.getVector(), zero);
return success();
}
rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>(
extractEltOp, llvmType, adaptor.getVector(), adaptor.getPosition());
return success();
}
};
class VectorExtractOpConversion
: public ConvertOpToLLVMPattern<vector::ExtractOp> {
public:
using ConvertOpToLLVMPattern<vector::ExtractOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ExtractOp extractOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = extractOp->getLoc();
auto resultType = extractOp.getResult().getType();
auto llvmResultType = typeConverter->convertType(resultType);
auto positionArrayAttr = extractOp.getPosition();
// Bail if result type cannot be lowered.
if (!llvmResultType)
return failure();
// Extract entire vector. Should be handled by folder, but just to be safe.
if (positionArrayAttr.empty()) {
rewriter.replaceOp(extractOp, adaptor.getVector());
return success();
}
// One-shot extraction of vector from array (only requires extractvalue).
if (resultType.isa<VectorType>()) {
SmallVector<int64_t> indices;
for (auto idx : positionArrayAttr.getAsRange<IntegerAttr>())
indices.push_back(idx.getInt());
Value extracted = rewriter.create<LLVM::ExtractValueOp>(
loc, adaptor.getVector(), indices);
rewriter.replaceOp(extractOp, extracted);
return success();
}
// Potential extraction of 1-D vector from array.
Value extracted = adaptor.getVector();
auto positionAttrs = positionArrayAttr.getValue();
if (positionAttrs.size() > 1) {
SmallVector<int64_t> nMinusOnePosition;
for (auto idx : positionAttrs.drop_back())
nMinusOnePosition.push_back(idx.cast<IntegerAttr>().getInt());
extracted = rewriter.create<LLVM::ExtractValueOp>(loc, extracted,
nMinusOnePosition);
}
// Remaining extraction of element from 1-D LLVM vector
auto position = positionAttrs.back().cast<IntegerAttr>();
auto i64Type = IntegerType::get(rewriter.getContext(), 64);
auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
extracted =
rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant);
rewriter.replaceOp(extractOp, extracted);
return success();
}
};
/// Conversion pattern that turns a vector.fma on a 1-D vector
/// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion.
/// This does not match vectors of n >= 2 rank.
///
/// Example:
/// ```
/// vector.fma %a, %a, %a : vector<8xf32>
/// ```
/// is converted to:
/// ```
/// llvm.intr.fmuladd %va, %va, %va:
/// (!llvm."<8 x f32>">, !llvm<"<8 x f32>">, !llvm<"<8 x f32>">)
/// -> !llvm."<8 x f32>">
/// ```
class VectorFMAOp1DConversion : public ConvertOpToLLVMPattern<vector::FMAOp> {
public:
using ConvertOpToLLVMPattern<vector::FMAOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::FMAOp fmaOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType vType = fmaOp.getVectorType();
if (vType.getRank() > 1)
return failure();
rewriter.replaceOpWithNewOp<LLVM::FMulAddOp>(
fmaOp, adaptor.getLhs(), adaptor.getRhs(), adaptor.getAcc());
return success();
}
};
class VectorInsertElementOpConversion
: public ConvertOpToLLVMPattern<vector::InsertElementOp> {
public:
using ConvertOpToLLVMPattern<vector::InsertElementOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::InsertElementOp insertEltOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto vectorType = insertEltOp.getDestVectorType();
auto llvmType = typeConverter->convertType(vectorType);
// Bail if result type cannot be lowered.
if (!llvmType)
return failure();
if (vectorType.getRank() == 0) {
Location loc = insertEltOp.getLoc();
auto idxType = rewriter.getIndexType();
auto zero = rewriter.create<LLVM::ConstantOp>(
loc, typeConverter->convertType(idxType),
rewriter.getIntegerAttr(idxType, 0));
rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
insertEltOp, llvmType, adaptor.getDest(), adaptor.getSource(), zero);
return success();
}
rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
insertEltOp, llvmType, adaptor.getDest(), adaptor.getSource(),
adaptor.getPosition());
return success();
}
};
class VectorInsertOpConversion
: public ConvertOpToLLVMPattern<vector::InsertOp> {
public:
using ConvertOpToLLVMPattern<vector::InsertOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::InsertOp insertOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = insertOp->getLoc();
auto sourceType = insertOp.getSourceType();
auto destVectorType = insertOp.getDestVectorType();
auto llvmResultType = typeConverter->convertType(destVectorType);
auto positionArrayAttr = insertOp.getPosition();
// Bail if result type cannot be lowered.
if (!llvmResultType)
return failure();
// Overwrite entire vector with value. Should be handled by folder, but
// just to be safe.
if (positionArrayAttr.empty()) {
rewriter.replaceOp(insertOp, adaptor.getSource());
return success();
}
// One-shot insertion of a vector into an array (only requires insertvalue).
if (sourceType.isa<VectorType>()) {
Value inserted = rewriter.create<LLVM::InsertValueOp>(
loc, adaptor.getDest(), adaptor.getSource(),
LLVM::convertArrayToIndices(positionArrayAttr));
rewriter.replaceOp(insertOp, inserted);
return success();
}
// Potential extraction of 1-D vector from array.
Value extracted = adaptor.getDest();
auto positionAttrs = positionArrayAttr.getValue();
auto position = positionAttrs.back().cast<IntegerAttr>();
auto oneDVectorType = destVectorType;
if (positionAttrs.size() > 1) {
oneDVectorType = reducedVectorTypeBack(destVectorType);
extracted = rewriter.create<LLVM::ExtractValueOp>(
loc, extracted,
LLVM::convertArrayToIndices(positionAttrs.drop_back()));
}
// Insertion of an element into a 1-D LLVM vector.
auto i64Type = IntegerType::get(rewriter.getContext(), 64);
auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
Value inserted = rewriter.create<LLVM::InsertElementOp>(
loc, typeConverter->convertType(oneDVectorType), extracted,
adaptor.getSource(), constant);
// Potential insertion of resulting 1-D vector into array.
if (positionAttrs.size() > 1) {
inserted = rewriter.create<LLVM::InsertValueOp>(
loc, adaptor.getDest(), inserted,
LLVM::convertArrayToIndices(positionAttrs.drop_back()));
}
rewriter.replaceOp(insertOp, inserted);
return success();
}
};
/// Lower vector.scalable.insert ops to LLVM vector.insert
struct VectorScalableInsertOpLowering
: public ConvertOpToLLVMPattern<vector::ScalableInsertOp> {
using ConvertOpToLLVMPattern<
vector::ScalableInsertOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ScalableInsertOp insOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<LLVM::vector_insert>(
insOp, adaptor.getSource(), adaptor.getDest(), adaptor.getPos());
return success();
}
};
/// Lower vector.scalable.extract ops to LLVM vector.extract
struct VectorScalableExtractOpLowering
: public ConvertOpToLLVMPattern<vector::ScalableExtractOp> {
using ConvertOpToLLVMPattern<
vector::ScalableExtractOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ScalableExtractOp extOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<LLVM::vector_extract>(
extOp, typeConverter->convertType(extOp.getResultVectorType()),
adaptor.getSource(), adaptor.getPos());
return success();
}
};
/// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1.
///
/// Example:
/// ```
/// %d = vector.fma %a, %b, %c : vector<2x4xf32>
/// ```
/// is rewritten into:
/// ```
/// %r = splat %f0: vector<2x4xf32>
/// %va = vector.extractvalue %a[0] : vector<2x4xf32>
/// %vb = vector.extractvalue %b[0] : vector<2x4xf32>
/// %vc = vector.extractvalue %c[0] : vector<2x4xf32>
/// %vd = vector.fma %va, %vb, %vc : vector<4xf32>
/// %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32>
/// %va2 = vector.extractvalue %a2[1] : vector<2x4xf32>
/// %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32>
/// %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32>
/// %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32>
/// %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32>
/// // %r3 holds the final value.
/// ```
class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> {
public:
using OpRewritePattern<FMAOp>::OpRewritePattern;
void initialize() {
// This pattern recursively unpacks one dimension at a time. The recursion
// bounded as the rank is strictly decreasing.
setHasBoundedRewriteRecursion();
}
LogicalResult matchAndRewrite(FMAOp op,
PatternRewriter &rewriter) const override {
auto vType = op.getVectorType();
if (vType.getRank() < 2)
return failure();
auto loc = op.getLoc();
auto elemType = vType.getElementType();
Value zero = rewriter.create<arith::ConstantOp>(
loc, elemType, rewriter.getZeroAttr(elemType));
Value desc = rewriter.create<vector::SplatOp>(loc, vType, zero);
for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) {
Value extrLHS = rewriter.create<ExtractOp>(loc, op.getLhs(), i);
Value extrRHS = rewriter.create<ExtractOp>(loc, op.getRhs(), i);
Value extrACC = rewriter.create<ExtractOp>(loc, op.getAcc(), i);
Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC);
desc = rewriter.create<InsertOp>(loc, fma, desc, i);
}
rewriter.replaceOp(op, desc);
return success();
}
};
/// Returns the strides if the memory underlying `memRefType` has a contiguous
/// static layout.
static llvm::Optional<SmallVector<int64_t, 4>>
computeContiguousStrides(MemRefType memRefType) {
int64_t offset;
SmallVector<int64_t, 4> strides;
if (failed(getStridesAndOffset(memRefType, strides, offset)))
return std::nullopt;
if (!strides.empty() && strides.back() != 1)
return std::nullopt;
// If no layout or identity layout, this is contiguous by definition.
if (memRefType.getLayout().isIdentity())
return strides;
// Otherwise, we must determine contiguity form shapes. This can only ever
// work in static cases because MemRefType is underspecified to represent
// contiguous dynamic shapes in other ways than with just empty/identity
// layout.
auto sizes = memRefType.getShape();
for (int index = 0, e = strides.size() - 1; index < e; ++index) {
if (ShapedType::isDynamic(sizes[index + 1]) ||
ShapedType::isDynamic(strides[index]) ||
ShapedType::isDynamic(strides[index + 1]))
return std::nullopt;
if (strides[index] != strides[index + 1] * sizes[index + 1])
return std::nullopt;
}
return strides;
}
class VectorTypeCastOpConversion
: public ConvertOpToLLVMPattern<vector::TypeCastOp> {
public:
using ConvertOpToLLVMPattern<vector::TypeCastOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::TypeCastOp castOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = castOp->getLoc();
MemRefType sourceMemRefType =
castOp.getOperand().getType().cast<MemRefType>();
MemRefType targetMemRefType = castOp.getType();
// Only static shape casts supported atm.
if (!sourceMemRefType.hasStaticShape() ||
!targetMemRefType.hasStaticShape())
return failure();
auto llvmSourceDescriptorTy =
adaptor.getOperands()[0].getType().dyn_cast<LLVM::LLVMStructType>();
if (!llvmSourceDescriptorTy)
return failure();
MemRefDescriptor sourceMemRef(adaptor.getOperands()[0]);
auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType)
.dyn_cast_or_null<LLVM::LLVMStructType>();
if (!llvmTargetDescriptorTy)
return failure();
// Only contiguous source buffers supported atm.
auto sourceStrides = computeContiguousStrides(sourceMemRefType);
if (!sourceStrides)
return failure();
auto targetStrides = computeContiguousStrides(targetMemRefType);
if (!targetStrides)
return failure();
// Only support static strides for now, regardless of contiguity.
if (llvm::any_of(*targetStrides, ShapedType::isDynamic))
return failure();
auto int64Ty = IntegerType::get(rewriter.getContext(), 64);
// Create descriptor.
auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
Type llvmTargetElementTy = desc.getElementPtrType();
// Set allocated ptr.
Value allocated = sourceMemRef.allocatedPtr(rewriter, loc);
allocated =
rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated);
desc.setAllocatedPtr(rewriter, loc, allocated);
// Set aligned ptr.
Value ptr = sourceMemRef.alignedPtr(rewriter, loc);
ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr);
desc.setAlignedPtr(rewriter, loc, ptr);
// Fill offset 0.
auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0);
auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr);
desc.setOffset(rewriter, loc, zero);
// Fill size and stride descriptors in memref.
for (const auto &indexedSize :
llvm::enumerate(targetMemRefType.getShape())) {
int64_t index = indexedSize.index();
auto sizeAttr =
rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value());
auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr);
desc.setSize(rewriter, loc, index, size);
auto strideAttr = rewriter.getIntegerAttr(rewriter.getIndexType(),
(*targetStrides)[index]);
auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr);
desc.setStride(rewriter, loc, index, stride);
}
rewriter.replaceOp(castOp, {desc});
return success();
}
};
/// Conversion pattern for a `vector.create_mask` (1-D scalable vectors only).
/// Non-scalable versions of this operation are handled in Vector Transforms.
class VectorCreateMaskOpRewritePattern
: public OpRewritePattern<vector::CreateMaskOp> {
public:
explicit VectorCreateMaskOpRewritePattern(MLIRContext *context,
bool enableIndexOpt)
: OpRewritePattern<vector::CreateMaskOp>(context),
force32BitVectorIndices(enableIndexOpt) {}
LogicalResult matchAndRewrite(vector::CreateMaskOp op,
PatternRewriter &rewriter) const override {
auto dstType = op.getType();
if (dstType.getRank() != 1 || !dstType.cast<VectorType>().isScalable())
return failure();
IntegerType idxType =
force32BitVectorIndices ? rewriter.getI32Type() : rewriter.getI64Type();
auto loc = op->getLoc();
Value indices = rewriter.create<LLVM::StepVectorOp>(
loc, LLVM::getVectorType(idxType, dstType.getShape()[0],
/*isScalable=*/true));
auto bound = getValueOrCreateCastToIndexLike(rewriter, loc, idxType,
op.getOperand(0));
Value bounds = rewriter.create<SplatOp>(loc, indices.getType(), bound);
Value comp = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt,
indices, bounds);
rewriter.replaceOp(op, comp);
return success();
}
private:
const bool force32BitVectorIndices;
};
class VectorPrintOpConversion : public ConvertOpToLLVMPattern<vector::PrintOp> {
public:
using ConvertOpToLLVMPattern<vector::PrintOp>::ConvertOpToLLVMPattern;
// Proof-of-concept lowering implementation that relies on a small
// runtime support library, which only needs to provide a few
// printing methods (single value for all data types, opening/closing
// bracket, comma, newline). The lowering fully unrolls a vector
// in terms of these elementary printing operations. The advantage
// of this approach is that the library can remain unaware of all
// low-level implementation details of vectors while still supporting
// output of any shaped and dimensioned vector. Due to full unrolling,
// this approach is less suited for very large vectors though.
//
// TODO: rely solely on libc in future? something else?
//
LogicalResult
matchAndRewrite(vector::PrintOp printOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type printType = printOp.getPrintType();
if (typeConverter->convertType(printType) == nullptr)
return failure();
// Make sure element type has runtime support.
PrintConversion conversion = PrintConversion::None;
VectorType vectorType = printType.dyn_cast<VectorType>();
Type eltType = vectorType ? vectorType.getElementType() : printType;
Operation *printer;
if (eltType.isF32()) {
printer =
LLVM::lookupOrCreatePrintF32Fn(printOp->getParentOfType<ModuleOp>());
} else if (eltType.isF64()) {
printer =
LLVM::lookupOrCreatePrintF64Fn(printOp->getParentOfType<ModuleOp>());
} else if (eltType.isIndex()) {
printer =
LLVM::lookupOrCreatePrintU64Fn(printOp->getParentOfType<ModuleOp>());
} else if (auto intTy = eltType.dyn_cast<IntegerType>()) {
// Integers need a zero or sign extension on the operand
// (depending on the source type) as well as a signed or
// unsigned print method. Up to 64-bit is supported.
unsigned width = intTy.getWidth();
if (intTy.isUnsigned()) {
if (width <= 64) {
if (width < 64)
conversion = PrintConversion::ZeroExt64;
printer = LLVM::lookupOrCreatePrintU64Fn(
printOp->getParentOfType<ModuleOp>());
} else {
return failure();
}
} else {
assert(intTy.isSignless() || intTy.isSigned());
if (width <= 64) {
// Note that we *always* zero extend booleans (1-bit integers),
// so that true/false is printed as 1/0 rather than -1/0.
if (width == 1)
conversion = PrintConversion::ZeroExt64;
else if (width < 64)
conversion = PrintConversion::SignExt64;
printer = LLVM::lookupOrCreatePrintI64Fn(
printOp->getParentOfType<ModuleOp>());
} else {
return failure();
}
}
} else {
return failure();
}
// Unroll vector into elementary print calls.
int64_t rank = vectorType ? vectorType.getRank() : 0;
Type type = vectorType ? vectorType : eltType;
emitRanks(rewriter, printOp, adaptor.getSource(), type, printer, rank,
conversion);
emitCall(rewriter, printOp->getLoc(),
LLVM::lookupOrCreatePrintNewlineFn(
printOp->getParentOfType<ModuleOp>()));
rewriter.eraseOp(printOp);
return success();
}
private:
enum class PrintConversion {
// clang-format off
None,
ZeroExt64,
SignExt64
// clang-format on
};
void emitRanks(ConversionPatternRewriter &rewriter, Operation *op,
Value value, Type type, Operation *printer, int64_t rank,
PrintConversion conversion) const {
VectorType vectorType = type.dyn_cast<VectorType>();
Location loc = op->getLoc();
if (!vectorType) {
assert(rank == 0 && "The scalar case expects rank == 0");
switch (conversion) {
case PrintConversion::ZeroExt64:
value = rewriter.create<arith::ExtUIOp>(
loc, IntegerType::get(rewriter.getContext(), 64), value);
break;
case PrintConversion::SignExt64:
value = rewriter.create<arith::ExtSIOp>(
loc, IntegerType::get(rewriter.getContext(), 64), value);
break;
case PrintConversion::None:
break;
}
emitCall(rewriter, loc, printer, value);
return;
}
emitCall(rewriter, loc,
LLVM::lookupOrCreatePrintOpenFn(op->getParentOfType<ModuleOp>()));
Operation *printComma =
LLVM::lookupOrCreatePrintCommaFn(op->getParentOfType<ModuleOp>());
if (rank <= 1) {
auto reducedType = vectorType.getElementType();
auto llvmType = typeConverter->convertType(reducedType);
int64_t dim = rank == 0 ? 1 : vectorType.getDimSize(0);
for (int64_t d = 0; d < dim; ++d) {
Value nestedVal = extractOne(rewriter, *getTypeConverter(), loc, value,
llvmType, /*rank=*/0, /*pos=*/d);
emitRanks(rewriter, op, nestedVal, reducedType, printer, /*rank=*/0,
conversion);
if (d != dim - 1)
emitCall(rewriter, loc, printComma);
}
emitCall(
rewriter, loc,
LLVM::lookupOrCreatePrintCloseFn(op->getParentOfType<ModuleOp>()));
return;
}
int64_t dim = vectorType.getDimSize(0);
for (int64_t d = 0; d < dim; ++d) {
auto reducedType = reducedVectorTypeFront(vectorType);
auto llvmType = typeConverter->convertType(reducedType);
Value nestedVal = extractOne(rewriter, *getTypeConverter(), loc, value,
llvmType, rank, d);
emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1,
conversion);
if (d != dim - 1)
emitCall(rewriter, loc, printComma);
}
emitCall(rewriter, loc,
LLVM::lookupOrCreatePrintCloseFn(op->getParentOfType<ModuleOp>()));
}
// Helper to emit a call.
static void emitCall(ConversionPatternRewriter &rewriter, Location loc,
Operation *ref, ValueRange params = ValueRange()) {
rewriter.create<LLVM::CallOp>(loc, TypeRange(), SymbolRefAttr::get(ref),
params);
}
};
/// The Splat operation is lowered to an insertelement + a shufflevector
/// operation. Splat to only 0-d and 1-d vector result types are lowered.
struct VectorSplatOpLowering : public ConvertOpToLLVMPattern<vector::SplatOp> {
using ConvertOpToLLVMPattern<vector::SplatOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::SplatOp splatOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType resultType = splatOp.getType().cast<VectorType>();
if (resultType.getRank() > 1)
return failure();
// First insert it into an undef vector so we can shuffle it.
auto vectorType = typeConverter->convertType(splatOp.getType());
Value undef = rewriter.create<LLVM::UndefOp>(splatOp.getLoc(), vectorType);
auto zero = rewriter.create<LLVM::ConstantOp>(
splatOp.getLoc(),
typeConverter->convertType(rewriter.getIntegerType(32)),
rewriter.getZeroAttr(rewriter.getIntegerType(32)));
// For 0-d vector, we simply do `insertelement`.
if (resultType.getRank() == 0) {
rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
splatOp, vectorType, undef, adaptor.getInput(), zero);
return success();
}
// For 1-d vector, we additionally do a `vectorshuffle`.
auto v = rewriter.create<LLVM::InsertElementOp>(
splatOp.getLoc(), vectorType, undef, adaptor.getInput(), zero);
int64_t width = splatOp.getType().cast<VectorType>().getDimSize(0);
SmallVector<int32_t> zeroValues(width, 0);
// Shuffle the value across the desired number of elements.
rewriter.replaceOpWithNewOp<LLVM::ShuffleVectorOp>(splatOp, v, undef,
zeroValues);
return success();
}
};
/// The Splat operation is lowered to an insertelement + a shufflevector
/// operation. Splat to only 2+-d vector result types are lowered by the
/// SplatNdOpLowering, the 1-d case is handled by SplatOpLowering.
struct VectorSplatNdOpLowering : public ConvertOpToLLVMPattern<SplatOp> {
using ConvertOpToLLVMPattern<SplatOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(SplatOp splatOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType resultType = splatOp.getType();
if (resultType.getRank() <= 1)
return failure();
// First insert it into an undef vector so we can shuffle it.
auto loc = splatOp.getLoc();
auto vectorTypeInfo =
LLVM::detail::extractNDVectorTypeInfo(resultType, *getTypeConverter());
auto llvmNDVectorTy = vectorTypeInfo.llvmNDVectorTy;
auto llvm1DVectorTy = vectorTypeInfo.llvm1DVectorTy;
if (!llvmNDVectorTy || !llvm1DVectorTy)
return failure();
// Construct returned value.
Value desc = rewriter.create<LLVM::UndefOp>(loc, llvmNDVectorTy);
// Construct a 1-D vector with the splatted value that we insert in all the
// places within the returned descriptor.
Value vdesc = rewriter.create<LLVM::UndefOp>(loc, llvm1DVectorTy);
auto zero = rewriter.create<LLVM::ConstantOp>(
loc, typeConverter->convertType(rewriter.getIntegerType(32)),
rewriter.getZeroAttr(rewriter.getIntegerType(32)));
Value v = rewriter.create<LLVM::InsertElementOp>(loc, llvm1DVectorTy, vdesc,
adaptor.getInput(), zero);
// Shuffle the value across the desired number of elements.
int64_t width = resultType.getDimSize(resultType.getRank() - 1);
SmallVector<int32_t> zeroValues(width, 0);
v = rewriter.create<LLVM::ShuffleVectorOp>(loc, v, v, zeroValues);
// Iterate of linear index, convert to coords space and insert splatted 1-D
// vector in each position.
nDVectorIterate(vectorTypeInfo, rewriter, [&](ArrayRef<int64_t> position) {
desc = rewriter.create<LLVM::InsertValueOp>(loc, desc, v, position);
});
rewriter.replaceOp(splatOp, desc);
return success();
}
};
} // namespace
/// Populate the given list with patterns that convert from Vector to LLVM.
void mlir::populateVectorToLLVMConversionPatterns(
LLVMTypeConverter &converter, RewritePatternSet &patterns,
bool reassociateFPReductions, bool force32BitVectorIndices) {
MLIRContext *ctx = converter.getDialect()->getContext();
patterns.add<VectorFMAOpNDRewritePattern>(ctx);
populateVectorInsertExtractStridedSliceTransforms(patterns);
patterns.add<VectorReductionOpConversion>(converter, reassociateFPReductions);
patterns.add<VectorCreateMaskOpRewritePattern>(ctx, force32BitVectorIndices);
patterns
.add<VectorBitCastOpConversion, VectorShuffleOpConversion,
VectorExtractElementOpConversion, VectorExtractOpConversion,
VectorFMAOp1DConversion, VectorInsertElementOpConversion,
VectorInsertOpConversion, VectorPrintOpConversion,
VectorTypeCastOpConversion, VectorScaleOpConversion,
VectorLoadStoreConversion<vector::LoadOp, vector::LoadOpAdaptor>,
VectorLoadStoreConversion<vector::MaskedLoadOp,
vector::MaskedLoadOpAdaptor>,
VectorLoadStoreConversion<vector::StoreOp, vector::StoreOpAdaptor>,
VectorLoadStoreConversion<vector::MaskedStoreOp,
vector::MaskedStoreOpAdaptor>,
VectorGatherOpConversion, VectorScatterOpConversion,
VectorExpandLoadOpConversion, VectorCompressStoreOpConversion,
VectorSplatOpLowering, VectorSplatNdOpLowering,
VectorScalableInsertOpLowering, VectorScalableExtractOpLowering>(
converter);
// Transfer ops with rank > 1 are handled by VectorToSCF.
populateVectorTransferLoweringPatterns(patterns, /*maxTransferRank=*/1);
}
void mlir::populateVectorToLLVMMatrixConversionPatterns(
LLVMTypeConverter &converter, RewritePatternSet &patterns) {
patterns.add<VectorMatmulOpConversion>(converter);
patterns.add<VectorFlatTransposeOpConversion>(converter);
}