Allow firmware binaries to be specified only by load address

Add support to Mach-O corefiles and to live gdb remote serial protocol
connections for the corefile/remote stub to provide a list of load
addresses of binaries that should be found & loaded by lldb, and nothing
else.  lldb will try to parse the binary out of memory, and if it can
find a UUID, try to find a binary & its debug information based on the
UUID, falling back to using the memory image if it must.

A bit of code unification from three parts of lldb that were loading
individual binaries already, so there is a shared method in
DynamicLoader to handle all of the variations they were doing.

Re-landing this with a uuid_is_null() implementation added to
Utility/UuidCompatibility.h for non-Darwin systems.

Differential Revision: https://reviews.llvm.org/D130813
rdar://94249937
rdar://94249384
This commit is contained in:
Jason Molenda 2022-08-02 14:13:20 -07:00
parent 560efad701
commit 96d12187b3
15 changed files with 951 additions and 207 deletions

View File

@ -1073,6 +1073,12 @@ main-binary-uuid: is the UUID of a firmware type binary that the gdb stub knows
main-binary-address: is the load address of the firmware type binary main-binary-address: is the load address of the firmware type binary
main-binary-slide: is the slide of the firmware type binary, if address isn't known main-binary-slide: is the slide of the firmware type binary, if address isn't known
binary-addresses: A comma-separated list of binary load addresses base16.
lldb will parse the binaries in memory to get UUIDs, then
try to find the binaries & debug info by UUID. Intended for
use with a small number of firmware type binaries where the
search for binary/debug info may be expensive.
//---------------------------------------------------------------------- //----------------------------------------------------------------------
// "qShlibInfoAddr" // "qShlibInfoAddr"
// //

View File

@ -210,6 +210,52 @@ public:
lldb::addr_t base_addr, lldb::addr_t base_addr,
bool base_addr_is_offset); bool base_addr_is_offset);
/// Find/load a binary into lldb given a UUID and the address where it is
/// loaded in memory, or a slide to be applied to the file address.
/// May force an expensive search on the computer to find the binary by
/// UUID, should not be used for a large number of binaries - intended for
/// an environment where there may be one, or a few, binaries resident in
/// memory.
///
/// Given a UUID, search for a binary and load it at the address provided,
/// or with the slide applied, or at the file address unslid.
///
/// Given an address, try to read the binary out of memory, get the UUID,
/// find the file if possible and load it unslid, or add the memory module.
///
/// \param[in] process
/// The process to add this binary to.
///
/// \param[in] uuid
/// UUID of the binary to be loaded. UUID may be empty, and if a
/// load address is supplied, will read the binary from memory, get
/// a UUID and try to find a local binary. There is a performance
/// cost to doing this, it is not preferable.
///
/// \param[in] value
/// Address where the binary should be loaded, or read out of memory.
/// Or a slide value, to be applied to the file addresses of the binary.
///
/// \param[in] value_is_offset
/// A flag indicating that \p value is an address, or an offset to
/// be applied to the file addresses.
///
/// \param[in] force_symbol_search
/// Allow the search to do a possibly expensive external search for
/// the ObjectFile and/or SymbolFile.
///
/// \param[in] notify
/// Whether ModulesDidLoad should be called when a binary has been added
/// to the Target. The caller may prefer to batch up these when loading
/// multiple binaries.
///
/// \return
/// Returns a shared pointer for the Module that has been added.
static lldb::ModuleSP
LoadBinaryWithUUIDAndAddress(Process *process, UUID uuid, lldb::addr_t value,
bool value_is_offset, bool force_symbol_search,
bool notify);
/// Get information about the shared cache for a process, if possible. /// Get information about the shared cache for a process, if possible.
/// ///
/// On some systems (e.g. Darwin based systems), a set of libraries that are /// On some systems (e.g. Darwin based systems), a set of libraries that are

View File

@ -13,11 +13,15 @@
#include "lldb/Core/ModuleSpec.h" #include "lldb/Core/ModuleSpec.h"
#include "lldb/Core/PluginManager.h" #include "lldb/Core/PluginManager.h"
#include "lldb/Core/Section.h" #include "lldb/Core/Section.h"
#include "lldb/Symbol/LocateSymbolFile.h"
#include "lldb/Symbol/ObjectFile.h" #include "lldb/Symbol/ObjectFile.h"
#include "lldb/Target/MemoryRegionInfo.h" #include "lldb/Target/MemoryRegionInfo.h"
#include "lldb/Target/Platform.h"
#include "lldb/Target/Process.h" #include "lldb/Target/Process.h"
#include "lldb/Target/Target.h" #include "lldb/Target/Target.h"
#include "lldb/Utility/ConstString.h" #include "lldb/Utility/ConstString.h"
#include "lldb/Utility/LLDBLog.h"
#include "lldb/Utility/Log.h"
#include "lldb/lldb-private-interfaces.h" #include "lldb/lldb-private-interfaces.h"
#include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringRef.h"
@ -171,6 +175,100 @@ ModuleSP DynamicLoader::LoadModuleAtAddress(const FileSpec &file,
return nullptr; return nullptr;
} }
static ModuleSP ReadUnnamedMemoryModule(Process *process, addr_t addr) {
char namebuf[80];
snprintf(namebuf, sizeof(namebuf), "memory-image-0x%" PRIx64, addr);
return process->ReadModuleFromMemory(FileSpec(namebuf), addr);
}
ModuleSP DynamicLoader::LoadBinaryWithUUIDAndAddress(Process *process,
UUID uuid, addr_t value,
bool value_is_offset,
bool force_symbol_search,
bool notify) {
ModuleSP memory_module_sp;
ModuleSP module_sp;
PlatformSP platform_sp = process->GetTarget().GetPlatform();
Target &target = process->GetTarget();
Status error;
ModuleSpec module_spec;
module_spec.GetUUID() = uuid;
if (!uuid.IsValid() && !value_is_offset) {
memory_module_sp = ReadUnnamedMemoryModule(process, value);
if (memory_module_sp)
uuid = memory_module_sp->GetUUID();
}
if (uuid.IsValid()) {
ModuleSpec module_spec;
module_spec.GetUUID() = uuid;
if (!module_sp)
module_sp = target.GetOrCreateModule(module_spec, false, &error);
// If we haven't found a binary, or we don't have a SymbolFile, see
// if there is an external search tool that can find it.
if (force_symbol_search &&
(!module_sp || !module_sp->GetSymbolFileFileSpec())) {
Symbols::DownloadObjectAndSymbolFile(module_spec, error, true);
if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) {
module_sp = std::make_shared<Module>(module_spec);
}
}
}
// If we couldn't find the binary anywhere else, as a last resort,
// read it out of memory.
if (!module_sp.get() && value != LLDB_INVALID_ADDRESS && !value_is_offset) {
if (!memory_module_sp)
memory_module_sp = ReadUnnamedMemoryModule(process, value);
if (memory_module_sp)
module_sp = memory_module_sp;
}
Log *log = GetLog(LLDBLog::DynamicLoader);
if (module_sp.get()) {
target.GetImages().AppendIfNeeded(module_sp, false);
bool changed = false;
if (module_sp->GetObjectFile()) {
if (value != LLDB_INVALID_ADDRESS) {
LLDB_LOGF(log, "Loading binary UUID %s at %s 0x%" PRIx64,
uuid.GetAsString().c_str(),
value_is_offset ? "offset" : "address", value);
module_sp->SetLoadAddress(target, value, value_is_offset, changed);
} else {
// No address/offset/slide, load the binary at file address,
// offset 0.
LLDB_LOGF(log, "Loading binary UUID %s at file address",
uuid.GetAsString().c_str());
module_sp->SetLoadAddress(target, 0, true /* value_is_slide */,
changed);
}
} else {
// In-memory image, load at its true address, offset 0.
LLDB_LOGF(log, "Loading binary UUID %s from memory at address 0x%" PRIx64,
uuid.GetAsString().c_str(), value);
module_sp->SetLoadAddress(target, 0, true /* value_is_slide */, changed);
}
if (notify) {
ModuleList added_module;
added_module.Append(module_sp, false);
target.ModulesDidLoad(added_module);
}
} else {
LLDB_LOGF(log, "Unable to find binary with UUID %s and load it at "
"%s 0x%" PRIx64,
uuid.GetAsString().c_str(),
value_is_offset ? "offset" : "address", value);
}
return module_sp;
}
int64_t DynamicLoader::ReadUnsignedIntWithSizeInBytes(addr_t addr, int64_t DynamicLoader::ReadUnsignedIntWithSizeInBytes(addr_t addr,
int size_in_bytes) { int size_in_bytes) {
Status error; Status error;

View File

@ -5600,7 +5600,8 @@ bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &value,
} }
if (m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) { if (m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) {
uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t)); if (!uuid_is_null(raw_uuid))
uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t));
// convert the "main bin spec" type into our // convert the "main bin spec" type into our
// ObjectFile::BinaryType enum // ObjectFile::BinaryType enum
switch (binspec_type) { switch (binspec_type) {
@ -6901,7 +6902,8 @@ ObjectFileMachO::GetCorefileAllImageInfos() {
MachOCorefileImageEntry image_entry; MachOCorefileImageEntry image_entry;
image_entry.filename = (const char *)m_data.GetCStr(&filepath_offset); image_entry.filename = (const char *)m_data.GetCStr(&filepath_offset);
image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t)); if (!uuid_is_null(uuid))
image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t));
image_entry.load_address = load_address; image_entry.load_address = load_address;
image_entry.currently_executing = currently_executing; image_entry.currently_executing = currently_executing;
@ -6932,9 +6934,11 @@ ObjectFileMachO::GetCorefileAllImageInfos() {
MachOCorefileImageEntry image_entry; MachOCorefileImageEntry image_entry;
image_entry.filename = filename; image_entry.filename = filename;
image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t)); if (!uuid_is_null(uuid))
image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t));
image_entry.load_address = load_address; image_entry.load_address = load_address;
image_entry.slide = slide; image_entry.slide = slide;
image_entry.currently_executing = true;
image_infos.all_image_infos.push_back(image_entry); image_infos.all_image_infos.push_back(image_entry);
} }
} }
@ -6951,42 +6955,41 @@ bool ObjectFileMachO::LoadCoreFileImages(lldb_private::Process &process) {
ModuleList added_modules; ModuleList added_modules;
for (const MachOCorefileImageEntry &image : image_infos.all_image_infos) { for (const MachOCorefileImageEntry &image : image_infos.all_image_infos) {
ModuleSpec module_spec; ModuleSP module_sp;
module_spec.GetUUID() = image.uuid;
if (image.filename.empty()) { if (!image.filename.empty()) {
char namebuf[80];
if (image.load_address != LLDB_INVALID_ADDRESS)
snprintf(namebuf, sizeof(namebuf), "mem-image-0x%" PRIx64,
image.load_address);
else
snprintf(namebuf, sizeof(namebuf), "mem-image+0x%" PRIx64, image.slide);
module_spec.GetFileSpec() = FileSpec(namebuf);
} else {
module_spec.GetFileSpec() = FileSpec(image.filename.c_str());
}
if (image.currently_executing) {
Status error; Status error;
Symbols::DownloadObjectAndSymbolFile(module_spec, error, true); ModuleSpec module_spec;
if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) { module_spec.GetUUID() = image.uuid;
process.GetTarget().GetOrCreateModule(module_spec, false); module_spec.GetFileSpec() = FileSpec(image.filename.c_str());
if (image.currently_executing) {
Symbols::DownloadObjectAndSymbolFile(module_spec, error, true);
if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) {
process.GetTarget().GetOrCreateModule(module_spec, false);
}
} }
} module_sp =
Status error; process.GetTarget().GetOrCreateModule(module_spec, false, &error);
ModuleSP module_sp = process.GetTarget().GetImages().AppendIfNeeded(module_sp,
process.GetTarget().GetOrCreateModule(module_spec, false, &error); false /* notify */);
if (!module_sp.get() || !module_sp->GetObjectFile()) { } else {
if (image.load_address != LLDB_INVALID_ADDRESS) { if (image.load_address != LLDB_INVALID_ADDRESS) {
module_sp = process.ReadModuleFromMemory(module_spec.GetFileSpec(), module_sp = DynamicLoader::LoadBinaryWithUUIDAndAddress(
image.load_address); &process, image.uuid, image.load_address,
false /* value_is_offset */, image.currently_executing,
false /* notify */);
} else if (image.slide != LLDB_INVALID_ADDRESS) {
module_sp = DynamicLoader::LoadBinaryWithUUIDAndAddress(
&process, image.uuid, image.slide, true /* value_is_offset */,
image.currently_executing, false /* notify */);
} }
} }
if (module_sp.get()) { if (module_sp.get()) {
// Will call ModulesDidLoad with all modules once they've all // Will call ModulesDidLoad with all modules once they've all
// been added to the Target with load addresses. Don't notify // been added to the Target with load addresses. Don't notify
// here, before the load address is set. // here, before the load address is set.
const bool notify = false; added_modules.Append(module_sp, false /* notify */);
process.GetTarget().GetImages().AppendIfNeeded(module_sp, notify);
added_modules.Append(module_sp, notify);
if (image.segment_load_addresses.size() > 0) { if (image.segment_load_addresses.size() > 0) {
if (log) { if (log) {
std::string uuidstr = image.uuid.GetAsString(); std::string uuidstr = image.uuid.GetAsString();

View File

@ -1033,6 +1033,13 @@ bool GDBRemoteCommunicationClient::GetProcessStandaloneBinary(
return true; return true;
} }
std::vector<addr_t>
GDBRemoteCommunicationClient::GetProcessStandaloneBinaries() {
if (m_qProcessInfo_is_valid == eLazyBoolCalculate)
GetCurrentProcessInfo();
return m_binary_addresses;
}
bool GDBRemoteCommunicationClient::GetGDBServerVersion() { bool GDBRemoteCommunicationClient::GetGDBServerVersion() {
if (m_qGDBServerVersion_is_valid == eLazyBoolCalculate) { if (m_qGDBServerVersion_is_valid == eLazyBoolCalculate) {
m_gdb_server_name.clear(); m_gdb_server_name.clear();
@ -2192,6 +2199,14 @@ bool GDBRemoteCommunicationClient::GetCurrentProcessInfo(bool allow_lazy) {
m_process_standalone_value_is_offset = false; m_process_standalone_value_is_offset = false;
++num_keys_decoded; ++num_keys_decoded;
} }
} else if (name.equals("binary-addresses")) {
addr_t addr;
while (!value.empty()) {
llvm::StringRef addr_str;
std::tie(addr_str, value) = value.split(',');
if (!addr_str.getAsInteger(16, addr))
m_binary_addresses.push_back(addr);
}
} }
} }
if (num_keys_decoded > 0) if (num_keys_decoded > 0)

View File

@ -220,6 +220,8 @@ public:
bool GetProcessStandaloneBinary(UUID &uuid, lldb::addr_t &value, bool GetProcessStandaloneBinary(UUID &uuid, lldb::addr_t &value,
bool &value_is_offset); bool &value_is_offset);
std::vector<lldb::addr_t> GetProcessStandaloneBinaries();
void GetRemoteQSupported(); void GetRemoteQSupported();
bool GetVContSupported(char flavor); bool GetVContSupported(char flavor);
@ -593,6 +595,7 @@ protected:
UUID m_process_standalone_uuid; UUID m_process_standalone_uuid;
lldb::addr_t m_process_standalone_value = LLDB_INVALID_ADDRESS; lldb::addr_t m_process_standalone_value = LLDB_INVALID_ADDRESS;
bool m_process_standalone_value_is_offset = false; bool m_process_standalone_value_is_offset = false;
std::vector<lldb::addr_t> m_binary_addresses;
llvm::VersionTuple m_os_version; llvm::VersionTuple m_os_version;
llvm::VersionTuple m_maccatalyst_version; llvm::VersionTuple m_maccatalyst_version;
std::string m_os_build; std::string m_os_build;

View File

@ -581,80 +581,31 @@ Status ProcessGDBRemote::DoConnectRemote(llvm::StringRef remote_url) {
ModuleSP module_sp; ModuleSP module_sp;
if (standalone_uuid.IsValid()) { if (standalone_uuid.IsValid()) {
ModuleSpec module_spec; const bool force_symbol_search = true;
module_spec.GetUUID() = standalone_uuid; const bool notify = true;
DynamicLoader::LoadBinaryWithUUIDAndAddress(
this, standalone_uuid, standalone_value,
standalone_value_is_offset, force_symbol_search, notify);
}
}
// Look up UUID in global module cache before attempting // The remote stub may know about a list of binaries to
// a more expensive search. // force load into the process -- a firmware type situation
Status error = ModuleList::GetSharedModule(module_spec, module_sp, // where multiple binaries are present in virtual memory,
nullptr, nullptr, nullptr); // and we are only given the addresses of the binaries.
// Not intended for use with userland debugging when we
// a DynamicLoader plugin that knows how to find the loaded
// binaries and will track updates as binaries are added.
if (!module_sp) { std::vector<addr_t> bin_addrs = m_gdb_comm.GetProcessStandaloneBinaries();
// Force a an external lookup, if that tool is available. if (bin_addrs.size()) {
if (!module_spec.GetSymbolFileSpec()) { UUID uuid;
Status error; const bool value_is_slide = false;
Symbols::DownloadObjectAndSymbolFile(module_spec, error, true); for (addr_t addr : bin_addrs) {
} const bool force_symbol_search = true;
const bool notify = true;
if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) { DynamicLoader::LoadBinaryWithUUIDAndAddress(
module_sp = std::make_shared<Module>(module_spec); this, uuid, addr, value_is_slide, force_symbol_search, notify);
}
}
// If we couldn't find the binary anywhere else, as a last resort,
// read it out of memory.
if (!module_sp.get() && standalone_value != LLDB_INVALID_ADDRESS &&
!standalone_value_is_offset) {
char namebuf[80];
snprintf(namebuf, sizeof(namebuf), "mem-image-0x%" PRIx64,
standalone_value);
module_sp =
ReadModuleFromMemory(FileSpec(namebuf), standalone_value);
}
Log *log = GetLog(LLDBLog::DynamicLoader);
if (module_sp.get()) {
target.GetImages().AppendIfNeeded(module_sp, false);
bool changed = false;
if (module_sp->GetObjectFile()) {
if (standalone_value != LLDB_INVALID_ADDRESS) {
if (log)
log->Printf("Loading binary UUID %s at %s 0x%" PRIx64,
standalone_uuid.GetAsString().c_str(),
standalone_value_is_offset ? "offset" : "address",
standalone_value);
module_sp->SetLoadAddress(target, standalone_value,
standalone_value_is_offset, changed);
} else {
// No address/offset/slide, load the binary at file address,
// offset 0.
if (log)
log->Printf("Loading binary UUID %s at file address",
standalone_uuid.GetAsString().c_str());
const bool value_is_slide = true;
module_sp->SetLoadAddress(target, 0, value_is_slide, changed);
}
} else {
// In-memory image, load at its true address, offset 0.
if (log)
log->Printf("Loading binary UUID %s from memory",
standalone_uuid.GetAsString().c_str());
const bool value_is_slide = true;
module_sp->SetLoadAddress(target, 0, value_is_slide, changed);
}
ModuleList added_module;
added_module.Append(module_sp, false);
target.ModulesDidLoad(added_module);
} else {
if (log)
log->Printf("Unable to find binary with UUID %s and load it at "
"%s 0x%" PRIx64,
standalone_uuid.GetAsString().c_str(),
standalone_value_is_offset ? "offset" : "address",
standalone_value);
}
} }
} }

View File

@ -180,88 +180,6 @@ bool ProcessMachCore::GetDynamicLoaderAddress(lldb::addr_t addr) {
return false; return false;
} }
// We have a hint about a binary -- a UUID, possibly a load address.
// Try to load a file with that UUID into lldb, and if we have a load
// address, set it correctly. Else assume that the binary was loaded
// with no slide.
static bool load_standalone_binary(UUID uuid, addr_t value,
bool value_is_offset, Target &target) {
if (uuid.IsValid()) {
ModuleSpec module_spec;
module_spec.GetUUID() = uuid;
// Look up UUID in global module cache before attempting
// dsymForUUID-like action.
ModuleSP module_sp;
Status error = ModuleList::GetSharedModule(module_spec, module_sp, nullptr,
nullptr, nullptr);
if (!module_sp.get()) {
// Force a a dsymForUUID lookup, if that tool is available.
if (!module_spec.GetSymbolFileSpec()) {
Status error;
Symbols::DownloadObjectAndSymbolFile(module_spec, error, true);
}
if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) {
module_sp = std::make_shared<Module>(module_spec);
}
}
// If we couldn't find the binary anywhere else, as a last resort,
// read it out of memory in the corefile.
if (!module_sp.get() && value != LLDB_INVALID_ADDRESS && !value_is_offset) {
char namebuf[80];
snprintf(namebuf, sizeof(namebuf), "mem-image-0x%" PRIx64, value);
module_sp =
target.GetProcessSP()->ReadModuleFromMemory(FileSpec(namebuf), value);
}
if (module_sp.get()) {
target.SetArchitecture(module_sp->GetObjectFile()->GetArchitecture());
target.GetImages().AppendIfNeeded(module_sp, false);
// TODO: Instead of using the load address as a value, if we create a
// memory module from that address, we could get the correct segment
// offset values from the in-memory load commands and set them correctly.
// In case the load address we were given is not correct for all segments,
// e.g. something in the shared cache. DynamicLoaderDarwinKernel does
// something similar for kexts. In the context of a corefile, this would
// be an inexpensive operation. Not all binaries in a corefile will have
// a Mach-O header/load commands in memory, so this will not work in all
// cases.
bool changed = false;
if (module_sp->GetObjectFile()) {
if (value != LLDB_INVALID_ADDRESS) {
module_sp->SetLoadAddress(target, value, value_is_offset, changed);
} else {
// No address/offset/slide, load the binary at file address,
// offset 0.
const bool value_is_slide = true;
module_sp->SetLoadAddress(target, 0, value_is_slide, changed);
}
} else {
// In-memory image, load at its true address, offset 0.
const bool value_is_slide = true;
module_sp->SetLoadAddress(target, 0, value_is_slide, changed);
}
ModuleList added_module;
added_module.Append(module_sp, false);
target.ModulesDidLoad(added_module);
// Flush info in the process (stack frames, etc).
ProcessSP process_sp(target.GetProcessSP());
if (process_sp)
process_sp->Flush();
return true;
}
}
return false;
}
// Process Control // Process Control
Status ProcessMachCore::DoLoadCore() { Status ProcessMachCore::DoLoadCore() {
Log *log(GetLog(LLDBLog::DynamicLoader | LLDBLog::Process)); Log *log(GetLog(LLDBLog::DynamicLoader | LLDBLog::Process));
@ -359,28 +277,21 @@ Status ProcessMachCore::DoLoadCore() {
objfile_binary_uuid.GetAsString().c_str(), objfile_binary_value, objfile_binary_uuid.GetAsString().c_str(), objfile_binary_value,
objfile_binary_value_is_offset, type); objfile_binary_value_is_offset, type);
} }
if (objfile_binary_value != LLDB_INVALID_ADDRESS && const bool force_symbol_search = true;
!objfile_binary_value_is_offset) { const bool notify = true;
if (type == ObjectFile::eBinaryTypeUser) { if (DynamicLoader::LoadBinaryWithUUIDAndAddress(
load_standalone_binary(objfile_binary_uuid, objfile_binary_value, this, objfile_binary_uuid, objfile_binary_value,
objfile_binary_value_is_offset, GetTarget()); objfile_binary_value_is_offset, force_symbol_search, notify)) {
m_dyld_addr = objfile_binary_value; found_main_binary_definitively = true;
m_dyld_plugin_name = DynamicLoaderMacOSXDYLD::GetPluginNameStatic(); m_dyld_plugin_name = DynamicLoaderStatic::GetPluginNameStatic();
found_main_binary_definitively = true;
}
if (type == ObjectFile::eBinaryTypeKernel) {
m_mach_kernel_addr = objfile_binary_value;
m_dyld_plugin_name = DynamicLoaderDarwinKernel::GetPluginNameStatic();
found_main_binary_definitively = true;
}
} }
if (!found_main_binary_definitively) { if (type == ObjectFile::eBinaryTypeUser) {
// ObjectFile::eBinaryTypeStandalone, undeclared types m_dyld_addr = objfile_binary_value;
if (load_standalone_binary(objfile_binary_uuid, objfile_binary_value, m_dyld_plugin_name = DynamicLoaderMacOSXDYLD::GetPluginNameStatic();
objfile_binary_value_is_offset, GetTarget())) { }
found_main_binary_definitively = true; if (type == ObjectFile::eBinaryTypeKernel) {
m_dyld_plugin_name = DynamicLoaderStatic::GetPluginNameStatic(); m_mach_kernel_addr = objfile_binary_value;
} m_dyld_plugin_name = DynamicLoaderDarwinKernel::GetPluginNameStatic();
} }
} }
@ -426,8 +337,11 @@ Status ProcessMachCore::DoLoadCore() {
// We have no address specified, only a UUID. Load it at the file // We have no address specified, only a UUID. Load it at the file
// address. // address.
const bool value_is_offset = false; const bool value_is_offset = false;
if (load_standalone_binary(ident_uuid, ident_binary_addr, value_is_offset, const bool force_symbol_search = true;
GetTarget())) { const bool notify = true;
if (DynamicLoader::LoadBinaryWithUUIDAndAddress(
this, ident_uuid, ident_binary_addr, value_is_offset,
force_symbol_search, notify)) {
found_main_binary_definitively = true; found_main_binary_definitively = true;
m_dyld_plugin_name = DynamicLoaderStatic::GetPluginNameStatic(); m_dyld_plugin_name = DynamicLoaderStatic::GetPluginNameStatic();
} }

View File

@ -14,4 +14,12 @@
// uuid_t is guaranteed to always be a 16-byte array // uuid_t is guaranteed to always be a 16-byte array
typedef unsigned char uuid_t[16]; typedef unsigned char uuid_t[16];
// Return 1 if uuid is null, that is, all zeroes.
int uuid_is_null(uuid_t uuid) {
for (int i = 0; i < 16; i++)
if (uuid[i])
return 0;
return 1;
}
#endif // utility_UUID_COMPATIBILITY_H #endif // utility_UUID_COMPATIBILITY_H

View File

@ -0,0 +1,20 @@
MAKE_DSYM := NO
C_SOURCES := main.c
LD_EXTRAS := -L. -lone -ltwo
.PHONY: libone.dylib libtwo.dylib
all: libone.dylib libtwo.dylib a.out create-empty-corefile
create-empty-corefile:
"$(MAKE)" -f "$(MAKEFILE_RULES)" EXE=create-multibin-corefile \
CXX_SOURCES=create-multibin-corefile.cpp
libone.dylib: one.c
$(MAKE) -f $(MAKEFILE_RULES) \
DYLIB_ONLY=YES DYLIB_NAME=one DYLIB_C_SOURCES=one.c
libtwo.dylib: two.c
$(MAKE) -f $(MAKEFILE_RULES) \
DYLIB_ONLY=YES DYLIB_NAME=two DYLIB_C_SOURCES=two.c
include Makefile.rules

View File

@ -0,0 +1,187 @@
"""Test corefiles with "main bin spec"/"load binary" with only addrs work."""
import os
import re
import subprocess
import lldb
from lldbsuite.test.decorators import *
from lldbsuite.test.lldbtest import *
from lldbsuite.test import lldbutil
class TestMultipleBinaryCorefile(TestBase):
def initial_setup(self):
self.build()
self.aout_exe_basename = "a.out"
self.libone_exe_basename = "libone.dylib"
self.libtwo_exe_basename = "libtwo.dylib"
self.aout_exe = self.getBuildArtifact(self.aout_exe_basename)
self.aout_slide = 0x5000
self.libone_exe = self.getBuildArtifact(self.libone_exe_basename)
self.libone_slide = 0x100840000
self.libtwo_exe = self.getBuildArtifact(self.libtwo_exe_basename)
self.libtwo_slide = 0
self.corefile = self.getBuildArtifact("multiple-binaries.core")
self.create_corefile = self.getBuildArtifact("create-multibin-corefile")
cmd="%s %s %s@%x %s@%x %s@%x" % (self.create_corefile, self.corefile,
self.aout_exe, self.aout_slide,
self.libone_exe, self.libone_slide,
self.libtwo_exe, self.libtwo_slide)
call(cmd, shell=True)
def load_corefile_and_test(self):
target = self.dbg.CreateTarget('')
err = lldb.SBError()
if self.TraceOn():
self.runCmd("script print('loading corefile %s')" % self.corefile)
process = target.LoadCore(self.corefile)
self.assertEqual(process.IsValid(), True)
if self.TraceOn():
self.runCmd("script print('image list after loading corefile:')")
self.runCmd("image list")
self.assertEqual(target.GetNumModules(), 3)
fspec = target.GetModuleAtIndex(0).GetFileSpec()
self.assertEqual(fspec.GetFilename(), self.aout_exe_basename)
# libone.dylib was never loaded into lldb, see that we added a memory module.
fspec = target.GetModuleAtIndex(1).GetFileSpec()
self.assertIn('memory-image', fspec.GetFilename())
dwarfdump_uuid_regex = re.compile(
'UUID: ([-0-9a-fA-F]+) \(([^\(]+)\) .*')
dwarfdump_cmd_output = subprocess.check_output(
('/usr/bin/dwarfdump --uuid "%s"' % self.libone_exe), shell=True).decode("utf-8")
libone_uuid = None
for line in dwarfdump_cmd_output.splitlines():
match = dwarfdump_uuid_regex.search(line)
if match:
libone_uuid = match.group(1)
memory_image_uuid = target.GetModuleAtIndex(1).GetUUIDString()
self.assertEqual(libone_uuid, memory_image_uuid)
fspec = target.GetModuleAtIndex(2).GetFileSpec()
self.assertEqual(fspec.GetFilename(), self.libtwo_exe_basename)
# Executables "always" have this base address
aout_load = target.GetModuleAtIndex(0).GetObjectFileHeaderAddress().GetLoadAddress(target)
self.assertEqual(aout_load, 0x100000000 + self.aout_slide)
# Value from Makefile
libone_load = target.GetModuleAtIndex(1).GetObjectFileHeaderAddress().GetLoadAddress(target)
self.assertEqual(libone_load, self.libone_slide)
# Value from Makefile
libtwo_load = target.GetModuleAtIndex(2).GetObjectFileHeaderAddress().GetLoadAddress(target)
self.assertEqual(libtwo_load, self.libtwo_slide)
self.dbg.DeleteTarget(target)
self.dbg.Clear()
NO_DEBUG_INFO_TESTCASE = True
@skipIf(archs=no_match(['x86_64', 'arm64', 'arm64e', 'aarch64']))
@skipIfRemote
@skipUnlessDarwin
def test_corefile_binaries_dsymforuuid(self):
self.initial_setup()
if self.TraceOn():
self.runCmd("log enable lldb dyld host")
self.addTearDownHook(lambda: self.runCmd("log disable lldb dyld host"))
## We can hook in our dsym-for-uuid shell script to lldb with this env
## var instead of requiring a defaults write.
dsym_for_uuid = self.getBuildArtifact("dsym-for-uuid.sh")
os.environ['LLDB_APPLE_DSYMFORUUID_EXECUTABLE'] = dsym_for_uuid
if self.TraceOn():
print("Setting env var LLDB_APPLE_DSYMFORUUID_EXECUTABLE=" + dsym_for_uuid)
self.addTearDownHook(lambda: os.environ.pop('LLDB_APPLE_DSYMFORUUID_EXECUTABLE', None))
self.runCmd("settings set target.load-script-from-symbol-file true")
self.addTearDownHook(lambda: self.runCmd("settings set target.load-script-from-symbol-file false"))
dwarfdump_uuid_regex = re.compile(
'UUID: ([-0-9a-fA-F]+) \(([^\(]+)\) .*')
dwarfdump_cmd_output = subprocess.check_output(
('/usr/bin/dwarfdump --uuid "%s"' % self.libtwo_exe), shell=True).decode("utf-8")
libtwo_uuid = None
for line in dwarfdump_cmd_output.splitlines():
match = dwarfdump_uuid_regex.search(line)
if match:
libtwo_uuid = match.group(1)
self.assertNotEqual(libtwo_uuid, None, "Could not get uuid of built libtwo.dylib")
### Create our dsym-for-uuid shell script which returns aout_exe
shell_cmds = [
'#! /bin/sh',
'# the last argument is the uuid',
'while [ $# -gt 1 ]',
'do',
' shift',
'done',
'ret=0',
'echo "<?xml version=\\"1.0\\" encoding=\\"UTF-8\\"?>"',
'echo "<!DOCTYPE plist PUBLIC \\"-//Apple//DTD PLIST 1.0//EN\\" \\"http://www.apple.com/DTDs/PropertyList-1.0.dtd\\">"',
'echo "<plist version=\\"1.0\\">"',
'',
'if [ "$1" != "%s" ]' % (libtwo_uuid),
'then',
' echo "<key>DBGError</key><string>not found</string>"',
' echo "</plist>"',
' exit 1',
'fi',
' uuid=%s' % libtwo_uuid,
' bin=%s' % self.libtwo_exe,
' dsym=%s.dSYM/Contents/Resources/DWARF/%s' % (self.libtwo_exe, os.path.basename(self.libtwo_exe)),
'echo "<dict><key>$uuid</key><dict>"',
'',
'echo "<key>DBGDSYMPath</key><string>$dsym</string>"',
'echo "<key>DBGSymbolRichExecutable</key><string>$bin</string>"',
'echo "</dict></dict></plist>"',
'exit $ret'
]
with open(dsym_for_uuid, "w") as writer:
for l in shell_cmds:
writer.write(l + '\n')
os.chmod(dsym_for_uuid, 0o755)
# Register TWO of our binaries, but require dsymForUUID to find the third.
target = self.dbg.CreateTarget(self.aout_exe, '', '', False, lldb.SBError())
self.dbg.DeleteTarget(target)
if self.TraceOn():
self.runCmd("script print('Global image list, before loading corefile:')")
self.runCmd("image list -g")
self.load_corefile_and_test()
@skipIf(archs=no_match(['x86_64', 'arm64', 'arm64e', 'aarch64']))
@skipIfRemote
@skipUnlessDarwin
def test_corefile_binaries_preloaded(self):
self.initial_setup()
if self.TraceOn():
self.runCmd("log enable lldb dyld host")
self.addTearDownHook(lambda: self.runCmd("log disable lldb dyld host"))
# Register all three binaries in lldb's global module
# cache, then throw the Targets away.
target = self.dbg.CreateTarget(self.aout_exe, '', '', False, lldb.SBError())
self.dbg.DeleteTarget(target)
target = self.dbg.CreateTarget(self.libtwo_exe, '', '', False, lldb.SBError())
self.dbg.DeleteTarget(target)
if self.TraceOn():
self.runCmd("script print('Global image list, before loading corefile:')")
self.runCmd("image list -g")
self.load_corefile_and_test()

View File

@ -0,0 +1,484 @@
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <mach-o/loader.h>
#include <mach/thread_status.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <string>
#include <sys/errno.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
#include <uuid/uuid.h>
#include <vector>
// Given a list of binaries, and optional slides to be applied,
// create a corefile whose memory is those binaries laid at at
// their slid addresses.
//
// Add a 'main bin spec' LC_NOTE for the first binary, and
// 'load binary' LC_NOTEs for any additional binaries, and
// these LC_NOTEs will ONLY have the vmaddr of the binary - no
// UUID, no slide, no filename.
//
// Test that lldb can use the load addresses, find the UUIDs,
// and load the binaries/dSYMs and put them at the correct load
// address.
struct main_bin_spec_payload {
uint32_t version;
uint32_t type;
uint64_t address;
uint64_t slide;
uuid_t uuid;
uint32_t log2_pagesize;
uint32_t platform;
};
struct load_binary_payload {
uint32_t version;
uuid_t uuid;
uint64_t address;
uint64_t slide;
const char name[4];
};
union uint32_buf {
uint8_t bytebuf[4];
uint32_t val;
};
union uint64_buf {
uint8_t bytebuf[8];
uint64_t val;
};
void add_uint64(std::vector<uint8_t> &buf, uint64_t val) {
uint64_buf conv;
conv.val = val;
for (int i = 0; i < 8; i++)
buf.push_back(conv.bytebuf[i]);
}
void add_uint32(std::vector<uint8_t> &buf, uint32_t val) {
uint32_buf conv;
conv.val = val;
for (int i = 0; i < 4; i++)
buf.push_back(conv.bytebuf[i]);
}
std::vector<uint8_t> lc_thread_load_command(cpu_type_t cputype) {
std::vector<uint8_t> data;
// Emit an LC_THREAD register context appropriate for the cputype
// of the binary we're embedded. The tests in this case do not
// use the register values, so 0's are fine, lldb needs to see at
// least one LC_THREAD in the corefile.
#if defined(__x86_64__)
if (cputype == CPU_TYPE_X86_64) {
add_uint32(data, LC_THREAD); // thread_command.cmd
add_uint32(data,
16 + (x86_THREAD_STATE64_COUNT * 4)); // thread_command.cmdsize
add_uint32(data, x86_THREAD_STATE64); // thread_command.flavor
add_uint32(data, x86_THREAD_STATE64_COUNT); // thread_command.count
for (int i = 0; i < x86_THREAD_STATE64_COUNT; i++) {
add_uint32(data, 0); // whatever, just some empty register values
}
}
#endif
#if defined(__arm64__) || defined(__aarch64__)
if (cputype == CPU_TYPE_ARM64) {
add_uint32(data, LC_THREAD); // thread_command.cmd
add_uint32(data,
16 + (ARM_THREAD_STATE64_COUNT * 4)); // thread_command.cmdsize
add_uint32(data, ARM_THREAD_STATE64); // thread_command.flavor
add_uint32(data, ARM_THREAD_STATE64_COUNT); // thread_command.count
for (int i = 0; i < ARM_THREAD_STATE64_COUNT; i++) {
add_uint32(data, 0); // whatever, just some empty register values
}
}
#endif
return data;
}
void add_lc_note_main_bin_spec_load_command(
std::vector<std::vector<uint8_t>> &loadcmds, std::vector<uint8_t> &payload,
int payload_file_offset, std::string uuidstr, uint64_t address,
uint64_t slide) {
std::vector<uint8_t> loadcmd_data;
add_uint32(loadcmd_data, LC_NOTE); // note_command.cmd
add_uint32(loadcmd_data, 40); // note_command.cmdsize
char lc_note_name[16];
memset(lc_note_name, 0, 16);
strcpy(lc_note_name, "main bin spec");
// lc_note.data_owner
for (int i = 0; i < 16; i++)
loadcmd_data.push_back(lc_note_name[i]);
// we start writing the payload at payload_file_offset to leave
// room at the start for the header & the load commands.
uint64_t current_payload_offset = payload.size() + payload_file_offset;
add_uint64(loadcmd_data, current_payload_offset); // note_command.offset
add_uint64(loadcmd_data,
sizeof(struct main_bin_spec_payload)); // note_command.size
loadcmds.push_back(loadcmd_data);
// Now write the "main bin spec" payload.
add_uint32(payload, 2); // version
add_uint32(payload, 3); // type == 3 [ firmware, standalone, etc ]
add_uint64(payload, address); // load address
add_uint64(payload, slide); // slide
uuid_t uuid;
uuid_parse(uuidstr.c_str(), uuid);
for (int i = 0; i < sizeof(uuid_t); i++)
payload.push_back(uuid[i]);
add_uint32(payload, 0); // log2_pagesize unspecified
add_uint32(payload, 0); // platform unspecified
}
void add_lc_note_load_binary_load_command(
std::vector<std::vector<uint8_t>> &loadcmds, std::vector<uint8_t> &payload,
int payload_file_offset, std::string uuidstr, uint64_t address,
uint64_t slide) {
std::vector<uint8_t> loadcmd_data;
add_uint32(loadcmd_data, LC_NOTE); // note_command.cmd
add_uint32(loadcmd_data, 40); // note_command.cmdsize
char lc_note_name[16];
memset(lc_note_name, 0, 16);
strcpy(lc_note_name, "load binary");
// lc_note.data_owner
for (int i = 0; i < 16; i++)
loadcmd_data.push_back(lc_note_name[i]);
// we start writing the payload at payload_file_offset to leave
// room at the start for the header & the load commands.
uint64_t current_payload_offset = payload.size() + payload_file_offset;
add_uint64(loadcmd_data, current_payload_offset); // note_command.offset
add_uint64(loadcmd_data,
sizeof(struct load_binary_payload)); // note_command.size
loadcmds.push_back(loadcmd_data);
// Now write the "load binary" payload.
add_uint32(payload, 1); // version
uuid_t uuid;
uuid_parse(uuidstr.c_str(), uuid);
for (int i = 0; i < sizeof(uuid_t); i++)
payload.push_back(uuid[i]);
add_uint64(payload, address); // load address
add_uint64(payload, slide); // slide
add_uint32(payload, 0); // name
}
void add_lc_segment(std::vector<std::vector<uint8_t>> &loadcmds,
std::vector<uint8_t> &payload, int payload_file_offset,
uint64_t vmaddr, uint64_t size) {
std::vector<uint8_t> loadcmd_data;
struct segment_command_64 seg;
seg.cmd = LC_SEGMENT_64;
seg.cmdsize = sizeof(struct segment_command_64); // no sections
memset(seg.segname, 0, 16);
seg.vmaddr = vmaddr;
seg.vmsize = size;
seg.fileoff = payload.size() + payload_file_offset;
seg.filesize = size;
seg.maxprot = 1;
seg.initprot = 1;
seg.nsects = 0;
seg.flags = 0;
uint8_t *p = (uint8_t *)&seg;
for (int i = 0; i < sizeof(struct segment_command_64); i++) {
loadcmd_data.push_back(*(p + i));
}
loadcmds.push_back(loadcmd_data);
}
std::string scan_binary(const char *fn, uint64_t &vmaddr, cpu_type_t &cputype,
cpu_subtype_t &cpusubtype) {
FILE *f = fopen(fn, "r");
if (f == nullptr) {
fprintf(stderr, "Unable to open binary '%s' to get uuid\n", fn);
exit(1);
}
uint32_t num_of_load_cmds = 0;
uint32_t size_of_load_cmds = 0;
std::string uuid;
off_t file_offset = 0;
vmaddr = UINT64_MAX;
uint8_t magic[4];
if (::fread(magic, 1, 4, f) != 4) {
fprintf(stderr, "Failed to read magic number from input file %s\n", fn);
exit(1);
}
uint8_t magic_32_be[] = {0xfe, 0xed, 0xfa, 0xce};
uint8_t magic_32_le[] = {0xce, 0xfa, 0xed, 0xfe};
uint8_t magic_64_be[] = {0xfe, 0xed, 0xfa, 0xcf};
uint8_t magic_64_le[] = {0xcf, 0xfa, 0xed, 0xfe};
if (memcmp(magic, magic_32_be, 4) == 0 ||
memcmp(magic, magic_64_be, 4) == 0) {
fprintf(stderr, "big endian corefiles not supported\n");
exit(1);
}
::fseeko(f, 0, SEEK_SET);
if (memcmp(magic, magic_32_le, 4) == 0) {
struct mach_header mh;
if (::fread(&mh, 1, sizeof(mh), f) != sizeof(mh)) {
fprintf(stderr, "error reading mach header from input file\n");
exit(1);
}
if (mh.cputype != CPU_TYPE_X86_64 && mh.cputype != CPU_TYPE_ARM64) {
fprintf(stderr,
"This tool creates an x86_64/arm64 corefile but "
"the supplied binary '%s' is cputype 0x%x\n",
fn, (uint32_t)mh.cputype);
exit(1);
}
num_of_load_cmds = mh.ncmds;
size_of_load_cmds = mh.sizeofcmds;
file_offset += sizeof(struct mach_header);
cputype = mh.cputype;
cpusubtype = mh.cpusubtype;
} else {
struct mach_header_64 mh;
if (::fread(&mh, 1, sizeof(mh), f) != sizeof(mh)) {
fprintf(stderr, "error reading mach header from input file\n");
exit(1);
}
if (mh.cputype != CPU_TYPE_X86_64 && mh.cputype != CPU_TYPE_ARM64) {
fprintf(stderr,
"This tool creates an x86_64/arm64 corefile but "
"the supplied binary '%s' is cputype 0x%x\n",
fn, (uint32_t)mh.cputype);
exit(1);
}
num_of_load_cmds = mh.ncmds;
size_of_load_cmds = mh.sizeofcmds;
file_offset += sizeof(struct mach_header_64);
cputype = mh.cputype;
cpusubtype = mh.cpusubtype;
}
off_t load_cmds_offset = file_offset;
for (int i = 0; i < num_of_load_cmds &&
(file_offset - load_cmds_offset) < size_of_load_cmds;
i++) {
::fseeko(f, file_offset, SEEK_SET);
uint32_t cmd;
uint32_t cmdsize;
::fread(&cmd, sizeof(uint32_t), 1, f);
::fread(&cmdsize, sizeof(uint32_t), 1, f);
if (vmaddr == UINT64_MAX && cmd == LC_SEGMENT_64) {
struct segment_command_64 segcmd;
::fseeko(f, file_offset, SEEK_SET);
if (::fread(&segcmd, 1, sizeof(segcmd), f) != sizeof(segcmd)) {
fprintf(stderr, "Unable to read LC_SEGMENT_64 load command.\n");
exit(1);
}
if (strcmp("__TEXT", segcmd.segname) == 0)
vmaddr = segcmd.vmaddr;
}
if (cmd == LC_UUID) {
struct uuid_command uuidcmd;
::fseeko(f, file_offset, SEEK_SET);
if (::fread(&uuidcmd, 1, sizeof(uuidcmd), f) != sizeof(uuidcmd)) {
fprintf(stderr, "Unable to read LC_UUID load command.\n");
exit(1);
}
uuid_string_t uuidstr;
uuid_unparse(uuidcmd.uuid, uuidstr);
uuid = uuidstr;
}
file_offset += cmdsize;
}
return uuid;
}
void slide_macho_binary(std::vector<uint8_t> &image, uint64_t slide) {
uint8_t *p = image.data();
struct mach_header_64 *mh = (struct mach_header_64 *)p;
p += sizeof(struct mach_header_64);
for (int lc_idx = 0; lc_idx < mh->ncmds; lc_idx++) {
struct load_command *lc = (struct load_command *)p;
if (lc->cmd == LC_SEGMENT_64) {
struct segment_command_64 *seg = (struct segment_command_64 *)p;
if (seg->maxprot != 0 && seg->nsects > 0) {
seg->vmaddr += slide;
uint8_t *j = p + sizeof(segment_command_64);
for (int sect_idx = 0; sect_idx < seg->nsects; sect_idx++) {
struct section_64 *sect = (struct section_64 *)j;
sect->addr += slide;
j += sizeof(struct section_64);
}
}
}
p += lc->cmdsize;
}
}
int main(int argc, char **argv) {
if (argc < 3) {
fprintf(stderr,
"usage: output-corefile binary1[@optional-slide] "
"[binary2[@optional-slide] [binary3[@optional-slide] ...]]\n");
exit(1);
}
// An array of load commands (in the form of byte arrays)
std::vector<std::vector<uint8_t>> load_commands;
// An array of corefile contents (page data, lc_note data, etc)
std::vector<uint8_t> payload;
std::vector<std::string> input_filenames;
std::vector<uint64_t> input_slides;
std::vector<uint64_t> input_filesizes;
std::vector<uint64_t> input_filevmaddrs;
uint64_t main_binary_cputype = CPU_TYPE_ARM64;
uint64_t vmaddr = UINT64_MAX;
cpu_type_t cputype;
cpu_subtype_t cpusubtype;
for (int i = 2; i < argc; i++) {
std::string filename;
std::string filename_and_opt_hex(argv[i]);
uint64_t slide = 0;
auto at_pos = filename_and_opt_hex.find_last_of('@');
if (at_pos == std::string::npos) {
filename = filename_and_opt_hex;
} else {
filename = filename_and_opt_hex.substr(0, at_pos);
std::string hexstr = filename_and_opt_hex.substr(at_pos + 1);
errno = 0;
slide = (uint64_t)strtoull(hexstr.c_str(), nullptr, 16);
if (errno != 0) {
fprintf(stderr, "Unable to parse hex slide value in %s\n", argv[i]);
exit(1);
}
}
struct stat stbuf;
if (stat(filename.c_str(), &stbuf) == -1) {
fprintf(stderr, "Unable to stat '%s', exiting.\n", filename.c_str());
exit(1);
}
input_filenames.push_back(filename);
input_slides.push_back(slide);
input_filesizes.push_back(stbuf.st_size);
scan_binary(filename.c_str(), vmaddr, cputype, cpusubtype);
input_filevmaddrs.push_back(vmaddr + slide);
if (i == 2) {
main_binary_cputype = cputype;
}
}
const char *output_corefile_name = argv[1];
std::string empty_uuidstr = "00000000-0000-0000-0000-000000000000";
// First add all the load commands / payload so we can figure out how large
// the load commands will actually be.
load_commands.push_back(lc_thread_load_command(cputype));
add_lc_note_main_bin_spec_load_command(load_commands, payload, 0,
empty_uuidstr, 0, UINT64_MAX);
for (int i = 1; i < input_filenames.size(); i++) {
add_lc_note_load_binary_load_command(load_commands, payload, 0,
empty_uuidstr, 0, UINT64_MAX);
}
for (int i = 0; i < input_filenames.size(); i++) {
add_lc_segment(load_commands, payload, 0, 0, 0);
}
int size_of_load_commands = 0;
for (const auto &lc : load_commands)
size_of_load_commands += lc.size();
int size_of_header_and_load_cmds =
sizeof(struct mach_header_64) + size_of_load_commands;
// Erase the load commands / payload now that we know how much space is
// needed, redo it.
load_commands.clear();
payload.clear();
// Push the LC_THREAD load command.
load_commands.push_back(lc_thread_load_command(main_binary_cputype));
const off_t payload_offset = size_of_header_and_load_cmds;
add_lc_note_main_bin_spec_load_command(load_commands, payload, payload_offset,
empty_uuidstr, input_filevmaddrs[0],
UINT64_MAX);
for (int i = 1; i < input_filenames.size(); i++) {
add_lc_note_load_binary_load_command(load_commands, payload, payload_offset,
empty_uuidstr, input_filevmaddrs[i],
UINT64_MAX);
}
for (int i = 0; i < input_filenames.size(); i++) {
add_lc_segment(load_commands, payload, payload_offset, input_filevmaddrs[i],
input_filesizes[i]);
// Copy the contents of the binary into payload.
int fd = open(input_filenames[i].c_str(), O_RDONLY);
if (fd == -1) {
fprintf(stderr, "Unable to open %s for reading\n",
input_filenames[i].c_str());
exit(1);
}
std::vector<uint8_t> binary_contents;
for (int j = 0; j < input_filesizes[i]; j++) {
uint8_t byte;
read(fd, &byte, 1);
binary_contents.push_back(byte);
}
close(fd);
size_t cur_payload_size = payload.size();
payload.resize(cur_payload_size + binary_contents.size());
slide_macho_binary(binary_contents, input_slides[i]);
memcpy(payload.data() + cur_payload_size, binary_contents.data(),
binary_contents.size());
}
struct mach_header_64 mh;
mh.magic = MH_MAGIC_64;
mh.cputype = cputype;
mh.cpusubtype = cpusubtype;
mh.filetype = MH_CORE;
mh.ncmds = load_commands.size();
mh.sizeofcmds = size_of_load_commands;
mh.flags = 0;
mh.reserved = 0;
FILE *f = fopen(output_corefile_name, "w");
if (f == nullptr) {
fprintf(stderr, "Unable to open file %s for writing\n",
output_corefile_name);
exit(1);
}
fwrite(&mh, sizeof(mh), 1, f);
for (const auto &lc : load_commands)
fwrite(lc.data(), lc.size(), 1, f);
fwrite(payload.data(), payload.size(), 1, f);
fclose(f);
}

View File

@ -0,0 +1,7 @@
#include <stdio.h>
int one();
int two();
int main() {
puts("this is the standalone binary test program");
return one() + two();
}

View File

@ -0,0 +1 @@
int one() { return 5; }

View File

@ -0,0 +1 @@
int two() { return 10; }