1192 lines
45 KiB
C++
1192 lines
45 KiB
C++
//===- GPUDialect.cpp - MLIR Dialect for GPU Kernels implementation -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the GPU kernel-related dialect and its operations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/GPU/GPUDialect.h"
|
|
|
|
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/BuiltinTypes.h"
|
|
#include "mlir/IR/DialectImplementation.h"
|
|
#include "mlir/IR/FunctionImplementation.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/OpImplementation.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::gpu;
|
|
|
|
#include "mlir/Dialect/GPU/GPUOpsDialect.cpp.inc"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MMAMatrixType
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MMAMatrixType MMAMatrixType::get(ArrayRef<int64_t> shape, Type elementType,
|
|
StringRef operand) {
|
|
return Base::get(elementType.getContext(), shape, elementType, operand);
|
|
}
|
|
|
|
MMAMatrixType
|
|
MMAMatrixType::getChecked(function_ref<InFlightDiagnostic()> emitError,
|
|
ArrayRef<int64_t> shape, Type elementType,
|
|
StringRef operand) {
|
|
return Base::getChecked(emitError, elementType.getContext(), shape,
|
|
elementType, operand);
|
|
}
|
|
|
|
unsigned MMAMatrixType::getNumDims() const { return getImpl()->numDims; }
|
|
|
|
ArrayRef<int64_t> MMAMatrixType::getShape() const {
|
|
return getImpl()->getShape();
|
|
}
|
|
|
|
Type MMAMatrixType::getElementType() const { return getImpl()->elementType; }
|
|
|
|
StringRef MMAMatrixType::getOperand() const { return getImpl()->getOperand(); }
|
|
|
|
bool MMAMatrixType::isValidElementType(Type elementType) {
|
|
return elementType.isF16() || elementType.isF32();
|
|
}
|
|
|
|
LogicalResult
|
|
MMAMatrixType::verify(function_ref<InFlightDiagnostic()> emitError,
|
|
ArrayRef<int64_t> shape, Type elementType,
|
|
StringRef operand) {
|
|
if (!operand.equals("AOp") && !operand.equals("BOp") &&
|
|
!operand.equals("COp"))
|
|
return emitError() << "operand expected to be one of AOp, BOp or COp";
|
|
|
|
if (shape.size() != 2)
|
|
return emitError() << "MMAMatrixType must have exactly two dimensions";
|
|
|
|
if (!MMAMatrixType::isValidElementType(elementType))
|
|
return emitError() << "MMAMatrixType elements must be F16 or F32";
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GPUDialect
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// GPU memory space identifiers.
|
|
enum GPUMemorySpace {
|
|
/// Generic memory space identifier.
|
|
kGenericMemorySpace = 0,
|
|
|
|
/// Global memory space identifier.
|
|
kGlobalMemorySpace = 1,
|
|
|
|
/// Shared memory space identifier.
|
|
kSharedMemorySpace = 3
|
|
};
|
|
|
|
bool GPUDialect::isKernel(Operation *op) {
|
|
UnitAttr isKernelAttr = op->getAttrOfType<UnitAttr>(getKernelFuncAttrName());
|
|
return static_cast<bool>(isKernelAttr);
|
|
}
|
|
|
|
void GPUDialect::initialize() {
|
|
addTypes<AsyncTokenType>();
|
|
addTypes<MMAMatrixType>();
|
|
addOperations<
|
|
#define GET_OP_LIST
|
|
#include "mlir/Dialect/GPU/GPUOps.cpp.inc"
|
|
>();
|
|
}
|
|
|
|
Type GPUDialect::parseType(DialectAsmParser &parser) const {
|
|
// Parse the main keyword for the type.
|
|
StringRef keyword;
|
|
if (parser.parseKeyword(&keyword))
|
|
return Type();
|
|
MLIRContext *context = getContext();
|
|
|
|
// Handle 'async token' types.
|
|
if (keyword == "async.token")
|
|
return AsyncTokenType::get(context);
|
|
|
|
if (keyword == "mma_matrix") {
|
|
llvm::SMLoc beginLoc = parser.getNameLoc();
|
|
|
|
// Parse '<'.
|
|
if (parser.parseLess())
|
|
return nullptr;
|
|
|
|
// Parse the size and elementType.
|
|
SmallVector<int64_t> shape;
|
|
Type elementType;
|
|
if (parser.parseDimensionList(shape, /*allowDynamic=*/false) ||
|
|
parser.parseType(elementType))
|
|
return nullptr;
|
|
|
|
// Parse ','
|
|
if (parser.parseComma())
|
|
return nullptr;
|
|
|
|
// Parse operand.
|
|
std::string operand;
|
|
if (failed(parser.parseOptionalString(&operand)))
|
|
return nullptr;
|
|
|
|
// Parse '>'.
|
|
if (parser.parseGreater())
|
|
return nullptr;
|
|
|
|
return MMAMatrixType::getChecked(mlir::detail::getDefaultDiagnosticEmitFn(
|
|
parser.getEncodedSourceLoc(beginLoc)),
|
|
shape, elementType, operand);
|
|
}
|
|
|
|
parser.emitError(parser.getNameLoc(), "unknown gpu type: " + keyword);
|
|
return Type();
|
|
}
|
|
|
|
void GPUDialect::printType(Type type, DialectAsmPrinter &os) const {
|
|
TypeSwitch<Type>(type)
|
|
.Case<AsyncTokenType>([&](Type) { os << "async.token"; })
|
|
.Case<MMAMatrixType>([&](MMAMatrixType fragTy) {
|
|
os << "mma_matrix<";
|
|
auto shape = fragTy.getShape();
|
|
for (auto dim = shape.begin(), e = shape.end() - 1; dim != e; ++dim)
|
|
os << *dim << 'x';
|
|
os << shape.back() << 'x' << fragTy.getElementType();
|
|
os << ", \"" << fragTy.getOperand() << "\"" << '>';
|
|
})
|
|
.Default([](Type) { llvm_unreachable("unexpected 'gpu' type kind"); });
|
|
}
|
|
|
|
LogicalResult GPUDialect::verifyOperationAttribute(Operation *op,
|
|
NamedAttribute attr) {
|
|
if (!attr.getValue().isa<UnitAttr>() ||
|
|
attr.getName() != getContainerModuleAttrName())
|
|
return success();
|
|
|
|
auto module = dyn_cast<ModuleOp>(op);
|
|
if (!module)
|
|
return op->emitError("expected '")
|
|
<< getContainerModuleAttrName() << "' attribute to be attached to '"
|
|
<< ModuleOp::getOperationName() << '\'';
|
|
|
|
auto walkResult = module.walk([&module](LaunchFuncOp launchOp) -> WalkResult {
|
|
// Ignore launches that are nested more or less deep than functions in the
|
|
// module we are currently checking.
|
|
if (!launchOp->getParentOp() ||
|
|
launchOp->getParentOp()->getParentOp() != module)
|
|
return success();
|
|
|
|
// Ignore launch ops with missing attributes here. The errors will be
|
|
// reported by the verifiers of those ops.
|
|
if (!launchOp->getAttrOfType<SymbolRefAttr>(
|
|
LaunchFuncOp::getKernelAttrName()))
|
|
return success();
|
|
|
|
// Check that `launch_func` refers to a well-formed GPU kernel module.
|
|
StringAttr kernelModuleName = launchOp.getKernelModuleName();
|
|
auto kernelModule = module.lookupSymbol<GPUModuleOp>(kernelModuleName);
|
|
if (!kernelModule)
|
|
return launchOp.emitOpError()
|
|
<< "kernel module '" << kernelModuleName.getValue()
|
|
<< "' is undefined";
|
|
|
|
// Check that `launch_func` refers to a well-formed kernel function.
|
|
Operation *kernelFunc = module.lookupSymbol(launchOp.kernelAttr());
|
|
auto kernelGPUFunction = dyn_cast_or_null<gpu::GPUFuncOp>(kernelFunc);
|
|
auto kernelLLVMFunction = dyn_cast_or_null<LLVM::LLVMFuncOp>(kernelFunc);
|
|
if (!kernelGPUFunction && !kernelLLVMFunction)
|
|
return launchOp.emitOpError("kernel function '")
|
|
<< launchOp.kernel() << "' is undefined";
|
|
if (!kernelFunc->getAttrOfType<mlir::UnitAttr>(
|
|
GPUDialect::getKernelFuncAttrName()))
|
|
return launchOp.emitOpError("kernel function is missing the '")
|
|
<< GPUDialect::getKernelFuncAttrName() << "' attribute";
|
|
|
|
// TODO: if the kernel function has been converted to
|
|
// the LLVM dialect but the caller hasn't (which happens during the
|
|
// separate compilation), do not check type correspondence as it would
|
|
// require the verifier to be aware of the LLVM type conversion.
|
|
if (kernelLLVMFunction)
|
|
return success();
|
|
|
|
unsigned actualNumArguments = launchOp.getNumKernelOperands();
|
|
unsigned expectedNumArguments = kernelGPUFunction.getNumArguments();
|
|
if (expectedNumArguments != actualNumArguments)
|
|
return launchOp.emitOpError("got ")
|
|
<< actualNumArguments << " kernel operands but expected "
|
|
<< expectedNumArguments;
|
|
|
|
auto functionType = kernelGPUFunction.getType();
|
|
for (unsigned i = 0; i < expectedNumArguments; ++i) {
|
|
if (launchOp.getKernelOperand(i).getType() != functionType.getInput(i)) {
|
|
return launchOp.emitOpError("type of function argument ")
|
|
<< i << " does not match";
|
|
}
|
|
}
|
|
|
|
return success();
|
|
});
|
|
|
|
return walkResult.wasInterrupted() ? failure() : success();
|
|
}
|
|
|
|
template <typename T>
|
|
static LogicalResult verifyIndexOp(T op) {
|
|
auto dimension = op.dimension();
|
|
if (dimension != "x" && dimension != "y" && dimension != "z")
|
|
return op.emitError("dimension \"") << dimension << "\" is invalid";
|
|
return success();
|
|
}
|
|
|
|
static LogicalResult verifyAllReduce(gpu::AllReduceOp allReduce) {
|
|
if (allReduce.body().empty() != allReduce.op().hasValue())
|
|
return allReduce.emitError(
|
|
"expected either an op attribute or a non-empty body");
|
|
if (!allReduce.body().empty()) {
|
|
if (allReduce.body().getNumArguments() != 2)
|
|
return allReduce.emitError("expected two region arguments");
|
|
for (auto argument : allReduce.body().getArguments()) {
|
|
if (argument.getType() != allReduce.getType())
|
|
return allReduce.emitError("incorrect region argument type");
|
|
}
|
|
unsigned yieldCount = 0;
|
|
for (Block &block : allReduce.body()) {
|
|
if (auto yield = dyn_cast<gpu::YieldOp>(block.getTerminator())) {
|
|
if (yield.getNumOperands() != 1)
|
|
return allReduce.emitError("expected one gpu.yield operand");
|
|
if (yield.getOperand(0).getType() != allReduce.getType())
|
|
return allReduce.emitError("incorrect gpu.yield type");
|
|
++yieldCount;
|
|
}
|
|
}
|
|
if (yieldCount == 0)
|
|
return allReduce.emitError("expected gpu.yield op in region");
|
|
} else {
|
|
StringRef opName = *allReduce.op();
|
|
if ((opName == "and" || opName == "or" || opName == "xor") &&
|
|
!allReduce.getType().isa<IntegerType>()) {
|
|
return allReduce.emitError()
|
|
<< '`' << opName << '`'
|
|
<< " accumulator is only compatible with Integer type";
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
static LogicalResult verifyShuffleOp(gpu::ShuffleOp shuffleOp) {
|
|
auto type = shuffleOp.value().getType();
|
|
if (shuffleOp.result().getType() != type) {
|
|
return shuffleOp.emitOpError()
|
|
<< "requires the same type for value operand and result";
|
|
}
|
|
if (!type.isSignlessIntOrFloat() || type.getIntOrFloatBitWidth() != 32) {
|
|
return shuffleOp.emitOpError()
|
|
<< "requires value operand type to be f32 or i32";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
static void printShuffleOp(OpAsmPrinter &p, ShuffleOp op) {
|
|
p << ' ' << op.getOperands() << ' ' << op.mode() << " : "
|
|
<< op.value().getType();
|
|
}
|
|
|
|
static ParseResult parseShuffleOp(OpAsmParser &parser, OperationState &state) {
|
|
SmallVector<OpAsmParser::OperandType, 3> operandInfo;
|
|
if (parser.parseOperandList(operandInfo, 3))
|
|
return failure();
|
|
|
|
StringRef mode;
|
|
if (parser.parseKeyword(&mode))
|
|
return failure();
|
|
state.addAttribute("mode", parser.getBuilder().getStringAttr(mode));
|
|
|
|
Type valueType;
|
|
Type int32Type = parser.getBuilder().getIntegerType(32);
|
|
Type int1Type = parser.getBuilder().getI1Type();
|
|
if (parser.parseColonType(valueType) ||
|
|
parser.resolveOperands(operandInfo, {valueType, int32Type, int32Type},
|
|
parser.getCurrentLocation(), state.operands) ||
|
|
parser.addTypesToList({valueType, int1Type}, state.types))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AsyncOpInterface
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void gpu::addAsyncDependency(Operation *op, Value token) {
|
|
op->insertOperands(0, {token});
|
|
if (!op->template hasTrait<OpTrait::AttrSizedOperandSegments>())
|
|
return;
|
|
auto attrName =
|
|
OpTrait::AttrSizedOperandSegments<void>::getOperandSegmentSizeAttr();
|
|
auto sizeAttr = op->template getAttrOfType<DenseIntElementsAttr>(attrName);
|
|
|
|
// Async dependencies is the only variadic operand.
|
|
if (!sizeAttr)
|
|
return;
|
|
|
|
SmallVector<int32_t, 8> sizes(sizeAttr.getValues<int32_t>());
|
|
++sizes.front();
|
|
op->setAttr(attrName, Builder(op->getContext()).getI32VectorAttr(sizes));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LaunchOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void LaunchOp::build(OpBuilder &builder, OperationState &result,
|
|
Value gridSizeX, Value gridSizeY, Value gridSizeZ,
|
|
Value blockSizeX, Value blockSizeY, Value blockSizeZ,
|
|
Value dynamicSharedMemorySize) {
|
|
// Add grid and block sizes as op operands, followed by the data operands.
|
|
result.addOperands(
|
|
{gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ});
|
|
if (dynamicSharedMemorySize)
|
|
result.addOperands(dynamicSharedMemorySize);
|
|
|
|
// Create a kernel body region with kNumConfigRegionAttributes + N arguments,
|
|
// where the first kNumConfigRegionAttributes arguments have `index` type and
|
|
// the rest have the same types as the data operands.
|
|
Region *kernelRegion = result.addRegion();
|
|
Block *body = new Block();
|
|
body->addArguments(
|
|
std::vector<Type>(kNumConfigRegionAttributes, builder.getIndexType()));
|
|
kernelRegion->push_back(body);
|
|
}
|
|
|
|
KernelDim3 LaunchOp::getBlockIds() {
|
|
assert(!body().empty() && "LaunchOp body must not be empty.");
|
|
auto args = body().getArguments();
|
|
return KernelDim3{args[0], args[1], args[2]};
|
|
}
|
|
|
|
KernelDim3 LaunchOp::getThreadIds() {
|
|
assert(!body().empty() && "LaunchOp body must not be empty.");
|
|
auto args = body().getArguments();
|
|
return KernelDim3{args[3], args[4], args[5]};
|
|
}
|
|
|
|
KernelDim3 LaunchOp::getGridSize() {
|
|
assert(!body().empty() && "LaunchOp body must not be empty.");
|
|
auto args = body().getArguments();
|
|
return KernelDim3{args[6], args[7], args[8]};
|
|
}
|
|
|
|
KernelDim3 LaunchOp::getBlockSize() {
|
|
assert(!body().empty() && "LaunchOp body must not be empty.");
|
|
auto args = body().getArguments();
|
|
return KernelDim3{args[9], args[10], args[11]};
|
|
}
|
|
|
|
KernelDim3 LaunchOp::getGridSizeOperandValues() {
|
|
return KernelDim3{getOperand(0), getOperand(1), getOperand(2)};
|
|
}
|
|
|
|
KernelDim3 LaunchOp::getBlockSizeOperandValues() {
|
|
return KernelDim3{getOperand(3), getOperand(4), getOperand(5)};
|
|
}
|
|
|
|
static LogicalResult verify(LaunchOp op) {
|
|
// Kernel launch takes kNumConfigOperands leading operands for grid/block
|
|
// sizes and transforms them into kNumConfigRegionAttributes region arguments
|
|
// for block/thread identifiers and grid/block sizes.
|
|
if (!op.body().empty()) {
|
|
if (op.body().getNumArguments() !=
|
|
LaunchOp::kNumConfigOperands + op.getNumOperands() -
|
|
(op.dynamicSharedMemorySize() ? 1 : 0))
|
|
return op.emitOpError("unexpected number of region arguments");
|
|
}
|
|
|
|
// Block terminators without successors are expected to exit the kernel region
|
|
// and must be `gpu.terminator`.
|
|
for (Block &block : op.body()) {
|
|
if (block.empty())
|
|
continue;
|
|
if (block.back().getNumSuccessors() != 0)
|
|
continue;
|
|
if (!isa<gpu::TerminatorOp>(&block.back())) {
|
|
return block.back()
|
|
.emitError()
|
|
.append("expected '", gpu::TerminatorOp::getOperationName(),
|
|
"' or a terminator with successors")
|
|
.attachNote(op.getLoc())
|
|
.append("in '", LaunchOp::getOperationName(), "' body region");
|
|
}
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
// Pretty-print the kernel grid/block size assignment as
|
|
// (%iter-x, %iter-y, %iter-z) in
|
|
// (%size-x = %ssa-use, %size-y = %ssa-use, %size-z = %ssa-use)
|
|
// where %size-* and %iter-* will correspond to the body region arguments.
|
|
static void printSizeAssignment(OpAsmPrinter &p, KernelDim3 size,
|
|
KernelDim3 operands, KernelDim3 ids) {
|
|
p << '(' << ids.x << ", " << ids.y << ", " << ids.z << ") in (";
|
|
p << size.x << " = " << operands.x << ", ";
|
|
p << size.y << " = " << operands.y << ", ";
|
|
p << size.z << " = " << operands.z << ')';
|
|
}
|
|
|
|
static void printLaunchOp(OpAsmPrinter &p, LaunchOp op) {
|
|
// Print the launch configuration.
|
|
p << ' ' << op.getBlocksKeyword();
|
|
printSizeAssignment(p, op.getGridSize(), op.getGridSizeOperandValues(),
|
|
op.getBlockIds());
|
|
p << ' ' << op.getThreadsKeyword();
|
|
printSizeAssignment(p, op.getBlockSize(), op.getBlockSizeOperandValues(),
|
|
op.getThreadIds());
|
|
if (op.dynamicSharedMemorySize())
|
|
p << ' ' << op.getDynamicSharedMemorySizeKeyword() << ' '
|
|
<< op.dynamicSharedMemorySize();
|
|
|
|
p.printRegion(op.body(), /*printEntryBlockArgs=*/false);
|
|
p.printOptionalAttrDict(op->getAttrs());
|
|
}
|
|
|
|
// Parse the size assignment blocks for blocks and threads. These have the form
|
|
// (%region_arg, %region_arg, %region_arg) in
|
|
// (%region_arg = %operand, %region_arg = %operand, %region_arg = %operand)
|
|
// where %region_arg are percent-identifiers for the region arguments to be
|
|
// introduced further (SSA defs), and %operand are percent-identifiers for the
|
|
// SSA value uses.
|
|
static ParseResult
|
|
parseSizeAssignment(OpAsmParser &parser,
|
|
MutableArrayRef<OpAsmParser::OperandType> sizes,
|
|
MutableArrayRef<OpAsmParser::OperandType> regionSizes,
|
|
MutableArrayRef<OpAsmParser::OperandType> indices) {
|
|
assert(indices.size() == 3 && "space for three indices expected");
|
|
SmallVector<OpAsmParser::OperandType, 3> args;
|
|
if (parser.parseRegionArgumentList(args, /*requiredOperandCount=*/3,
|
|
OpAsmParser::Delimiter::Paren) ||
|
|
parser.parseKeyword("in") || parser.parseLParen())
|
|
return failure();
|
|
std::move(args.begin(), args.end(), indices.begin());
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
if (i != 0 && parser.parseComma())
|
|
return failure();
|
|
if (parser.parseRegionArgument(regionSizes[i]) || parser.parseEqual() ||
|
|
parser.parseOperand(sizes[i]))
|
|
return failure();
|
|
}
|
|
|
|
return parser.parseRParen();
|
|
}
|
|
|
|
// Parses a Launch operation.
|
|
// operation ::= `gpu.launch` `blocks` `(` ssa-id-list `)` `in` ssa-reassignment
|
|
// `threads` `(` ssa-id-list `)` `in` ssa-reassignment
|
|
// region attr-dict?
|
|
// ssa-reassignment ::= `(` ssa-id `=` ssa-use (`,` ssa-id `=` ssa-use)* `)`
|
|
static ParseResult parseLaunchOp(OpAsmParser &parser, OperationState &result) {
|
|
// Sizes of the grid and block.
|
|
SmallVector<OpAsmParser::OperandType, LaunchOp::kNumConfigOperands> sizes(
|
|
LaunchOp::kNumConfigOperands);
|
|
MutableArrayRef<OpAsmParser::OperandType> sizesRef(sizes);
|
|
|
|
// Actual (data) operands passed to the kernel.
|
|
SmallVector<OpAsmParser::OperandType, 4> dataOperands;
|
|
|
|
// Region arguments to be created.
|
|
SmallVector<OpAsmParser::OperandType, 16> regionArgs(
|
|
LaunchOp::kNumConfigRegionAttributes);
|
|
MutableArrayRef<OpAsmParser::OperandType> regionArgsRef(regionArgs);
|
|
|
|
// Parse the size assignment segments: the first segment assigns grid sizes
|
|
// and defines values for block identifiers; the second segment assigns block
|
|
// sizes and defines values for thread identifiers. In the region argument
|
|
// list, identifiers precede sizes, and block-related values precede
|
|
// thread-related values.
|
|
if (parser.parseKeyword(LaunchOp::getBlocksKeyword().data()) ||
|
|
parseSizeAssignment(parser, sizesRef.take_front(3),
|
|
regionArgsRef.slice(6, 3),
|
|
regionArgsRef.slice(0, 3)) ||
|
|
parser.parseKeyword(LaunchOp::getThreadsKeyword().data()) ||
|
|
parseSizeAssignment(parser, sizesRef.drop_front(3),
|
|
regionArgsRef.slice(9, 3),
|
|
regionArgsRef.slice(3, 3)) ||
|
|
parser.resolveOperands(sizes, parser.getBuilder().getIndexType(),
|
|
result.operands))
|
|
return failure();
|
|
|
|
OpAsmParser::OperandType dynamicSharedMemorySize;
|
|
if (!parser.parseOptionalKeyword(
|
|
LaunchOp::getDynamicSharedMemorySizeKeyword()))
|
|
if (parser.parseOperand(dynamicSharedMemorySize) ||
|
|
parser.resolveOperand(dynamicSharedMemorySize,
|
|
parser.getBuilder().getI32Type(),
|
|
result.operands))
|
|
return failure();
|
|
|
|
// Introduce the body region and parse it. The region has
|
|
// kNumConfigRegionAttributes arguments that correspond to
|
|
// block/thread identifiers and grid/block sizes, all of the `index` type.
|
|
Type index = parser.getBuilder().getIndexType();
|
|
SmallVector<Type, LaunchOp::kNumConfigRegionAttributes> dataTypes(
|
|
LaunchOp::kNumConfigRegionAttributes, index);
|
|
Region *body = result.addRegion();
|
|
return failure(parser.parseRegion(*body, regionArgs, dataTypes) ||
|
|
parser.parseOptionalAttrDict(result.attributes));
|
|
}
|
|
|
|
/// Simplify the gpu.launch when the range of a thread or block ID is
|
|
/// trivially known to be one.
|
|
struct FoldLaunchArguments : public OpRewritePattern<LaunchOp> {
|
|
using OpRewritePattern<LaunchOp>::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(LaunchOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
// If the range implies a single value for `id`, replace `id`'s uses by
|
|
// zero.
|
|
Value zero;
|
|
bool simplified = false;
|
|
auto constPropIdUses = [&](Value id, Value size) {
|
|
// Check if size is trivially one.
|
|
if (!matchPattern(size, m_One()))
|
|
return;
|
|
if (!simplified) {
|
|
// Create a zero value the first time.
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPointToStart(&op.body().front());
|
|
zero =
|
|
rewriter.create<arith::ConstantIndexOp>(op.getLoc(), /*value=*/0);
|
|
}
|
|
id.replaceAllUsesWith(zero);
|
|
simplified = true;
|
|
};
|
|
constPropIdUses(op.getBlockIds().x, op.gridSizeX());
|
|
constPropIdUses(op.getBlockIds().y, op.gridSizeY());
|
|
constPropIdUses(op.getBlockIds().z, op.gridSizeZ());
|
|
constPropIdUses(op.getThreadIds().x, op.blockSizeX());
|
|
constPropIdUses(op.getThreadIds().y, op.blockSizeY());
|
|
constPropIdUses(op.getThreadIds().z, op.blockSizeZ());
|
|
|
|
return success(simplified);
|
|
}
|
|
};
|
|
|
|
void LaunchOp::getCanonicalizationPatterns(RewritePatternSet &rewrites,
|
|
MLIRContext *context) {
|
|
rewrites.add<FoldLaunchArguments>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LaunchFuncOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void LaunchFuncOp::build(OpBuilder &builder, OperationState &result,
|
|
GPUFuncOp kernelFunc, KernelDim3 gridSize,
|
|
KernelDim3 blockSize, Value dynamicSharedMemorySize,
|
|
ValueRange kernelOperands) {
|
|
// Add grid and block sizes as op operands, followed by the data operands.
|
|
result.addOperands({gridSize.x, gridSize.y, gridSize.z, blockSize.x,
|
|
blockSize.y, blockSize.z});
|
|
if (dynamicSharedMemorySize)
|
|
result.addOperands(dynamicSharedMemorySize);
|
|
result.addOperands(kernelOperands);
|
|
auto kernelModule = kernelFunc->getParentOfType<GPUModuleOp>();
|
|
auto kernelSymbol =
|
|
SymbolRefAttr::get(kernelModule.getNameAttr(),
|
|
{SymbolRefAttr::get(kernelFunc.getNameAttr())});
|
|
result.addAttribute(getKernelAttrName(), kernelSymbol);
|
|
SmallVector<int32_t, 9> segmentSizes(9, 1);
|
|
segmentSizes.front() = 0; // Initially no async dependencies.
|
|
segmentSizes[segmentSizes.size() - 2] = dynamicSharedMemorySize ? 1 : 0;
|
|
segmentSizes.back() = static_cast<int32_t>(kernelOperands.size());
|
|
result.addAttribute(getOperandSegmentSizeAttr(),
|
|
builder.getI32VectorAttr(segmentSizes));
|
|
}
|
|
|
|
unsigned LaunchFuncOp::getNumKernelOperands() {
|
|
return getNumOperands() - asyncDependencies().size() - kNumConfigOperands -
|
|
(dynamicSharedMemorySize() ? 1 : 0);
|
|
}
|
|
|
|
StringAttr LaunchFuncOp::getKernelModuleName() {
|
|
return kernel().getRootReference();
|
|
}
|
|
|
|
StringAttr LaunchFuncOp::getKernelName() { return kernel().getLeafReference(); }
|
|
|
|
Value LaunchFuncOp::getKernelOperand(unsigned i) {
|
|
return getOperand(asyncDependencies().size() + kNumConfigOperands +
|
|
(dynamicSharedMemorySize() ? 1 : 0) + i);
|
|
}
|
|
|
|
KernelDim3 LaunchFuncOp::getGridSizeOperandValues() {
|
|
auto operands = getOperands().drop_front(asyncDependencies().size());
|
|
return KernelDim3{operands[0], operands[1], operands[2]};
|
|
}
|
|
|
|
KernelDim3 LaunchFuncOp::getBlockSizeOperandValues() {
|
|
auto operands = getOperands().drop_front(asyncDependencies().size());
|
|
return KernelDim3{operands[3], operands[4], operands[5]};
|
|
}
|
|
|
|
static LogicalResult verify(LaunchFuncOp op) {
|
|
auto module = op->getParentOfType<ModuleOp>();
|
|
if (!module)
|
|
return op.emitOpError("expected to belong to a module");
|
|
|
|
if (!module->getAttrOfType<UnitAttr>(
|
|
GPUDialect::getContainerModuleAttrName()))
|
|
return op.emitOpError(
|
|
"expected the closest surrounding module to have the '" +
|
|
GPUDialect::getContainerModuleAttrName() + "' attribute");
|
|
|
|
auto kernelAttr = op->getAttrOfType<SymbolRefAttr>(op.getKernelAttrName());
|
|
if (!kernelAttr)
|
|
return op.emitOpError("symbol reference attribute '" +
|
|
op.getKernelAttrName() + "' must be specified");
|
|
|
|
return success();
|
|
}
|
|
|
|
static ParseResult
|
|
parseLaunchFuncOperands(OpAsmParser &parser,
|
|
SmallVectorImpl<OpAsmParser::OperandType> &argNames,
|
|
SmallVectorImpl<Type> &argTypes) {
|
|
if (parser.parseOptionalKeyword("args"))
|
|
return success();
|
|
SmallVector<NamedAttrList, 4> argAttrs;
|
|
bool isVariadic = false;
|
|
return function_like_impl::parseFunctionArgumentList(
|
|
parser, /*allowAttributes=*/false,
|
|
/*allowVariadic=*/false, argNames, argTypes, argAttrs, isVariadic);
|
|
}
|
|
|
|
static void printLaunchFuncOperands(OpAsmPrinter &printer, Operation *,
|
|
OperandRange operands, TypeRange types) {
|
|
if (operands.empty())
|
|
return;
|
|
printer << "args(";
|
|
llvm::interleaveComma(llvm::zip(operands, types), printer,
|
|
[&](const auto &pair) {
|
|
printer.printOperand(std::get<0>(pair));
|
|
printer << " : ";
|
|
printer.printType(std::get<1>(pair));
|
|
});
|
|
printer << ")";
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GPUFuncOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Adds a new block argument that corresponds to buffers located in
|
|
/// workgroup memory.
|
|
BlockArgument GPUFuncOp::addWorkgroupAttribution(Type type) {
|
|
auto attrName = getNumWorkgroupAttributionsAttrName();
|
|
auto attr = (*this)->getAttrOfType<IntegerAttr>(attrName);
|
|
(*this)->setAttr(attrName,
|
|
IntegerAttr::get(attr.getType(), attr.getValue() + 1));
|
|
return getBody().insertArgument(getType().getNumInputs() + attr.getInt(),
|
|
type);
|
|
}
|
|
|
|
/// Adds a new block argument that corresponds to buffers located in
|
|
/// private memory.
|
|
BlockArgument GPUFuncOp::addPrivateAttribution(Type type) {
|
|
// Buffers on the private memory always come after buffers on the workgroup
|
|
// memory.
|
|
return getBody().addArgument(type);
|
|
}
|
|
|
|
void GPUFuncOp::build(OpBuilder &builder, OperationState &result,
|
|
StringRef name, FunctionType type,
|
|
TypeRange workgroupAttributions,
|
|
TypeRange privateAttributions,
|
|
ArrayRef<NamedAttribute> attrs) {
|
|
result.addAttribute(SymbolTable::getSymbolAttrName(),
|
|
builder.getStringAttr(name));
|
|
result.addAttribute(getTypeAttrName(), TypeAttr::get(type));
|
|
result.addAttribute(getNumWorkgroupAttributionsAttrName(),
|
|
builder.getI64IntegerAttr(workgroupAttributions.size()));
|
|
result.addAttributes(attrs);
|
|
Region *body = result.addRegion();
|
|
Block *entryBlock = new Block;
|
|
entryBlock->addArguments(type.getInputs());
|
|
entryBlock->addArguments(workgroupAttributions);
|
|
entryBlock->addArguments(privateAttributions);
|
|
|
|
body->getBlocks().push_back(entryBlock);
|
|
}
|
|
|
|
/// Parses a GPU function memory attribution.
|
|
///
|
|
/// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)?
|
|
/// (`private` `(` ssa-id-and-type-list `)`)?
|
|
///
|
|
/// Note that this function parses only one of the two similar parts, with the
|
|
/// keyword provided as argument.
|
|
static ParseResult
|
|
parseAttributions(OpAsmParser &parser, StringRef keyword,
|
|
SmallVectorImpl<OpAsmParser::OperandType> &args,
|
|
SmallVectorImpl<Type> &argTypes) {
|
|
// If we could not parse the keyword, just assume empty list and succeed.
|
|
if (failed(parser.parseOptionalKeyword(keyword)))
|
|
return success();
|
|
|
|
if (failed(parser.parseLParen()))
|
|
return failure();
|
|
|
|
// Early exit for an empty list.
|
|
if (succeeded(parser.parseOptionalRParen()))
|
|
return success();
|
|
|
|
do {
|
|
OpAsmParser::OperandType arg;
|
|
Type type;
|
|
|
|
if (parser.parseRegionArgument(arg) || parser.parseColonType(type))
|
|
return failure();
|
|
|
|
args.push_back(arg);
|
|
argTypes.push_back(type);
|
|
} while (succeeded(parser.parseOptionalComma()));
|
|
|
|
return parser.parseRParen();
|
|
}
|
|
|
|
/// Parses a GPU function.
|
|
///
|
|
/// <operation> ::= `gpu.func` symbol-ref-id `(` argument-list `)`
|
|
/// (`->` function-result-list)? memory-attribution `kernel`?
|
|
/// function-attributes? region
|
|
static ParseResult parseGPUFuncOp(OpAsmParser &parser, OperationState &result) {
|
|
SmallVector<OpAsmParser::OperandType, 8> entryArgs;
|
|
SmallVector<NamedAttrList, 1> argAttrs;
|
|
SmallVector<NamedAttrList, 1> resultAttrs;
|
|
SmallVector<Type, 8> argTypes;
|
|
SmallVector<Type, 4> resultTypes;
|
|
bool isVariadic;
|
|
|
|
// Parse the function name.
|
|
StringAttr nameAttr;
|
|
if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(),
|
|
result.attributes))
|
|
return failure();
|
|
|
|
auto signatureLocation = parser.getCurrentLocation();
|
|
if (failed(function_like_impl::parseFunctionSignature(
|
|
parser, /*allowVariadic=*/false, entryArgs, argTypes, argAttrs,
|
|
isVariadic, resultTypes, resultAttrs)))
|
|
return failure();
|
|
|
|
if (entryArgs.empty() && !argTypes.empty())
|
|
return parser.emitError(signatureLocation)
|
|
<< "gpu.func requires named arguments";
|
|
|
|
// Construct the function type. More types will be added to the region, but
|
|
// not to the function type.
|
|
Builder &builder = parser.getBuilder();
|
|
auto type = builder.getFunctionType(argTypes, resultTypes);
|
|
result.addAttribute(GPUFuncOp::getTypeAttrName(), TypeAttr::get(type));
|
|
|
|
// Parse workgroup memory attributions.
|
|
if (failed(parseAttributions(parser, GPUFuncOp::getWorkgroupKeyword(),
|
|
entryArgs, argTypes)))
|
|
return failure();
|
|
|
|
// Store the number of operands we just parsed as the number of workgroup
|
|
// memory attributions.
|
|
unsigned numWorkgroupAttrs = argTypes.size() - type.getNumInputs();
|
|
result.addAttribute(GPUFuncOp::getNumWorkgroupAttributionsAttrName(),
|
|
builder.getI64IntegerAttr(numWorkgroupAttrs));
|
|
|
|
// Parse private memory attributions.
|
|
if (failed(parseAttributions(parser, GPUFuncOp::getPrivateKeyword(),
|
|
entryArgs, argTypes)))
|
|
return failure();
|
|
|
|
// Parse the kernel attribute if present.
|
|
if (succeeded(parser.parseOptionalKeyword(GPUFuncOp::getKernelKeyword())))
|
|
result.addAttribute(GPUDialect::getKernelFuncAttrName(),
|
|
builder.getUnitAttr());
|
|
|
|
// Parse attributes.
|
|
if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes)))
|
|
return failure();
|
|
function_like_impl::addArgAndResultAttrs(builder, result, argAttrs,
|
|
resultAttrs);
|
|
|
|
// Parse the region. If no argument names were provided, take all names
|
|
// (including those of attributions) from the entry block.
|
|
auto *body = result.addRegion();
|
|
return parser.parseRegion(*body, entryArgs, argTypes);
|
|
}
|
|
|
|
static void printAttributions(OpAsmPrinter &p, StringRef keyword,
|
|
ArrayRef<BlockArgument> values) {
|
|
if (values.empty())
|
|
return;
|
|
|
|
p << ' ' << keyword << '(';
|
|
llvm::interleaveComma(
|
|
values, p, [&p](BlockArgument v) { p << v << " : " << v.getType(); });
|
|
p << ')';
|
|
}
|
|
|
|
/// Prints a GPU Func op.
|
|
static void printGPUFuncOp(OpAsmPrinter &p, GPUFuncOp op) {
|
|
p << ' ';
|
|
p.printSymbolName(op.getName());
|
|
|
|
FunctionType type = op.getType();
|
|
function_like_impl::printFunctionSignature(
|
|
p, op.getOperation(), type.getInputs(),
|
|
/*isVariadic=*/false, type.getResults());
|
|
|
|
printAttributions(p, op.getWorkgroupKeyword(), op.getWorkgroupAttributions());
|
|
printAttributions(p, op.getPrivateKeyword(), op.getPrivateAttributions());
|
|
if (op.isKernel())
|
|
p << ' ' << op.getKernelKeyword();
|
|
|
|
function_like_impl::printFunctionAttributes(
|
|
p, op.getOperation(), type.getNumInputs(), type.getNumResults(),
|
|
{op.getNumWorkgroupAttributionsAttrName(),
|
|
GPUDialect::getKernelFuncAttrName()});
|
|
p.printRegion(op.getBody(), /*printEntryBlockArgs=*/false);
|
|
}
|
|
|
|
/// Hook for FunctionLike verifier.
|
|
LogicalResult GPUFuncOp::verifyType() {
|
|
Type type = getTypeAttr().getValue();
|
|
if (!type.isa<FunctionType>())
|
|
return emitOpError("requires '" + getTypeAttrName() +
|
|
"' attribute of function type");
|
|
|
|
if (isKernel() && getType().getNumResults() != 0)
|
|
return emitOpError() << "expected void return type for kernel function";
|
|
|
|
return success();
|
|
}
|
|
|
|
static LogicalResult verifyAttributions(Operation *op,
|
|
ArrayRef<BlockArgument> attributions,
|
|
unsigned memorySpace) {
|
|
for (Value v : attributions) {
|
|
auto type = v.getType().dyn_cast<MemRefType>();
|
|
if (!type)
|
|
return op->emitOpError() << "expected memref type in attribution";
|
|
|
|
if (type.getMemorySpaceAsInt() != memorySpace) {
|
|
return op->emitOpError()
|
|
<< "expected memory space " << memorySpace << " in attribution";
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
/// Verifies the body of the function.
|
|
LogicalResult GPUFuncOp::verifyBody() {
|
|
unsigned numFuncArguments = getNumArguments();
|
|
unsigned numWorkgroupAttributions = getNumWorkgroupAttributions();
|
|
unsigned numBlockArguments = front().getNumArguments();
|
|
if (numBlockArguments < numFuncArguments + numWorkgroupAttributions)
|
|
return emitOpError() << "expected at least "
|
|
<< numFuncArguments + numWorkgroupAttributions
|
|
<< " arguments to body region";
|
|
|
|
ArrayRef<Type> funcArgTypes = getType().getInputs();
|
|
for (unsigned i = 0; i < numFuncArguments; ++i) {
|
|
Type blockArgType = front().getArgument(i).getType();
|
|
if (funcArgTypes[i] != blockArgType)
|
|
return emitOpError() << "expected body region argument #" << i
|
|
<< " to be of type " << funcArgTypes[i] << ", got "
|
|
<< blockArgType;
|
|
}
|
|
|
|
if (failed(verifyAttributions(getOperation(), getWorkgroupAttributions(),
|
|
GPUDialect::getWorkgroupAddressSpace())) ||
|
|
failed(verifyAttributions(getOperation(), getPrivateAttributions(),
|
|
GPUDialect::getPrivateAddressSpace())))
|
|
return failure();
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ReturnOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static LogicalResult verify(gpu::ReturnOp returnOp) {
|
|
GPUFuncOp function = returnOp->getParentOfType<GPUFuncOp>();
|
|
|
|
FunctionType funType = function.getType();
|
|
|
|
if (funType.getNumResults() != returnOp.operands().size())
|
|
return returnOp.emitOpError()
|
|
.append("expected ", funType.getNumResults(), " result operands")
|
|
.attachNote(function.getLoc())
|
|
.append("return type declared here");
|
|
|
|
for (auto pair : llvm::enumerate(
|
|
llvm::zip(function.getType().getResults(), returnOp.operands()))) {
|
|
Type type;
|
|
Value operand;
|
|
std::tie(type, operand) = pair.value();
|
|
if (type != operand.getType())
|
|
return returnOp.emitOpError() << "unexpected type `" << operand.getType()
|
|
<< "' for operand #" << pair.index();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GPUModuleOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void GPUModuleOp::build(OpBuilder &builder, OperationState &result,
|
|
StringRef name) {
|
|
ensureTerminator(*result.addRegion(), builder, result.location);
|
|
result.attributes.push_back(builder.getNamedAttr(
|
|
::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name)));
|
|
}
|
|
|
|
static ParseResult parseGPUModuleOp(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
StringAttr nameAttr;
|
|
if (parser.parseSymbolName(nameAttr, SymbolTable::getSymbolAttrName(),
|
|
result.attributes))
|
|
return failure();
|
|
|
|
// If module attributes are present, parse them.
|
|
if (parser.parseOptionalAttrDictWithKeyword(result.attributes))
|
|
return failure();
|
|
|
|
// Parse the module body.
|
|
auto *body = result.addRegion();
|
|
if (parser.parseRegion(*body, None, None))
|
|
return failure();
|
|
|
|
// Ensure that this module has a valid terminator.
|
|
GPUModuleOp::ensureTerminator(*body, parser.getBuilder(), result.location);
|
|
return success();
|
|
}
|
|
|
|
static void print(OpAsmPrinter &p, GPUModuleOp op) {
|
|
p << ' ';
|
|
p.printSymbolName(op.getName());
|
|
p.printOptionalAttrDictWithKeyword(op->getAttrs(),
|
|
{SymbolTable::getSymbolAttrName()});
|
|
p.printRegion(op->getRegion(0), /*printEntryBlockArgs=*/false,
|
|
/*printBlockTerminators=*/false);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GPUMemcpyOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static LogicalResult verify(MemcpyOp op) {
|
|
auto srcType = op.src().getType();
|
|
auto dstType = op.dst().getType();
|
|
|
|
if (getElementTypeOrSelf(srcType) != getElementTypeOrSelf(dstType))
|
|
return op.emitOpError("arguments have incompatible element type");
|
|
|
|
if (failed(verifyCompatibleShape(srcType, dstType)))
|
|
return op.emitOpError("arguments have incompatible shape");
|
|
|
|
return success();
|
|
}
|
|
|
|
static ParseResult parseAsyncDependencies(
|
|
OpAsmParser &parser, Type &asyncTokenType,
|
|
SmallVectorImpl<OpAsmParser::OperandType> &asyncDependencies) {
|
|
auto loc = parser.getCurrentLocation();
|
|
if (succeeded(parser.parseOptionalKeyword("async"))) {
|
|
if (parser.getNumResults() == 0)
|
|
return parser.emitError(loc, "needs to be named when marked 'async'");
|
|
asyncTokenType = parser.getBuilder().getType<AsyncTokenType>();
|
|
}
|
|
return parser.parseOperandList(asyncDependencies,
|
|
OpAsmParser::Delimiter::OptionalSquare);
|
|
}
|
|
|
|
static void printAsyncDependencies(OpAsmPrinter &printer, Operation *op,
|
|
Type asyncTokenType,
|
|
OperandRange asyncDependencies) {
|
|
if (asyncTokenType)
|
|
printer << "async ";
|
|
if (asyncDependencies.empty())
|
|
return;
|
|
printer << "[";
|
|
llvm::interleaveComma(asyncDependencies, printer);
|
|
printer << "]";
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GPU_SubgroupMmaLoadMatrixOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static LogicalResult verify(SubgroupMmaLoadMatrixOp op) {
|
|
auto srcType = op.srcMemref().getType();
|
|
auto resType = op.res().getType();
|
|
auto resMatrixType = resType.cast<gpu::MMAMatrixType>();
|
|
auto operand = resMatrixType.getOperand();
|
|
auto srcMemrefType = srcType.cast<MemRefType>();
|
|
auto srcMemSpace = srcMemrefType.getMemorySpaceAsInt();
|
|
|
|
if (!srcMemrefType.getLayout().isIdentity())
|
|
return op.emitError("expected identity layout map for source memref");
|
|
|
|
if (srcMemSpace != kGenericMemorySpace && srcMemSpace != kSharedMemorySpace &&
|
|
srcMemSpace != kGlobalMemorySpace)
|
|
return op.emitError(
|
|
"source memorySpace kGenericMemorySpace, kSharedMemorySpace or "
|
|
"kGlobalMemorySpace only allowed");
|
|
|
|
if (!operand.equals("AOp") && !operand.equals("BOp") &&
|
|
!operand.equals("COp"))
|
|
return op.emitError("only AOp, BOp and COp can be loaded");
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GPU_SubgroupMmaStoreMatrixOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static LogicalResult verify(SubgroupMmaStoreMatrixOp op) {
|
|
auto srcType = op.src().getType();
|
|
auto dstType = op.dstMemref().getType();
|
|
auto srcMatrixType = srcType.cast<gpu::MMAMatrixType>();
|
|
auto dstMemrefType = dstType.cast<MemRefType>();
|
|
auto dstMemSpace = dstMemrefType.getMemorySpaceAsInt();
|
|
if (!dstMemrefType.getLayout().isIdentity())
|
|
return op.emitError("expected identity layout map for destination memref");
|
|
|
|
if (dstMemSpace != kGenericMemorySpace && dstMemSpace != kSharedMemorySpace &&
|
|
dstMemSpace != kGlobalMemorySpace)
|
|
return op.emitError(
|
|
"destination memorySpace of kGenericMemorySpace, "
|
|
"kGlobalMemorySpace or kSharedMemorySpace only allowed");
|
|
|
|
if (!srcMatrixType.getOperand().equals("COp"))
|
|
return op.emitError(
|
|
"expected the operand matrix being stored to have 'COp' operand type");
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GPU_SubgroupMmaComputeOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static LogicalResult verify(SubgroupMmaComputeOp op) {
|
|
enum OperandMap { A, B, C };
|
|
SmallVector<MMAMatrixType, 3> opTypes;
|
|
|
|
auto populateOpInfo = [&opTypes, &op]() {
|
|
opTypes.push_back(op.opA().getType().cast<MMAMatrixType>());
|
|
opTypes.push_back(op.opB().getType().cast<MMAMatrixType>());
|
|
opTypes.push_back(op.opC().getType().cast<MMAMatrixType>());
|
|
};
|
|
populateOpInfo();
|
|
|
|
if (!opTypes[A].getOperand().equals("AOp") ||
|
|
!opTypes[B].getOperand().equals("BOp") ||
|
|
!opTypes[C].getOperand().equals("COp"))
|
|
return op.emitError("operands must be in the order AOp, BOp, COp");
|
|
|
|
ArrayRef<int64_t> aShape, bShape, cShape;
|
|
aShape = opTypes[A].getShape();
|
|
bShape = opTypes[B].getShape();
|
|
cShape = opTypes[C].getShape();
|
|
|
|
if (aShape[1] != bShape[0] || aShape[0] != cShape[0] ||
|
|
bShape[1] != cShape[1])
|
|
return op.emitError("operand shapes do not satisfy matmul constraints");
|
|
|
|
return success();
|
|
}
|
|
|
|
/// This is a common class used for patterns of the form
|
|
/// "someop(memrefcast) -> someop". It folds the source of any memref.cast
|
|
/// into the root operation directly.
|
|
static LogicalResult foldMemRefCast(Operation *op) {
|
|
bool folded = false;
|
|
for (OpOperand &operand : op->getOpOperands()) {
|
|
auto cast = operand.get().getDefiningOp<mlir::memref::CastOp>();
|
|
if (cast) {
|
|
operand.set(cast.getOperand());
|
|
folded = true;
|
|
}
|
|
}
|
|
return success(folded);
|
|
}
|
|
|
|
LogicalResult MemcpyOp::fold(ArrayRef<Attribute> operands,
|
|
SmallVectorImpl<::mlir::OpFoldResult> &results) {
|
|
return foldMemRefCast(*this);
|
|
}
|
|
|
|
LogicalResult MemsetOp::fold(ArrayRef<Attribute> operands,
|
|
SmallVectorImpl<::mlir::OpFoldResult> &results) {
|
|
return foldMemRefCast(*this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GPU_AllocOp
|
|
//===----------------------------------------------------------------------===//
|
|
namespace {
|
|
|
|
/// Folding of memref.dim(gpu.alloc(%size), %idx) -> %size similar to
|
|
/// `memref::AllocOp`.
|
|
struct SimplifyDimOfAllocOp : public OpRewritePattern<memref::DimOp> {
|
|
using OpRewritePattern<memref::DimOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(memref::DimOp dimOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto index = dimOp.index().getDefiningOp<arith::ConstantIndexOp>();
|
|
if (!index)
|
|
return failure();
|
|
|
|
auto memrefType = dimOp.source().getType().dyn_cast<MemRefType>();
|
|
if (!memrefType || !memrefType.isDynamicDim(index.value()))
|
|
return failure();
|
|
|
|
auto alloc = dimOp.source().getDefiningOp<AllocOp>();
|
|
if (!alloc)
|
|
return failure();
|
|
|
|
Value substituteOp = *(alloc.dynamicSizes().begin() +
|
|
memrefType.getDynamicDimIndex(index.value()));
|
|
rewriter.replaceOp(dimOp, substituteOp);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace.
|
|
|
|
void AllocOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<SimplifyDimOfAllocOp>(context);
|
|
}
|
|
|
|
#include "mlir/Dialect/GPU/GPUOpInterfaces.cpp.inc"
|
|
#include "mlir/Dialect/GPU/GPUOpsEnums.cpp.inc"
|
|
|
|
#define GET_OP_CLASSES
|
|
#include "mlir/Dialect/GPU/GPUOps.cpp.inc"
|