[libc] Implement sinf function that is correctly rounded to all rounding modes.
Implement sinf function that is correctly rounded to all rounding modes. - We use a simple range reduction for `pi/16 < |x|` : Let `k = round(x / pi)` and `y = (x/pi) - k`. So `k` is an integer and `-0.5 <= y <= 0.5`. Then ``` sin(x) = sin(y*pi + k*pi) = (-1)^(k & 1) * sin(y*pi) ~ (-1)^(k & 1) * y * P(y^2) ``` where `y*P(y^2)` is a degree-15 minimax polynomial generated by Sollya with: ``` > P = fpminimax(sin(x*pi)/x, [|0, 2, 4, 6, 8, 10, 12, 14|], [|D...|], [0, 0.5]); ``` - Performance benchmark using perf tool from CORE-MATH project (https://gitlab.inria.fr/core-math/core-math/-/tree/master) on Ryzen 1700: Before this patch (not correctly rounded): ``` $ CORE_MATH_PERF_MODE="rdtsc" ./perf.sh sinf CORE-MATH reciprocal throughput : 17.892 System LIBC reciprocal throughput : 25.559 LIBC reciprocal throughput : 29.381 ``` After this patch (correctly rounded): ``` $ CORE_MATH_PERF_MODE="rdtsc" ./perf.sh sinf CORE-MATH reciprocal throughput : 17.896 System LIBC reciprocal throughput : 25.740 LIBC reciprocal throughput : 27.872 LIBC reciprocal throughput : 20.012 (with `-msse4.2` flag) LIBC reciprocal throughput : 14.244 (with `-mfma` flag) ``` Reviewed By: zimmermann6 Differential Revision: https://reviews.llvm.org/D123154
This commit is contained in:
parent
4f2cfbe531
commit
d883a4ad02
|
@ -515,7 +515,7 @@ function(add_entrypoint_object target_name)
|
|||
list(SORT flags)
|
||||
|
||||
if(SHOW_INTERMEDIATE_OBJECTS AND flags)
|
||||
message(STATUS "Object library ${fq_target_name} has FLAGS: ${flags}")
|
||||
message(STATUS "Entrypoint object ${fq_target_name} has FLAGS: ${flags}")
|
||||
endif()
|
||||
|
||||
if(NOT ADD_TO_EXPAND_NAME)
|
||||
|
|
|
@ -164,7 +164,7 @@ log |check|
|
|||
log10 |check|
|
||||
log1p |check|
|
||||
log2 |check|
|
||||
sin 0.561 ULPs large
|
||||
sin |check| large
|
||||
sincos 0.776 ULPs large
|
||||
sqrt |check| |check| |check|
|
||||
============== ================ =============== ======================
|
||||
|
@ -205,13 +205,13 @@ Performance
|
|||
+--------------+-----------+-------------------+-----------+-------------------+-------------------------------------+------------+-------------------------+--------------+---------------+
|
||||
| expm1f | 14 | 53 | 59 | 146 | :math:`[-10, 10]` | Ryzen 1700 | Ubuntu 20.04 LTS x86_64 | Clang 12.0.0 | FMA |
|
||||
+--------------+-----------+-------------------+-----------+-------------------+-------------------------------------+------------+-------------------------+--------------+---------------+
|
||||
| fmodf (n) | 73 | 263 | - | - | [MIN_NORMAL, MAX_NORMAL] | i5 mobile | Ubuntu 20.04 LTS x86_64 | Clang 12.0.0 | |
|
||||
| fmodf | 73 | 263 | - | - | [MIN_NORMAL, MAX_NORMAL] | i5 mobile | Ubuntu 20.04 LTS x86_64 | Clang 12.0.0 | |
|
||||
| +-----------+-------------------+-----------+-------------------+-------------------------------------+------------+-------------------------+--------------+---------------+
|
||||
| | 9 | 11 | - | - | [0, MAX_SUBNORMAL] | i5 mobile | Ubuntu 20.04 LTS x86_64 | Clang 12.0.0 | |
|
||||
+--------------+-----------+-------------------+-----------+-------------------+-------------------------------------+------------+-------------------------+--------------+---------------+
|
||||
| fmodf (d) | 9 | 11 | - | - | [0, MAX_SUBNORMAL] | i5 mobile | Ubuntu 20.04 LTS x86_64 | Clang 12.0.0 | |
|
||||
+--------------+-----------+-------------------+-----------+-------------------+-------------------------------------+------------+-------------------------+--------------+---------------+
|
||||
| fmod (n) | 595 | 3297 | - | - | [MIN_NORMAL, MAX_NORMAL] | i5 mobile | Ubuntu 20.04 LTS x86_64 | Clang 12.0.0 | |
|
||||
+--------------+-----------+-------------------+-----------+-------------------+-------------------------------------+------------+-------------------------+--------------+---------------+
|
||||
| fmod (d) | 14 | 13 | - | - | [0, MAX_SUBNORMAL] | i5 mobile | Ubuntu 20.04 LTS x86_64 | Clang 12.0.0 | |
|
||||
| fmod | 595 | 3297 | - | - | [MIN_NORMAL, MAX_NORMAL] | i5 mobile | Ubuntu 20.04 LTS x86_64 | Clang 12.0.0 | |
|
||||
| +-----------+-------------------+-----------+-------------------+-------------------------------------+------------+-------------------------+--------------+---------------+
|
||||
| | 14 | 13 | - | - | [0, MAX_SUBNORMAL] | i5 mobile | Ubuntu 20.04 LTS x86_64 | Clang 12.0.0 | |
|
||||
+--------------+-----------+-------------------+-----------+-------------------+-------------------------------------+------------+-------------------------+--------------+---------------+
|
||||
| hypotf | 25 | 15 | 64 | 49 | :math:`[-10, 10] \times [-10, 10]` | Ryzen 1700 | Ubuntu 20.04 LTS x86_64 | Clang 12.0.0 | |
|
||||
+--------------+-----------+-------------------+-----------+-------------------+-------------------------------------+------------+-------------------------+--------------+---------------+
|
||||
|
@ -223,7 +223,7 @@ Performance
|
|||
+--------------+-----------+-------------------+-----------+-------------------+-------------------------------------+------------+-------------------------+--------------+---------------+
|
||||
| log2f | 13 | 10 | 57 | 46 | :math:`[e^{-1}, e]` | Ryzen 1700 | Ubuntu 20.04 LTS x86_64 | Clang 12.0.0 | FMA |
|
||||
+--------------+-----------+-------------------+-----------+-------------------+-------------------------------------+------------+-------------------------+--------------+---------------+
|
||||
| sinf | 36 | 31 | 72 | 71 | :math:`[-\pi, \pi]` | Ryzen 1700 | Ubuntu 20.04 LTS x86_64 | Clang 12.0.0 | |
|
||||
| sinf | 14 | 26 | 65 | 59 | :math:`[-\pi, \pi]` | Ryzen 1700 | Ubuntu 20.04 LTS x86_64 | Clang 12.0.0 | FMA |
|
||||
+--------------+-----------+-------------------+-----------+-------------------+-------------------------------------+------------+-------------------------+--------------+---------------+
|
||||
|
||||
References
|
||||
|
|
|
@ -13,6 +13,7 @@ add_header_library(
|
|||
NormalFloat.h
|
||||
PlatformDefs.h
|
||||
builtin_wrappers.h
|
||||
except_value_utils.h
|
||||
DEPENDS
|
||||
libc.include.math
|
||||
libc.include.errno
|
||||
|
|
|
@ -0,0 +1,70 @@
|
|||
//===-- Common header for helpers to set exceptional values -----*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_LIBC_SRC_SUPPORT_FPUTIL_EXCEPT_VALUE_UTILS_H
|
||||
#define LLVM_LIBC_SRC_SUPPORT_FPUTIL_EXCEPT_VALUE_UTILS_H
|
||||
|
||||
#include "FEnvImpl.h"
|
||||
#include "FPBits.h"
|
||||
|
||||
namespace __llvm_libc {
|
||||
|
||||
namespace fputil {
|
||||
|
||||
template <typename T, int N> struct ExceptionalValues {
|
||||
using UIntType = typename FPBits<T>::UIntType;
|
||||
static constexpr int SIZE = N;
|
||||
// Input bits.
|
||||
UIntType inputs[SIZE];
|
||||
// Output bits contains 4 values:
|
||||
// output[i][0]: output bits corresponding to FE_TOWARDZERO
|
||||
// output[i][1]: offset for FE_UPWARD
|
||||
// output[i][2]: offset for FE_DOWNWARD
|
||||
// output[i][3]: offset for FE_TONEAREST
|
||||
UIntType outputs[SIZE][4];
|
||||
};
|
||||
|
||||
template <typename T, int N> struct ExceptionChecker {
|
||||
using UIntType = typename FPBits<T>::UIntType;
|
||||
using FPBits = FPBits<T>;
|
||||
using ExceptionalValues = ExceptionalValues<T, N>;
|
||||
|
||||
static bool check_odd_func(const ExceptionalValues &ExceptVals,
|
||||
UIntType x_abs, bool sign, T &result) {
|
||||
for (int i = 0; i < N; ++i) {
|
||||
if (unlikely(x_abs == ExceptVals.inputs[i])) {
|
||||
UIntType out_bits = ExceptVals.outputs[i][0]; // FE_TOWARDZERO
|
||||
switch (fputil::get_round()) {
|
||||
case FE_UPWARD:
|
||||
out_bits +=
|
||||
sign ? ExceptVals.outputs[i][2] : ExceptVals.outputs[i][1];
|
||||
break;
|
||||
case FE_DOWNWARD:
|
||||
out_bits +=
|
||||
sign ? ExceptVals.outputs[i][1] : ExceptVals.outputs[i][2];
|
||||
break;
|
||||
case FE_TONEAREST:
|
||||
out_bits += ExceptVals.outputs[i][3];
|
||||
break;
|
||||
}
|
||||
result = FPBits(out_bits).get_val();
|
||||
if (sign)
|
||||
result = -result;
|
||||
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace fputil
|
||||
|
||||
} // namespace __llvm_libc
|
||||
|
||||
#endif // LLVM_LIBC_SRC_SUPPORT_FPUTIL_EXCEPT_VALUE_UTILS_H
|
|
@ -76,11 +76,16 @@ add_entrypoint_object(
|
|||
sinf.cpp
|
||||
HDRS
|
||||
../sinf.h
|
||||
range_reduction.h
|
||||
range_reduction_fma.h
|
||||
DEPENDS
|
||||
.sincosf_utils
|
||||
libc.include.math
|
||||
libc.src.errno.errno
|
||||
libc.src.__support.FPUtil.fputil
|
||||
libc.src.__support.FPUtil.fma
|
||||
libc.src.__support.FPUtil.multiply_add
|
||||
libc.src.__support.FPUtil.nearest_integer
|
||||
libc.src.__support.FPUtil.polyeval
|
||||
COMPILE_OPTIONS
|
||||
-O3
|
||||
)
|
||||
|
|
|
@ -0,0 +1,131 @@
|
|||
//===-- Utilities for trigonometric functions -------------------*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_LIBC_SRC_MATH_GENERIC_RANGE_REDUCTION_H
|
||||
#define LLVM_LIBC_SRC_MATH_GENERIC_RANGE_REDUCTION_H
|
||||
|
||||
#include "src/__support/FPUtil/FPBits.h"
|
||||
#include "src/__support/FPUtil/except_value_utils.h"
|
||||
#include "src/__support/FPUtil/multiply_add.h"
|
||||
#include "src/__support/FPUtil/nearest_integer.h"
|
||||
|
||||
namespace __llvm_libc {
|
||||
|
||||
namespace generic {
|
||||
|
||||
static constexpr uint32_t FAST_PASS_BOUND = 0x4c80'0000U; // 2^26
|
||||
|
||||
static constexpr int N_ENTRIES = 8;
|
||||
|
||||
// We choose to split bits of 1/pi into 28-bit precision pieces, so that the
|
||||
// product of x * ONE_OVER_PI_28[i] is exact.
|
||||
// These are generated by Sollya with:
|
||||
// > a1 = D(round(1/pi, 28, RN)); a1;
|
||||
// > a2 = D(round(1/pi - a1, 28, RN)); a2;
|
||||
// > a3 = D(round(1/pi - a1 - a2, 28, RN)); a3;
|
||||
// > a4 = D(round(1/pi - a1 - a2 - a3, 28, RN)); a4;
|
||||
// ...
|
||||
static constexpr double ONE_OVER_PI_28[N_ENTRIES] = {
|
||||
0x1.45f306ep-2, -0x1.b1bbeaep-33, 0x1.3f84ebp-62, -0x1.7056592p-92,
|
||||
0x1.c0db62ap-121, -0x1.4cd8778p-150, -0x1.bef806cp-179, 0x1.63abdecp-209};
|
||||
|
||||
// Exponents of the least significant bits of the corresponding entries in
|
||||
// ONE_OVER_PI_28.
|
||||
static constexpr int ONE_OVER_PI_28_LSB_EXP[N_ENTRIES] = {
|
||||
-29, -60, -86, -119, -148, -175, -205, -235};
|
||||
|
||||
// Return (k mod 2) and y, where
|
||||
// k = round(x / pi) and y = (x / pi) - k.
|
||||
static inline int64_t small_range_reduction(double x, double &y) {
|
||||
double prod = x * ONE_OVER_PI_28[0];
|
||||
double kd = fputil::nearest_integer(prod);
|
||||
y = prod - kd;
|
||||
y = fputil::multiply_add(x, ONE_OVER_PI_28[1], y);
|
||||
y = fputil::multiply_add(x, ONE_OVER_PI_28[2], y);
|
||||
return static_cast<int64_t>(kd);
|
||||
}
|
||||
|
||||
// Return k and y, where
|
||||
// k = round(x / pi) and y = (x / pi) - k.
|
||||
// For large range, there are at most 2 parts of ONE_OVER_PI_28 contributing to
|
||||
// the unit binary digit (k & 1). If the least significant bit of x * the least
|
||||
// significant bit of ONE_OVER_PI_28[i] > 1, we can completely ignore
|
||||
// ONE_OVER_PI_28[i].
|
||||
static inline int64_t large_range_reduction(double x, int x_exp, double &y) {
|
||||
int idx = 0;
|
||||
y = 0;
|
||||
int x_lsb_exp = x_exp - fputil::FloatProperties<float>::MANTISSA_WIDTH;
|
||||
|
||||
// Skipping the first parts of 1/pi such that:
|
||||
// LSB of x * LSB of ONE_OVER_PI_28[i] > 1.
|
||||
while (x_lsb_exp + ONE_OVER_PI_28_LSB_EXP[idx] > 0)
|
||||
++idx;
|
||||
|
||||
double prod_hi = x * ONE_OVER_PI_28[idx];
|
||||
// Get the integral part of x * ONE_OVER_PI_28[idx]
|
||||
double k_hi = fputil::nearest_integer(prod_hi);
|
||||
// Get the fractional part of x * ONE_OVER_PI_28[idx]
|
||||
double frac = prod_hi - k_hi;
|
||||
double prod_lo = fputil::multiply_add(x, ONE_OVER_PI_28[idx + 1], frac);
|
||||
double k_lo = fputil::nearest_integer(prod_lo);
|
||||
|
||||
// Now y is the fractional parts.
|
||||
y = prod_lo - k_lo;
|
||||
y = fputil::multiply_add(x, ONE_OVER_PI_28[idx + 2], y);
|
||||
y = fputil::multiply_add(x, ONE_OVER_PI_28[idx + 3], y);
|
||||
|
||||
return static_cast<int64_t>(k_hi + k_lo);
|
||||
}
|
||||
|
||||
// Exceptional cases.
|
||||
static constexpr int N_EXCEPT_SMALL = 4;
|
||||
|
||||
static constexpr fputil::ExceptionalValues<float, N_EXCEPT_SMALL> SmallExcepts{
|
||||
/* inputs */ {
|
||||
0x3fa7832a, // x = 0x1.4f0654p0
|
||||
0x46199998, // x = 0x1.33333p13
|
||||
0x4afdece4, // x = 0x1.fbd9c8p22
|
||||
0x4c2332e9, // x = 0x1.4665d2p25
|
||||
},
|
||||
/* outputs (RZ, RU offset, RD offset, RN offset) */
|
||||
{
|
||||
{0x3f7741b5, 1, 0, 1}, // x = 0x1.4f0654p0, sin(x) = 0x1.ee836ap-1 (RZ)
|
||||
{0xbeb1fa5d, 0, 1, 0}, // x = 0x1.33333p13, sin(x) = -0x1.63f4bap-2 (RZ)
|
||||
{0xbf7fb6e0, 0, 1, 1}, // x = 0x1.fbd9c8p22, sin(x) = -0x1.ff6dcp-1 (RZ)
|
||||
{0xbf7fffff, 0, 1,
|
||||
1}, // x = 0x1.4665d2p25, sin(x) = -0x1.fffffep-1 (RZ)
|
||||
}};
|
||||
|
||||
static constexpr int N_EXCEPT_LARGE = 5;
|
||||
|
||||
static constexpr fputil::ExceptionalValues<float, N_EXCEPT_LARGE> LargeExcepts{
|
||||
/* inputs */ {
|
||||
0x523947f6, // x = 0x1.728fecp37
|
||||
0x53b146a6, // x = 0x1.628d4cp40
|
||||
0x55cafb2a, // x = 0x1.95f654p44
|
||||
0x6a1976f1, // x = 0x1.32ede2p85
|
||||
0x77584625, // x = 0x1.b08c4ap111
|
||||
},
|
||||
/* outputs (RZ, RU offset, RD offset, RN offset) */
|
||||
{
|
||||
{0xbf12791d, 0, 1,
|
||||
1}, // x = 0x1.728fecp37, sin(x) = -0x1.24f23ap-1 (RZ)
|
||||
{0xbf7fffff, 0, 1,
|
||||
1}, // x = 0x1.628d4cp40, sin(x) = -0x1.fffffep-1 (RZ)
|
||||
{0xbf7e7a16, 0, 1,
|
||||
1}, // x = 0x1.95f654p44, sin(x) = -0x1.fcf42cp-1 (RZ)
|
||||
{0x3f7fffff, 1, 0, 1}, // x = 0x1.32ede2p85, sin(x) = 0x1.fffffep-1 (RZ)
|
||||
{0xbf7fffff, 0, 1,
|
||||
1}, // x = 0x1.b08c4ap111, sin(x) = -0x1.fffffep-1 (RZ)
|
||||
}};
|
||||
|
||||
} // namespace generic
|
||||
|
||||
} // namespace __llvm_libc
|
||||
|
||||
#endif // LLVM_LIBC_SRC_MATH_GENERIC_RANGE_REDUCTION_H
|
|
@ -0,0 +1,137 @@
|
|||
//===-- Utilities for trigonometric functions with FMA ----------*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_LIBC_SRC_MATH_GENERIC_RANGE_REDUCTION_FMA_H
|
||||
#define LLVM_LIBC_SRC_MATH_GENERIC_RANGE_REDUCTION_FMA_H
|
||||
|
||||
#include "src/__support/FPUtil/FMA.h"
|
||||
#include "src/__support/FPUtil/FPBits.h"
|
||||
#include "src/__support/FPUtil/except_value_utils.h"
|
||||
#include "src/__support/FPUtil/nearest_integer.h"
|
||||
|
||||
namespace __llvm_libc {
|
||||
|
||||
namespace fma {
|
||||
|
||||
static constexpr uint32_t FAST_PASS_BOUND = 0x5880'0000U; // 2^50
|
||||
|
||||
// Digits of 1/pi, generated by Sollya with:
|
||||
// > a0 = D(1/pi);
|
||||
// > a1 = D(1/pi - a0);
|
||||
// > a2 = D(1/pi - a0 - a1);
|
||||
// > a3 = D(1/pi - a0 - a1 - a2);
|
||||
static constexpr double ONE_OVER_PI[5] = {
|
||||
0x1.45f306dc9c883p-2, -0x1.6b01ec5417056p-56, -0x1.6447e493ad4cep-110,
|
||||
0x1.e21c820ff28b2p-164, -0x1.508510ea79237p-219};
|
||||
|
||||
// Return k and y, where
|
||||
// k = round(x / pi) and y = (x / pi) - k.
|
||||
// Assume x is non-negative.
|
||||
static inline int64_t small_range_reduction(double x, double &y) {
|
||||
double kd = fputil::nearest_integer(x * ONE_OVER_PI[0]);
|
||||
y = fputil::fma(x, ONE_OVER_PI[0], -kd);
|
||||
y = fputil::fma(x, ONE_OVER_PI[1], y);
|
||||
return static_cast<int64_t>(kd);
|
||||
}
|
||||
|
||||
// Return k and y, where
|
||||
// k = round(x / pi) and y = (x / pi) - k.
|
||||
static inline int64_t large_range_reduction(double x, int x_exp, double &y) {
|
||||
// 2^50 <= |x| < 2^104
|
||||
if (x_exp < 103) {
|
||||
// - When x < 2^104, the unit bit is contained in the full exact product of
|
||||
// x * ONE_OVER_PI[0].
|
||||
// - When 2^50 <= |x| < 2^55, the unit bit is contained
|
||||
// in the last 8 bits of double(x * ONE_OVER_PI[0]).
|
||||
// - When |x| >= 2^55, the LSB of double(x * ONE_OVER_PI[0]) is at least 2.
|
||||
fputil::FPBits<double> prod_hi(x * ONE_OVER_PI[0]);
|
||||
prod_hi.bits &= (x_exp < 55) ? (~0xffULL) : (~0ULL); // |x| < 2^55
|
||||
double k_hi = fputil::nearest_integer(static_cast<double>(prod_hi));
|
||||
double truncated_prod = fputil::fma(x, ONE_OVER_PI[0], -k_hi);
|
||||
double prod_lo = fputil::fma(x, ONE_OVER_PI[1], truncated_prod);
|
||||
double k_lo = fputil::nearest_integer(prod_lo);
|
||||
y = fputil::fma(x, ONE_OVER_PI[1], truncated_prod - k_lo);
|
||||
y = fputil::fma(x, ONE_OVER_PI[2], y);
|
||||
y = fputil::fma(x, ONE_OVER_PI[3], y);
|
||||
|
||||
return static_cast<int64_t>(k_lo);
|
||||
}
|
||||
|
||||
// - When x >= 2^104, the full exact product of x * ONE_OVER_PI[0] does not
|
||||
// contain the unit bit, so we can ignore it completely.
|
||||
// - When 2^104 <= |x| < 2^109, the unit bit is contained
|
||||
// in the last 8 bits of double(x * ONE_OVER_PI[1]).
|
||||
// - When |x| >= 2^109, the LSB of double(x * ONE_OVER_PI[1]) is at least 2.
|
||||
fputil::FPBits<double> prod_hi(x * ONE_OVER_PI[1]);
|
||||
prod_hi.bits &= (x_exp < 109) ? (~0xffULL) : (~0ULL); // |x| < 2^55
|
||||
double k_hi = fputil::nearest_integer(static_cast<double>(prod_hi));
|
||||
double truncated_prod = fputil::fma(x, ONE_OVER_PI[1], -k_hi);
|
||||
double prod_lo = fputil::fma(x, ONE_OVER_PI[2], truncated_prod);
|
||||
double k_lo = fputil::nearest_integer(prod_lo);
|
||||
y = fputil::fma(x, ONE_OVER_PI[2], truncated_prod - k_lo);
|
||||
y = fputil::fma(x, ONE_OVER_PI[3], y);
|
||||
y = fputil::fma(x, ONE_OVER_PI[4], y);
|
||||
|
||||
return static_cast<int64_t>(k_lo);
|
||||
}
|
||||
|
||||
// Exceptional cases.
|
||||
static constexpr int N_EXCEPT_SMALL = 9;
|
||||
|
||||
static constexpr fputil::ExceptionalValues<float, N_EXCEPT_SMALL> SmallExcepts{
|
||||
/* inputs */ {
|
||||
0x3fa7832a, // x = 0x1.4f0654p0
|
||||
0x40171973, // x = 0x1.2e32e6p1
|
||||
0x4096cbe4, // x = 0x1.2d97c8p2
|
||||
0x433b7490, // x = 0x1.76e92p7
|
||||
0x437ce5f1, // x = 0x1.f9cbe2p7
|
||||
0x46199998, // x = 0x1.33333p13
|
||||
0x474d246f, // x = 0x1.9a48dep15
|
||||
0x4afdece4, // x = 0x1.fbd9c8p22
|
||||
0x55cafb2a, // x = 0x1.95f654p44
|
||||
},
|
||||
/* outputs (RZ, RU offset, RD offset, RN offset) */
|
||||
{
|
||||
{0x3f7741b5, 1, 0, 1}, // x = 0x1.4f0654p0, sin(x) = 0x1.ee836ap-1 (RZ)
|
||||
{0x3f34290f, 1, 0, 1}, // x = 0x1.2e32e6p1, sin(x) = 0x1.68521ep-1 (RZ)
|
||||
{0xbf7fffff, 0, 1, 1}, // x = 0x1.2d97c8p2, sin(x) = -0x1.fffffep-1 (RZ)
|
||||
{0xbf5cce62, 0, 1, 0}, // x = 0x1.76e92p7, sin(x) = -0x1.b99cc4p-1 (RZ)
|
||||
{0x3f7fffff, 1, 0, 1}, // x = 0x1.f9cbe2p7, sin(x) = 0x1.fffffep-1 (RZ)
|
||||
{0xbeb1fa5d, 0, 1, 0}, // x = 0x1.33333p13, sin(x) = -0x1.63f4bap-2 (RZ)
|
||||
{0x3f7fffff, 1, 0, 1}, // x = 0x1.9a48dep15, sin(x) = 0x1.fffffep-1 (RZ)
|
||||
{0xbf7fb6e0, 0, 1, 1}, // x = 0x1.fbd9c8p22, sin(x) = -0x1.ff6dcp-1 (RZ)
|
||||
{0xbf7e7a16, 0, 1,
|
||||
1}, // x = 0x1.95f654p44, sin(x) = -0x1.fcf42cp-1 (RZ)
|
||||
}};
|
||||
|
||||
static constexpr int N_EXCEPT_LARGE = 5;
|
||||
|
||||
static constexpr fputil::ExceptionalValues<float, N_EXCEPT_LARGE> LargeExcepts{
|
||||
/* inputs */ {
|
||||
0x5ebcfdde, // x = 0x1.79fbbcp62
|
||||
0x5fa6eba7, // x = 0x1.4dd74ep64
|
||||
0x6386134e, // x = 0x1.0c269cp72
|
||||
0x6a1976f1, // x = 0x1.32ede2p85
|
||||
0x727669d4, // x = 0x1.ecd3a8p101
|
||||
},
|
||||
/* outputs (RZ, RU offset, RD offset, RN offset) */
|
||||
{
|
||||
{0x3f50622d, 1, 0, 0}, // x = 0x1.79fbbcp62, sin(x) = 0x1.a0c45ap-1 (RZ)
|
||||
{0xbe52464a, 0, 1,
|
||||
0}, // x = 0x1.4dd74ep64, sin(x) = -0x1.a48c94p-3 (RZ)
|
||||
{0x3f7cb2e7, 1, 0, 0}, // x = 0x1.0c269cp72, sin(x) = 0x1.f965cep-1 (RZ)
|
||||
{0x3f7fffff, 1, 0, 1}, // x = 0x1.32ede2p85, sin(x) = 0x1.fffffep-1 (RZ)
|
||||
{0xbf7a781d, 0, 1,
|
||||
0}, // x = 0x1.ecd3a8p101, sin(x) = -0x1.f4f038p-1 (RZ)
|
||||
}};
|
||||
|
||||
} // namespace fma
|
||||
|
||||
} // namespace __llvm_libc
|
||||
|
||||
#endif // LLVM_LIBC_SRC_MATH_GENERIC_RANGE_REDUCTION_FMA_H
|
|
@ -7,63 +7,195 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "src/math/sinf.h"
|
||||
#include "math_utils.h"
|
||||
#include "sincosf_utils.h"
|
||||
|
||||
#include "src/__support/FPUtil/BasicOperations.h"
|
||||
#include "src/__support/FPUtil/FEnvImpl.h"
|
||||
#include "src/__support/FPUtil/FPBits.h"
|
||||
#include "src/__support/FPUtil/PolyEval.h"
|
||||
#include "src/__support/FPUtil/except_value_utils.h"
|
||||
#include "src/__support/FPUtil/multiply_add.h"
|
||||
#include "src/__support/common.h"
|
||||
#include <math.h>
|
||||
|
||||
#include <stdint.h>
|
||||
#include <errno.h>
|
||||
|
||||
#if defined(LIBC_TARGET_HAS_FMA)
|
||||
#include "range_reduction_fma.h"
|
||||
// using namespace __llvm_libc::fma;
|
||||
using __llvm_libc::fma::FAST_PASS_BOUND;
|
||||
using __llvm_libc::fma::large_range_reduction;
|
||||
using __llvm_libc::fma::LargeExcepts;
|
||||
using __llvm_libc::fma::N_EXCEPT_LARGE;
|
||||
using __llvm_libc::fma::N_EXCEPT_SMALL;
|
||||
using __llvm_libc::fma::small_range_reduction;
|
||||
using __llvm_libc::fma::SmallExcepts;
|
||||
#else
|
||||
#include "range_reduction.h"
|
||||
// using namespace __llvm_libc::generic;
|
||||
using __llvm_libc::generic::FAST_PASS_BOUND;
|
||||
using __llvm_libc::generic::large_range_reduction;
|
||||
using __llvm_libc::generic::LargeExcepts;
|
||||
using __llvm_libc::generic::N_EXCEPT_LARGE;
|
||||
using __llvm_libc::generic::N_EXCEPT_SMALL;
|
||||
using __llvm_libc::generic::small_range_reduction;
|
||||
using __llvm_libc::generic::SmallExcepts;
|
||||
#endif
|
||||
|
||||
namespace __llvm_libc {
|
||||
|
||||
// Fast sinf implementation. Worst-case ULP is 0.5607, maximum relative
|
||||
// error is 0.5303 * 2^-23. A single-step range reduction is used for
|
||||
// small values. Large inputs have their range reduced using fast integer
|
||||
// arithmetic.
|
||||
LLVM_LIBC_FUNCTION(float, sinf, (float y)) {
|
||||
double x = y;
|
||||
double s;
|
||||
int n;
|
||||
const sincos_t *p = &SINCOSF_TABLE[0];
|
||||
LLVM_LIBC_FUNCTION(float, sinf, (float x)) {
|
||||
using FPBits = typename fputil::FPBits<float>;
|
||||
FPBits xbits(x);
|
||||
|
||||
if (abstop12(y) < abstop12(PIO4)) {
|
||||
s = x * x;
|
||||
uint32_t x_u = xbits.uintval();
|
||||
uint32_t x_abs = x_u & 0x7fff'ffffU;
|
||||
double xd, y;
|
||||
|
||||
if (unlikely(abstop12(y) < abstop12(as_float(0x39800000)))) {
|
||||
if (unlikely(abstop12(y) < abstop12(as_float(0x800000))))
|
||||
// Force underflow for tiny y.
|
||||
force_eval<float>(s);
|
||||
return y;
|
||||
// Range reduction:
|
||||
// For |x| > pi/16, we perform range reduction as follows:
|
||||
// Find k and y such that:
|
||||
// x = (k + y) * pi
|
||||
// k is an integer
|
||||
// |y| < 0.5
|
||||
// For small range (|x| < 2^50 when FMA instructions are available, 2^26
|
||||
// otherwise), this is done by performing:
|
||||
// k = round(x * 1/pi)
|
||||
// y = x * 1/pi - k
|
||||
// For large range, we will omit all the higher parts of 1/pi such that the
|
||||
// least significant bits of their full products with x are larger than 1,
|
||||
// since sin(x + i * 2pi) = sin(x).
|
||||
//
|
||||
// When FMA instructions are not available, we store the digits of 1/pi in
|
||||
// chunks of 28-bit precision. This will make sure that the products:
|
||||
// x * ONE_OVER_PI_28[i] are all exact.
|
||||
// When FMA instructions are available, we simply store the digits of 1/pi in
|
||||
// chunks of doubles (53-bit of precision).
|
||||
// So when multiplying by the largest values of single precision, the
|
||||
// resulting output should be correct up to 2^(-208 + 128) ~ 2^-80. By the
|
||||
// worst-case analysis of range reduction, |y| >= 2^-38, so this should give
|
||||
// us more than 40 bits of accuracy. For the worst-case estimation of range
|
||||
// reduction, see for instances:
|
||||
// Elementary Functions by J-M. Muller, Chapter 11,
|
||||
// Handbook of Floating-Point Arithmetic by J-M. Muller et. al.,
|
||||
// Chapter 10.2.
|
||||
//
|
||||
// Once k and y are computed, we then deduce the answer by the sine of sum
|
||||
// formula:
|
||||
// sin(x) = sin((k + y)*pi)
|
||||
// = sin(y*pi) * cos(k*pi) + cos(y*pi) * sin(k*pi)
|
||||
// = (-1)^(k & 1) * sin(y*pi)
|
||||
// ~ (-1)^(k & 1) * y * P(y^2)
|
||||
// where y*P(y^2) is a degree-15 minimax polynomial generated by Sollya
|
||||
// with: > Q = fpminimax(sin(x*pi)/x, [|0, 2, 4, 6, 8, 10, 12, 14|],
|
||||
// [|D...|], [0, 0.5]);
|
||||
|
||||
// |x| <= pi/16
|
||||
if (x_abs <= 0x3e49'0fdbU) {
|
||||
xd = static_cast<double>(x);
|
||||
|
||||
// |x| < 0x1.d12ed2p-12f
|
||||
if (x_abs < 0x39e8'9769U) {
|
||||
if (unlikely(x_abs == 0U)) {
|
||||
// For signed zeros.
|
||||
return x;
|
||||
}
|
||||
// When |x| < 2^-12, the relative error of the approximation sin(x) ~ x
|
||||
// is:
|
||||
// |sin(x) - x| / |sin(x)| < |x^3| / (6|x|)
|
||||
// = x^2 / 6
|
||||
// < 2^-25
|
||||
// < epsilon(1)/2.
|
||||
// So the correctly rounded values of sin(x) are:
|
||||
// = x - sign(x)*eps(x) if rounding mode = FE_TOWARDZERO,
|
||||
// or (rounding mode = FE_UPWARD and x is
|
||||
// negative),
|
||||
// = x otherwise.
|
||||
// To simplify the rounding decision and make it more efficient, we use
|
||||
// fma(x, -2^-25, x) instead.
|
||||
// An exhaustive test shows that this formula work correctly for all
|
||||
// rounding modes up to |x| < 0x1.c555dep-11f.
|
||||
// Note: to use the formula x - 2^-25*x to decide the correct rounding, we
|
||||
// do need fma(x, -2^-25, x) to prevent underflow caused by -2^-25*x when
|
||||
// |x| < 2^-125. For targets without FMA instructions, we simply use
|
||||
// double for intermediate results as it is more efficient than using an
|
||||
// emulated version of FMA.
|
||||
#if defined(LIBC_TARGET_HAS_FMA)
|
||||
return fputil::multiply_add(x, -0x1.0p-25f, x);
|
||||
#else
|
||||
return static_cast<float>(fputil::multiply_add(xd, -0x1.0p-25, xd));
|
||||
#endif // LIBC_TARGET_HAS_FMA
|
||||
}
|
||||
|
||||
return sinf_poly(x, s, p, 0);
|
||||
} else if (likely(abstop12(y) < abstop12(120.0f))) {
|
||||
x = reduce_fast(x, p, &n);
|
||||
// |x| < pi/16.
|
||||
double xsq = xd * xd;
|
||||
|
||||
// Setup the signs for sin and cos.
|
||||
s = p->sign[n & 3];
|
||||
|
||||
if (n & 2)
|
||||
p = &SINCOSF_TABLE[1];
|
||||
|
||||
return sinf_poly(x * s, x * x, p, n);
|
||||
} else if (abstop12(y) < abstop12(INFINITY)) {
|
||||
uint32_t xi = as_uint32_bits(y);
|
||||
int sign = xi >> 31;
|
||||
|
||||
x = reduce_large(xi, &n);
|
||||
|
||||
// Setup signs for sin and cos - include original sign.
|
||||
s = p->sign[(n + sign) & 3];
|
||||
|
||||
if ((n + sign) & 2)
|
||||
p = &SINCOSF_TABLE[1];
|
||||
|
||||
return sinf_poly(x * s, x * x, p, n);
|
||||
// Degree-9 polynomial approximation:
|
||||
// sin(x) ~ x + a_3 x^3 + a_5 x^5 + a_7 x^7 + a_9 x^9
|
||||
// = x (1 + a_3 x^2 + ... + a_9 x^8)
|
||||
// = x * P(x^2)
|
||||
// generated by Sollya with the following commands:
|
||||
// > display = hexadecimal;
|
||||
// > Q = fpminimax(sin(x)/x, [|0, 2, 4, 6, 8|], [|1, D...|], [0, pi/16]);
|
||||
double result =
|
||||
fputil::polyeval(xsq, 1.0, -0x1.55555555554c6p-3, 0x1.1111111085e65p-7,
|
||||
-0x1.a019f70fb4d4fp-13, 0x1.718d179815e74p-19);
|
||||
return xd * result;
|
||||
}
|
||||
|
||||
return invalid(y);
|
||||
bool x_sign = xbits.get_sign();
|
||||
|
||||
int64_t k;
|
||||
xd = static_cast<double>(x);
|
||||
|
||||
if (x_abs < FAST_PASS_BOUND) {
|
||||
using ExceptChecker =
|
||||
typename fputil::ExceptionChecker<float, N_EXCEPT_SMALL>;
|
||||
{
|
||||
float result;
|
||||
if (ExceptChecker::check_odd_func(SmallExcepts, x_abs, x_sign, result)) {
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
k = small_range_reduction(xd, y);
|
||||
} else {
|
||||
// x is inf or nan.
|
||||
if (unlikely(x_abs >= 0x7f80'0000U)) {
|
||||
if (x_abs == 0x7f80'0000U)
|
||||
errno = EDOM;
|
||||
return x +
|
||||
FPBits::build_nan(1 << (fputil::MantissaWidth<float>::VALUE - 1));
|
||||
}
|
||||
|
||||
using ExceptChecker =
|
||||
typename fputil::ExceptionChecker<float, N_EXCEPT_LARGE>;
|
||||
{
|
||||
float result;
|
||||
if (ExceptChecker::check_odd_func(LargeExcepts, x_abs, x_sign, result))
|
||||
return result;
|
||||
}
|
||||
|
||||
k = large_range_reduction(xd, xbits.get_exponent(), y);
|
||||
}
|
||||
|
||||
// After range reduction, k = round(x / pi) and y = (x/pi) - k.
|
||||
// So k is an integer and -0.5 <= y <= 0.5.
|
||||
// Then sin(x) = sin(y*pi + k*pi)
|
||||
// = (-1)^(k & 1) * sin(y*pi)
|
||||
// ~ (-1)^(k & 1) * y * P(y^2)
|
||||
// where y*P(y^2) is a degree-15 minimax polynomial generated by Sollya
|
||||
// with: > P = fpminimax(sin(x*pi)/x, [|0, 2, 4, 6, 8, 10, 12, 14|],
|
||||
// [|D...|], [0, 0.5]);
|
||||
|
||||
constexpr double SIGN[2] = {1.0, -1.0};
|
||||
|
||||
double ysq = y * y;
|
||||
double result =
|
||||
y * fputil::polyeval(ysq, 0x1.921fb54442d17p1, -0x1.4abbce625bd4bp2,
|
||||
0x1.466bc67750a3fp1, -0x1.32d2cce1612b5p-1,
|
||||
0x1.507832417bce6p-4, -0x1.e3062119b6071p-8,
|
||||
0x1.e89c7aa14122dp-12, -0x1.625b1709dece6p-16);
|
||||
|
||||
return SIGN[k & 1] * result;
|
||||
// }
|
||||
}
|
||||
|
||||
} // namespace __llvm_libc
|
||||
|
|
|
@ -23,15 +23,19 @@ add_fp_unittest(
|
|||
|
||||
add_fp_unittest(
|
||||
sinf_test
|
||||
NO_RUN_POSTBUILD
|
||||
NEED_MPFR
|
||||
SUITE
|
||||
libc_math_exhaustive_tests
|
||||
SRCS
|
||||
sinf_test.cpp
|
||||
DEPENDS
|
||||
.exhaustive_test
|
||||
libc.include.math
|
||||
libc.src.math.sinf
|
||||
libc.src.__support.FPUtil.fputil
|
||||
LINK_LIBRARIES
|
||||
-lpthread
|
||||
)
|
||||
|
||||
add_fp_unittest(
|
||||
|
|
|
@ -6,20 +6,71 @@
|
|||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "exhaustive_test.h"
|
||||
#include "src/__support/FPUtil/FPBits.h"
|
||||
#include "src/math/sinf.h"
|
||||
#include "utils/MPFRWrapper/MPFRUtils.h"
|
||||
#include <math.h>
|
||||
#include "utils/UnitTest/FPMatcher.h"
|
||||
|
||||
#include <thread>
|
||||
|
||||
using FPBits = __llvm_libc::fputil::FPBits<float>;
|
||||
|
||||
namespace mpfr = __llvm_libc::testing::mpfr;
|
||||
|
||||
TEST(LlvmLibcsinffExhaustiveTest, AllValues) {
|
||||
uint32_t bits = 0;
|
||||
do {
|
||||
FPBits xbits(bits);
|
||||
float x = float(xbits);
|
||||
ASSERT_MPFR_MATCH(mpfr::Operation::Sin, x, __llvm_libc::sinf(x), 1.0);
|
||||
} while (bits++ < 0xffff'ffffU);
|
||||
struct LlvmLibcSinfExhaustiveTest : public LlvmLibcExhaustiveTest<uint32_t> {
|
||||
bool check(uint32_t start, uint32_t stop,
|
||||
mpfr::RoundingMode rounding) override {
|
||||
mpfr::ForceRoundingMode r(rounding);
|
||||
uint32_t bits = start;
|
||||
bool result = true;
|
||||
do {
|
||||
FPBits xbits(bits);
|
||||
float x = float(xbits);
|
||||
bool r = EXPECT_MPFR_MATCH(mpfr::Operation::Sin, x, __llvm_libc::sinf(x),
|
||||
0.5, rounding);
|
||||
result &= r;
|
||||
} while (++bits < stop);
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
// Range: [0, +Inf);
|
||||
static constexpr uint32_t POS_START = 0x0000'0000U;
|
||||
static constexpr uint32_t POS_STOP = 0x7f80'0000U;
|
||||
|
||||
TEST_F(LlvmLibcSinfExhaustiveTest, PostiveRangeRoundNearestTieToEven) {
|
||||
test_full_range(POS_START, POS_STOP, mpfr::RoundingMode::Nearest);
|
||||
}
|
||||
|
||||
TEST_F(LlvmLibcSinfExhaustiveTest, PostiveRangeRoundUp) {
|
||||
test_full_range(POS_START, POS_STOP, mpfr::RoundingMode::Upward);
|
||||
}
|
||||
|
||||
TEST_F(LlvmLibcSinfExhaustiveTest, PostiveRangeRoundDown) {
|
||||
test_full_range(POS_START, POS_STOP, mpfr::RoundingMode::Downward);
|
||||
}
|
||||
|
||||
TEST_F(LlvmLibcSinfExhaustiveTest, PostiveRangeRoundTowardZero) {
|
||||
test_full_range(POS_START, POS_STOP, mpfr::RoundingMode::TowardZero);
|
||||
}
|
||||
|
||||
// Range: (-Inf, 0];
|
||||
static constexpr uint32_t NEG_START = 0x8000'0000U;
|
||||
static constexpr uint32_t NEG_STOP = 0xff80'0000U;
|
||||
|
||||
TEST_F(LlvmLibcSinfExhaustiveTest, NegativeRangeRoundNearestTieToEven) {
|
||||
test_full_range(NEG_START, NEG_STOP, mpfr::RoundingMode::Nearest);
|
||||
}
|
||||
|
||||
TEST_F(LlvmLibcSinfExhaustiveTest, NegativeRangeRoundUp) {
|
||||
test_full_range(NEG_START, NEG_STOP, mpfr::RoundingMode::Upward);
|
||||
}
|
||||
|
||||
TEST_F(LlvmLibcSinfExhaustiveTest, NegativeRangeRoundDown) {
|
||||
test_full_range(NEG_START, NEG_STOP, mpfr::RoundingMode::Downward);
|
||||
}
|
||||
|
||||
TEST_F(LlvmLibcSinfExhaustiveTest, NegativeRangeRoundTowardZero) {
|
||||
test_full_range(NEG_START, NEG_STOP, mpfr::RoundingMode::TowardZero);
|
||||
}
|
||||
|
|
|
@ -51,26 +51,70 @@ TEST(LlvmLibcSinfTest, InFloatRange) {
|
|||
float x = float(FPBits(v));
|
||||
if (isnan(x) || isinf(x))
|
||||
continue;
|
||||
ASSERT_MPFR_MATCH(mpfr::Operation::Sin, x, __llvm_libc::sinf(x), 1.0);
|
||||
ASSERT_MPFR_MATCH_ALL_ROUNDING(mpfr::Operation::Sin, x,
|
||||
__llvm_libc::sinf(x), 0.5);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(LlvmLibcSinfTest, SpecificBitPatterns) {
|
||||
float x = float(FPBits(uint32_t(0xc70d39a1)));
|
||||
EXPECT_MPFR_MATCH(mpfr::Operation::Sin, x, __llvm_libc::sinf(x), 1.0);
|
||||
constexpr int N = 36;
|
||||
constexpr uint32_t INPUTS[N] = {
|
||||
0x3f06'0a92U, // x = pi/6
|
||||
0x3f3a'dc51U, // x = 0x1.75b8a2p-1f
|
||||
0x3f49'0fdbU, // x = pi/4
|
||||
0x3f86'0a92U, // x = pi/3
|
||||
0x3fa7'832aU, // x = 0x1.4f0654p+0f
|
||||
0x3fc9'0fdbU, // x = pi/2
|
||||
0x4017'1973U, // x = 0x1.2e32e6p+1f
|
||||
0x4049'0fdbU, // x = pi
|
||||
0x4096'cbe4U, // x = 0x1.2d97c8p+2f
|
||||
0x40c9'0fdbU, // x = 2*pi
|
||||
0x433b'7490U, // x = 0x1.76e92p+7f
|
||||
0x437c'e5f1U, // x = 0x1.f9cbe2p+7f
|
||||
0x4619'9998U, // x = 0x1.33333p+13f
|
||||
0x474d'246fU, // x = 0x1.9a48dep+15f
|
||||
0x4afd'ece4U, // x = 0x1.fbd9c8p+22f
|
||||
0x4c23'32e9U, // x = 0x1.4665d2p+25f
|
||||
0x50a3'e87fU, // x = 0x1.47d0fep+34f
|
||||
0x5239'47f6U, // x = 0x1.728fecp+37f
|
||||
0x53b1'46a6U, // x = 0x1.628d4cp+40f
|
||||
0x55ca'fb2aU, // x = 0x1.95f654p+44f
|
||||
0x588e'f060U, // x = 0x1.1de0cp+50f
|
||||
0x5c07'bcd0U, // x = 0x1.0f79ap+57f
|
||||
0x5ebc'fddeU, // x = 0x1.79fbbcp+62f
|
||||
0x5fa6'eba7U, // x = 0x1.4dd74ep+64f
|
||||
0x61a4'0b40U, // x = 0x1.48168p+68f
|
||||
0x6386'134eU, // x = 0x1.0c269cp+72f
|
||||
0x6589'8498U, // x = 0x1.13093p+76f
|
||||
0x6600'0001U, // x = 0x1.000002p+77f
|
||||
0x664e'46e4U, // x = 0x1.9c8dc8p+77f
|
||||
0x66b0'14aaU, // x = 0x1.602954p+78f
|
||||
0x67a9'242bU, // x = 0x1.524856p+80f
|
||||
0x6a19'76f1U, // x = 0x1.32ede2p+85f
|
||||
0x6c55'da58U, // x = 0x1.abb4bp+89f
|
||||
0x6f79'be45U, // x = 0x1.f37c8ap+95f
|
||||
0x7276'69d4U, // x = 0x1.ecd3a8p+101f
|
||||
0x7758'4625U, // x = 0x1.b08c4ap+111f
|
||||
};
|
||||
|
||||
for (int i = 0; i < N; ++i) {
|
||||
float x = float(FPBits(INPUTS[i]));
|
||||
EXPECT_MPFR_MATCH_ALL_ROUNDING(mpfr::Operation::Sin, x,
|
||||
__llvm_libc::sinf(x), 0.5);
|
||||
EXPECT_MPFR_MATCH_ALL_ROUNDING(mpfr::Operation::Sin, -x,
|
||||
__llvm_libc::sinf(-x), 0.5);
|
||||
}
|
||||
}
|
||||
|
||||
// For small values, sin(x) is x.
|
||||
TEST(LlvmLibcSinfTest, SmallValues) {
|
||||
float x = float(FPBits(uint32_t(0x17800000)));
|
||||
float result = __llvm_libc::sinf(x);
|
||||
EXPECT_MPFR_MATCH(mpfr::Operation::Sin, x, result, 1.0);
|
||||
EXPECT_FP_EQ(x, result);
|
||||
float x = float(FPBits(0x1780'0000U));
|
||||
EXPECT_MPFR_MATCH_ALL_ROUNDING(mpfr::Operation::Sin, x, __llvm_libc::sinf(x),
|
||||
0.5);
|
||||
|
||||
x = float(FPBits(uint32_t(0x00400000)));
|
||||
result = __llvm_libc::sinf(x);
|
||||
EXPECT_MPFR_MATCH(mpfr::Operation::Sin, x, result, 1.0);
|
||||
EXPECT_FP_EQ(x, result);
|
||||
x = float(FPBits(0x0040'0000U));
|
||||
EXPECT_MPFR_MATCH_ALL_ROUNDING(mpfr::Operation::Sin, x, __llvm_libc::sinf(x),
|
||||
0.5);
|
||||
}
|
||||
|
||||
// SDCOMP-26094: check sinf in the cases for which the range reducer
|
||||
|
@ -78,6 +122,7 @@ TEST(LlvmLibcSinfTest, SmallValues) {
|
|||
TEST(LlvmLibcSinfTest, SDCOMP_26094) {
|
||||
for (uint32_t v : SDCOMP26094_VALUES) {
|
||||
float x = float(FPBits((v)));
|
||||
EXPECT_MPFR_MATCH(mpfr::Operation::Sin, x, __llvm_libc::sinf(x), 1.0);
|
||||
EXPECT_MPFR_MATCH_ALL_ROUNDING(mpfr::Operation::Sin, x,
|
||||
__llvm_libc::sinf(x), 0.5);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -161,6 +161,7 @@ fputil_common_hdrs = [
|
|||
"src/__support/FPUtil/NormalFloat.h",
|
||||
"src/__support/FPUtil/PlatformDefs.h",
|
||||
"src/__support/FPUtil/builtin_wrappers.h",
|
||||
"src/__support/FPUtil/except_value_utils.h",
|
||||
]
|
||||
|
||||
fputil_hdrs = selects.with_or({
|
||||
|
@ -460,6 +461,21 @@ cc_library(
|
|||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "range_reduction",
|
||||
hdrs = [
|
||||
"src/math/generic/range_reduction.h",
|
||||
"src/math/generic/range_reduction_fma.h",
|
||||
],
|
||||
deps = [
|
||||
":__support_fputil",
|
||||
":__support_fputil_fma",
|
||||
":__support_fputil_multiply_add",
|
||||
":__support_fputil_nearest_integer",
|
||||
":libc_root",
|
||||
],
|
||||
)
|
||||
|
||||
libc_math_function(
|
||||
name = "expm1f",
|
||||
additional_deps = [
|
||||
|
@ -635,8 +651,10 @@ libc_math_function(
|
|||
libc_math_function(
|
||||
name = "sinf",
|
||||
additional_deps = [
|
||||
":math_utils",
|
||||
":sincosf_utils",
|
||||
":__support_fputil_fma",
|
||||
":__support_fputil_multiply_add",
|
||||
":__support_fputil_polyeval",
|
||||
":range_reduction",
|
||||
],
|
||||
)
|
||||
|
||||
|
|
Loading…
Reference in New Issue