Reapply "[BuildLibCalls] Introduce getOrInsertLibFunc() for use when building

libcalls." (was 0f8c626). This reverts commit 14d9390.

The patch previously failed to recognize cases where user had defined a
function alias with an identical name as that of the library
function. Module::getFunction() would then return nullptr which is what the
sanitizer discovered.

In this updated version a new function isLibFuncEmittable() has as well been
introduced which is now used instead of TLI->has() anytime a library function
is to be emitted . It additionally also makes sure there is e.g. no function
alias with the same name in the module.

Reviewed By: Eli Friedman

Differential Revision: https://reviews.llvm.org/D123198
This commit is contained in:
Jonas Paulsson 2022-04-20 18:19:37 +02:00
parent c685f82126
commit 304378fd09
14 changed files with 494 additions and 196 deletions

View File

@ -280,6 +280,13 @@ public:
return B == OverrideAsUnavailable;
}
/// Return true if the function type FTy is valid for the library function
/// F, regardless of whether the function is available.
bool isValidProtoForLibFunc(const FunctionType &FTy, LibFunc F,
const Module &M) const {
return Impl->isValidProtoForLibFunc(FTy, F, M);
}
/// Searches for a particular function name.
///
/// If it is one of the known library functions, return true and set F to the

View File

@ -363,6 +363,8 @@ public:
/// In all cases, the returned value is a FunctionCallee wrapper around the
/// 'FunctionType *T' passed in, as well as a 'Value*' either of the Function or
/// the bitcast to the function.
///
/// Note: For library calls getOrInsertLibFunc() should be used instead.
FunctionCallee getOrInsertFunction(StringRef Name, FunctionType *T,
AttributeList AttributeList);

View File

@ -22,23 +22,63 @@ namespace llvm {
class IRBuilderBase;
/// Analyze the name and prototype of the given function and set any
/// applicable attributes.
/// applicable attributes. Note that this merely helps optimizations on an
/// already existing function but does not consider mandatory attributes.
///
/// If the library function is unavailable, this doesn't modify it.
///
/// Returns true if any attributes were set and false otherwise.
bool inferLibFuncAttributes(Function &F, const TargetLibraryInfo &TLI);
bool inferLibFuncAttributes(Module *M, StringRef Name, const TargetLibraryInfo &TLI);
bool inferNonMandatoryLibFuncAttrs(Module *M, StringRef Name,
const TargetLibraryInfo &TLI);
bool inferNonMandatoryLibFuncAttrs(Function &F, const TargetLibraryInfo &TLI);
/// Calls getOrInsertFunction() and then makes sure to add mandatory
/// argument attributes.
FunctionCallee getOrInsertLibFunc(Module *M, const TargetLibraryInfo &TLI,
LibFunc TheLibFunc, FunctionType *T,
AttributeList AttributeList);
FunctionCallee getOrInsertLibFunc(Module *M, const TargetLibraryInfo &TLI,
LibFunc TheLibFunc, FunctionType *T);
template <typename... ArgsTy>
FunctionCallee getOrInsertLibFunc(Module *M, const TargetLibraryInfo &TLI,
LibFunc TheLibFunc, AttributeList AttributeList,
Type *RetTy, ArgsTy... Args) {
SmallVector<Type*, sizeof...(ArgsTy)> ArgTys{Args...};
return getOrInsertLibFunc(M, TLI, TheLibFunc,
FunctionType::get(RetTy, ArgTys, false),
AttributeList);
}
/// Same as above, but without the attributes.
template <typename... ArgsTy>
FunctionCallee getOrInsertLibFunc(Module *M, const TargetLibraryInfo &TLI,
LibFunc TheLibFunc, Type *RetTy, ArgsTy... Args) {
return getOrInsertLibFunc(M, TLI, TheLibFunc, AttributeList{}, RetTy,
Args...);
}
// Avoid an incorrect ordering that'd otherwise compile incorrectly.
template <typename... ArgsTy>
FunctionCallee
getOrInsertLibFunc(Module *M, const TargetLibraryInfo &TLI,
LibFunc TheLibFunc, AttributeList AttributeList,
FunctionType *Invalid, ArgsTy... Args) = delete;
/// Check whether the library function is available on target and also that
/// it in the current Module is a Function with the right type.
bool isLibFuncEmittable(const Module *M, const TargetLibraryInfo *TLI,
LibFunc TheLibFunc);
bool isLibFuncEmittable(const Module *M, const TargetLibraryInfo *TLI,
StringRef Name);
/// Check whether the overloaded floating point function
/// corresponding to \a Ty is available.
bool hasFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
bool hasFloatFn(const Module *M, const TargetLibraryInfo *TLI, Type *Ty,
LibFunc DoubleFn, LibFunc FloatFn, LibFunc LongDoubleFn);
/// Get the name of the overloaded floating point function
/// corresponding to \a Ty.
StringRef getFloatFnName(const TargetLibraryInfo *TLI, Type *Ty,
LibFunc DoubleFn, LibFunc FloatFn,
LibFunc LongDoubleFn);
/// corresponding to \a Ty. Return the LibFunc in \a TheLibFunc.
StringRef getFloatFn(const Module *M, const TargetLibraryInfo *TLI, Type *Ty,
LibFunc DoubleFn, LibFunc FloatFn, LibFunc LongDoubleFn,
LibFunc &TheLibFunc);
/// Return V if it is an i8*, otherwise cast it to i8*.
Value *castToCStr(Value *V, IRBuilderBase &B);
@ -148,7 +188,8 @@ namespace llvm {
/// function is known to take a single of type matching 'Op' and returns one
/// value with the same type. If 'Op' is a long double, 'l' is added as the
/// suffix of name, if 'Op' is a float, we add a 'f' suffix.
Value *emitUnaryFloatFnCall(Value *Op, StringRef Name, IRBuilderBase &B,
Value *emitUnaryFloatFnCall(Value *Op, const TargetLibraryInfo *TLI,
StringRef Name, IRBuilderBase &B,
const AttributeList &Attrs);
/// Emit a call to the unary function DoubleFn, FloatFn or LongDoubleFn,
@ -162,8 +203,10 @@ namespace llvm {
/// function is known to take type matching 'Op1' and 'Op2' and return one
/// value with the same type. If 'Op1/Op2' are long double, 'l' is added as
/// the suffix of name, if 'Op1/Op2' are float, we add a 'f' suffix.
Value *emitBinaryFloatFnCall(Value *Op1, Value *Op2, StringRef Name,
IRBuilderBase &B, const AttributeList &Attrs);
Value *emitBinaryFloatFnCall(Value *Op1, Value *Op2,
const TargetLibraryInfo *TLI,
StringRef Name, IRBuilderBase &B,
const AttributeList &Attrs);
/// Emit a call to the binary function DoubleFn, FloatFn or LongDoubleFn,
/// depending of the type of Op1.

View File

@ -235,7 +235,7 @@ private:
/// hasFloatVersion - Checks if there is a float version of the specified
/// function by checking for an existing function with name FuncName + f
bool hasFloatVersion(StringRef FuncName);
bool hasFloatVersion(const Module *M, StringRef FuncName);
/// Shared code to optimize strlen+wcslen and strnlen+wcsnlen.
Value *optimizeStringLength(CallInst *CI, IRBuilderBase &B, unsigned CharSize,

View File

@ -29,7 +29,7 @@ static bool inferAllPrototypeAttributes(
// explicitly visited by CGSCC passes in the new pass manager.)
if (F.isDeclaration() && !F.hasOptNone()) {
if (!F.hasFnAttribute(Attribute::NoBuiltin))
Changed |= inferLibFuncAttributes(F, GetTLI(F));
Changed |= inferNonMandatoryLibFuncAttrs(F, GetTLI(F));
Changed |= inferAttributesFromOthers(F);
}

View File

@ -1298,6 +1298,8 @@ static Instruction *foldFDivPowDivisor(BinaryOperator &I,
}
Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) {
Module *M = I.getModule();
if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1),
I.getFastMathFlags(),
SQ.getWithInstruction(&I)))
@ -1363,8 +1365,8 @@ Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) {
!IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
if ((IsTan || IsCot) &&
hasFloatFn(&TLI, I.getType(), LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
if ((IsTan || IsCot) && hasFloatFn(M, &TLI, I.getType(), LibFunc_tan,
LibFunc_tanf, LibFunc_tanl)) {
IRBuilder<> B(&I);
IRBuilder<>::FastMathFlagGuard FMFGuard(B);
B.setFastMathFlags(I.getFastMathFlags());

View File

@ -1100,6 +1100,7 @@ bool LoopIdiomRecognize::processLoopStridedStore(
Value *StoredVal, Instruction *TheStore,
SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) {
Module *M = TheStore->getModule();
Value *SplatValue = isBytewiseValue(StoredVal, *DL);
Constant *PatternValue = nullptr;
@ -1182,15 +1183,14 @@ bool LoopIdiomRecognize::processLoopStridedStore(
NewCall = Builder.CreateMemSet(
BasePtr, SplatValue, NumBytes, MaybeAlign(StoreAlignment),
/*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias);
} else {
} else if (isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16)) {
// Everything is emitted in default address space
Type *Int8PtrTy = DestInt8PtrTy;
Module *M = TheStore->getModule();
StringRef FuncName = "memset_pattern16";
FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(),
Int8PtrTy, Int8PtrTy, IntIdxTy);
inferLibFuncAttributes(M, FuncName, *TLI);
FunctionCallee MSP = getOrInsertLibFunc(M, *TLI, LibFunc_memset_pattern16,
Builder.getVoidTy(), Int8PtrTy, Int8PtrTy, IntIdxTy);
inferNonMandatoryLibFuncAttrs(M, FuncName, *TLI);
// Otherwise we should form a memset_pattern16. PatternValue is known to be
// an constant array of 16-bytes. Plop the value into a mergable global.
@ -1201,7 +1201,9 @@ bool LoopIdiomRecognize::processLoopStridedStore(
GV->setAlignment(Align(16));
Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
}
} else
return Changed;
NewCall->setDebugLoc(TheStore->getDebugLoc());
if (MSSAU) {

View File

@ -39,7 +39,6 @@ STATISTIC(NumInaccessibleMemOrArgMemOnly,
STATISTIC(NumNoUnwind, "Number of functions inferred as nounwind");
STATISTIC(NumNoCapture, "Number of arguments inferred as nocapture");
STATISTIC(NumWriteOnlyArg, "Number of arguments inferred as writeonly");
STATISTIC(NumExtArg, "Number of arguments inferred as signext/zeroext.");
STATISTIC(NumReadOnlyArg, "Number of arguments inferred as readonly");
STATISTIC(NumNoAlias, "Number of function returns inferred as noalias");
STATISTIC(NumNoUndef, "Number of function returns inferred as noundef returns");
@ -147,16 +146,6 @@ static bool setOnlyWritesMemory(Function &F, unsigned ArgNo) {
return true;
}
static bool setArgExtAttr(Function &F, unsigned ArgNo,
const TargetLibraryInfo &TLI, bool Signed = true) {
Attribute::AttrKind ExtAttr = TLI.getExtAttrForI32Param(Signed);
if (ExtAttr == Attribute::None || F.hasParamAttribute(ArgNo, ExtAttr))
return false;
F.addParamAttr(ArgNo, ExtAttr);
++NumExtArg;
return true;
}
static bool setRetNoUndef(Function &F) {
if (!F.getReturnType()->isVoidTy() &&
!F.hasRetAttribute(Attribute::NoUndef)) {
@ -254,15 +243,16 @@ static bool setAllocFamily(Function &F, StringRef Family) {
return true;
}
bool llvm::inferLibFuncAttributes(Module *M, StringRef Name,
const TargetLibraryInfo &TLI) {
bool llvm::inferNonMandatoryLibFuncAttrs(Module *M, StringRef Name,
const TargetLibraryInfo &TLI) {
Function *F = M->getFunction(Name);
if (!F)
return false;
return inferLibFuncAttributes(*F, TLI);
return inferNonMandatoryLibFuncAttrs(*F, TLI);
}
bool llvm::inferLibFuncAttributes(Function &F, const TargetLibraryInfo &TLI) {
bool llvm::inferNonMandatoryLibFuncAttrs(Function &F,
const TargetLibraryInfo &TLI) {
LibFunc TheLibFunc;
if (!(TLI.getLibFunc(F, TheLibFunc) && TLI.has(TheLibFunc)))
return false;
@ -875,7 +865,6 @@ bool llvm::inferLibFuncAttributes(Function &F, const TargetLibraryInfo &TLI) {
case LibFunc_putchar:
case LibFunc_putchar_unlocked:
Changed |= setRetAndArgsNoUndef(F);
Changed |= setArgExtAttr(F, 0, TLI);
Changed |= setDoesNotThrow(F);
return Changed;
case LibFunc_popen:
@ -1096,7 +1085,6 @@ bool llvm::inferLibFuncAttributes(Function &F, const TargetLibraryInfo &TLI) {
case LibFunc_ldexp:
case LibFunc_ldexpf:
case LibFunc_ldexpl:
Changed |= setArgExtAttr(F, 1, TLI);
Changed |= setWillReturn(F);
return Changed;
case LibFunc_abs:
@ -1233,34 +1221,141 @@ bool llvm::inferLibFuncAttributes(Function &F, const TargetLibraryInfo &TLI) {
}
}
bool llvm::hasFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
static void setArgExtAttr(Function &F, unsigned ArgNo,
const TargetLibraryInfo &TLI, bool Signed = true) {
Attribute::AttrKind ExtAttr = TLI.getExtAttrForI32Param(Signed);
if (ExtAttr != Attribute::None && !F.hasParamAttribute(ArgNo, ExtAttr))
F.addParamAttr(ArgNo, ExtAttr);
}
FunctionCallee llvm::getOrInsertLibFunc(Module *M, const TargetLibraryInfo &TLI,
LibFunc TheLibFunc, FunctionType *T,
AttributeList AttributeList) {
assert(TLI.has(TheLibFunc) &&
"Creating call to non-existing library function.");
StringRef Name = TLI.getName(TheLibFunc);
FunctionCallee C = M->getOrInsertFunction(Name, T, AttributeList);
// Make sure any mandatory argument attributes are added.
// Any outgoing i32 argument should be handled with setArgExtAttr() which
// will add an extension attribute if the target ABI requires it. Adding
// argument extensions is typically done by the front end but when an
// optimizer is building a library call on its own it has to take care of
// this. Each such generated function must be handled here with sign or
// zero extensions as needed. F is retreived with cast<> because we demand
// of the caller to have called isLibFuncEmittable() first.
Function *F = cast<Function>(C.getCallee());
assert(F->getFunctionType() == T && "Function type does not match.");
switch (TheLibFunc) {
case LibFunc_fputc:
case LibFunc_putchar:
setArgExtAttr(*F, 0, TLI);
break;
case LibFunc_ldexp:
case LibFunc_ldexpf:
case LibFunc_ldexpl:
case LibFunc_memchr:
case LibFunc_strchr:
setArgExtAttr(*F, 1, TLI);
break;
case LibFunc_memccpy:
setArgExtAttr(*F, 2, TLI);
break;
// These are functions that are known to not need any argument extension
// on any target: A size_t argument (which may be an i32 on some targets)
// should not trigger the assert below.
case LibFunc_bcmp:
case LibFunc_calloc:
case LibFunc_fwrite:
case LibFunc_malloc:
case LibFunc_memcmp:
case LibFunc_memcpy_chk:
case LibFunc_mempcpy:
case LibFunc_memset_pattern16:
case LibFunc_snprintf:
case LibFunc_stpncpy:
case LibFunc_strlcat:
case LibFunc_strlcpy:
case LibFunc_strncat:
case LibFunc_strncmp:
case LibFunc_strncpy:
case LibFunc_vsnprintf:
break;
default:
#ifndef NDEBUG
for (unsigned i = 0; i < T->getNumParams(); i++)
assert(!isa<IntegerType>(T->getParamType(i)) &&
"Unhandled integer argument.");
#endif
break;
}
return C;
}
FunctionCallee llvm::getOrInsertLibFunc(Module *M, const TargetLibraryInfo &TLI,
LibFunc TheLibFunc, FunctionType *T) {
return getOrInsertLibFunc(M, TLI, TheLibFunc, T, AttributeList());
}
bool llvm::isLibFuncEmittable(const Module *M, const TargetLibraryInfo *TLI,
LibFunc TheLibFunc) {
StringRef FuncName = TLI->getName(TheLibFunc);
if (!TLI->has(TheLibFunc))
return false;
// Check if the Module already has a GlobalValue with the same name, in
// which case it must be a Function with the expected type.
if (GlobalValue *GV = M->getNamedValue(FuncName)) {
if (auto *F = dyn_cast<Function>(GV))
return TLI->isValidProtoForLibFunc(*F->getFunctionType(), TheLibFunc, *M);
return false;
}
return true;
}
bool llvm::isLibFuncEmittable(const Module *M, const TargetLibraryInfo *TLI,
StringRef Name) {
LibFunc TheLibFunc;
return TLI->getLibFunc(Name, TheLibFunc) &&
isLibFuncEmittable(M, TLI, TheLibFunc);
}
bool llvm::hasFloatFn(const Module *M, const TargetLibraryInfo *TLI, Type *Ty,
LibFunc DoubleFn, LibFunc FloatFn, LibFunc LongDoubleFn) {
switch (Ty->getTypeID()) {
case Type::HalfTyID:
return false;
case Type::FloatTyID:
return TLI->has(FloatFn);
return isLibFuncEmittable(M, TLI, FloatFn);
case Type::DoubleTyID:
return TLI->has(DoubleFn);
return isLibFuncEmittable(M, TLI, DoubleFn);
default:
return TLI->has(LongDoubleFn);
return isLibFuncEmittable(M, TLI, LongDoubleFn);
}
}
StringRef llvm::getFloatFnName(const TargetLibraryInfo *TLI, Type *Ty,
LibFunc DoubleFn, LibFunc FloatFn,
LibFunc LongDoubleFn) {
assert(hasFloatFn(TLI, Ty, DoubleFn, FloatFn, LongDoubleFn) &&
StringRef llvm::getFloatFn(const Module *M, const TargetLibraryInfo *TLI,
Type *Ty, LibFunc DoubleFn, LibFunc FloatFn,
LibFunc LongDoubleFn, LibFunc &TheLibFunc) {
assert(hasFloatFn(M, TLI, Ty, DoubleFn, FloatFn, LongDoubleFn) &&
"Cannot get name for unavailable function!");
switch (Ty->getTypeID()) {
case Type::HalfTyID:
llvm_unreachable("No name for HalfTy!");
case Type::FloatTyID:
TheLibFunc = FloatFn;
return TLI->getName(FloatFn);
case Type::DoubleTyID:
TheLibFunc = DoubleFn;
return TLI->getName(DoubleFn);
default:
TheLibFunc = LongDoubleFn;
return TLI->getName(LongDoubleFn);
}
}
@ -1277,14 +1372,14 @@ static Value *emitLibCall(LibFunc TheLibFunc, Type *ReturnType,
ArrayRef<Value *> Operands, IRBuilderBase &B,
const TargetLibraryInfo *TLI,
bool IsVaArgs = false) {
if (!TLI->has(TheLibFunc))
Module *M = B.GetInsertBlock()->getModule();
if (!isLibFuncEmittable(M, TLI, TheLibFunc))
return nullptr;
Module *M = B.GetInsertBlock()->getModule();
StringRef FuncName = TLI->getName(TheLibFunc);
FunctionType *FuncType = FunctionType::get(ReturnType, ParamTypes, IsVaArgs);
FunctionCallee Callee = M->getOrInsertFunction(FuncName, FuncType);
inferLibFuncAttributes(M, FuncName, *TLI);
FunctionCallee Callee = getOrInsertLibFunc(M, *TLI, TheLibFunc, FuncType);
inferNonMandatoryLibFuncAttrs(M, FuncName, *TLI);
CallInst *CI = B.CreateCall(Callee, Operands, FuncName);
if (const Function *F =
dyn_cast<Function>(Callee.getCallee()->stripPointerCasts()))
@ -1353,16 +1448,16 @@ Value *llvm::emitStpNCpy(Value *Dst, Value *Src, Value *Len, IRBuilderBase &B,
Value *llvm::emitMemCpyChk(Value *Dst, Value *Src, Value *Len, Value *ObjSize,
IRBuilderBase &B, const DataLayout &DL,
const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc_memcpy_chk))
Module *M = B.GetInsertBlock()->getModule();
if (!isLibFuncEmittable(M, TLI, LibFunc_memcpy_chk))
return nullptr;
Module *M = B.GetInsertBlock()->getModule();
AttributeList AS;
AS = AttributeList::get(M->getContext(), AttributeList::FunctionIndex,
Attribute::NoUnwind);
LLVMContext &Context = B.GetInsertBlock()->getContext();
FunctionCallee MemCpy = M->getOrInsertFunction(
"__memcpy_chk", AttributeList::get(M->getContext(), AS), B.getInt8PtrTy(),
FunctionCallee MemCpy = getOrInsertLibFunc(M, *TLI, LibFunc_memcpy_chk,
AttributeList::get(M->getContext(), AS), B.getInt8PtrTy(),
B.getInt8PtrTy(), B.getInt8PtrTy(), DL.getIntPtrType(Context),
DL.getIntPtrType(Context));
Dst = castToCStr(Dst, B);
@ -1496,14 +1591,15 @@ static void appendTypeSuffix(Value *Op, StringRef &Name,
}
}
static Value *emitUnaryFloatFnCallHelper(Value *Op, StringRef Name,
IRBuilderBase &B,
const AttributeList &Attrs) {
static Value *emitUnaryFloatFnCallHelper(Value *Op, LibFunc TheLibFunc,
StringRef Name, IRBuilderBase &B,
const AttributeList &Attrs,
const TargetLibraryInfo *TLI) {
assert((Name != "") && "Must specify Name to emitUnaryFloatFnCall");
Module *M = B.GetInsertBlock()->getModule();
FunctionCallee Callee =
M->getOrInsertFunction(Name, Op->getType(), Op->getType());
FunctionCallee Callee = getOrInsertLibFunc(M, *TLI, TheLibFunc, Op->getType(),
Op->getType());
CallInst *CI = B.CreateCall(Callee, Op, Name);
// The incoming attribute set may have come from a speculatable intrinsic, but
@ -1518,12 +1614,16 @@ static Value *emitUnaryFloatFnCallHelper(Value *Op, StringRef Name,
return CI;
}
Value *llvm::emitUnaryFloatFnCall(Value *Op, StringRef Name, IRBuilderBase &B,
Value *llvm::emitUnaryFloatFnCall(Value *Op, const TargetLibraryInfo *TLI,
StringRef Name, IRBuilderBase &B,
const AttributeList &Attrs) {
SmallString<20> NameBuffer;
appendTypeSuffix(Op, Name, NameBuffer);
return emitUnaryFloatFnCallHelper(Op, Name, B, Attrs);
LibFunc TheLibFunc;
TLI->getLibFunc(Name, TheLibFunc);
return emitUnaryFloatFnCallHelper(Op, TheLibFunc, Name, B, Attrs, TLI);
}
Value *llvm::emitUnaryFloatFnCall(Value *Op, const TargetLibraryInfo *TLI,
@ -1531,23 +1631,25 @@ Value *llvm::emitUnaryFloatFnCall(Value *Op, const TargetLibraryInfo *TLI,
LibFunc LongDoubleFn, IRBuilderBase &B,
const AttributeList &Attrs) {
// Get the name of the function according to TLI.
StringRef Name = getFloatFnName(TLI, Op->getType(),
DoubleFn, FloatFn, LongDoubleFn);
Module *M = B.GetInsertBlock()->getModule();
LibFunc TheLibFunc;
StringRef Name = getFloatFn(M, TLI, Op->getType(), DoubleFn, FloatFn,
LongDoubleFn, TheLibFunc);
return emitUnaryFloatFnCallHelper(Op, Name, B, Attrs);
return emitUnaryFloatFnCallHelper(Op, TheLibFunc, Name, B, Attrs, TLI);
}
static Value *emitBinaryFloatFnCallHelper(Value *Op1, Value *Op2,
LibFunc TheLibFunc,
StringRef Name, IRBuilderBase &B,
const AttributeList &Attrs,
const TargetLibraryInfo *TLI = nullptr) {
const TargetLibraryInfo *TLI) {
assert((Name != "") && "Must specify Name to emitBinaryFloatFnCall");
Module *M = B.GetInsertBlock()->getModule();
FunctionCallee Callee = M->getOrInsertFunction(Name, Op1->getType(),
Op1->getType(), Op2->getType());
if (TLI != nullptr)
inferLibFuncAttributes(M, Name, *TLI);
FunctionCallee Callee = getOrInsertLibFunc(M, *TLI, TheLibFunc, Op1->getType(),
Op1->getType(), Op2->getType());
inferNonMandatoryLibFuncAttrs(M, Name, *TLI);
CallInst *CI = B.CreateCall(Callee, { Op1, Op2 }, Name);
// The incoming attribute set may have come from a speculatable intrinsic, but
@ -1562,15 +1664,19 @@ static Value *emitBinaryFloatFnCallHelper(Value *Op1, Value *Op2,
return CI;
}
Value *llvm::emitBinaryFloatFnCall(Value *Op1, Value *Op2, StringRef Name,
IRBuilderBase &B,
Value *llvm::emitBinaryFloatFnCall(Value *Op1, Value *Op2,
const TargetLibraryInfo *TLI,
StringRef Name, IRBuilderBase &B,
const AttributeList &Attrs) {
assert((Name != "") && "Must specify Name to emitBinaryFloatFnCall");
SmallString<20> NameBuffer;
appendTypeSuffix(Op1, Name, NameBuffer);
return emitBinaryFloatFnCallHelper(Op1, Op2, Name, B, Attrs);
LibFunc TheLibFunc;
TLI->getLibFunc(Name, TheLibFunc);
return emitBinaryFloatFnCallHelper(Op1, Op2, TheLibFunc, Name, B, Attrs, TLI);
}
Value *llvm::emitBinaryFloatFnCall(Value *Op1, Value *Op2,
@ -1579,22 +1685,24 @@ Value *llvm::emitBinaryFloatFnCall(Value *Op1, Value *Op2,
LibFunc LongDoubleFn, IRBuilderBase &B,
const AttributeList &Attrs) {
// Get the name of the function according to TLI.
StringRef Name = getFloatFnName(TLI, Op1->getType(),
DoubleFn, FloatFn, LongDoubleFn);
Module *M = B.GetInsertBlock()->getModule();
LibFunc TheLibFunc;
StringRef Name = getFloatFn(M, TLI, Op1->getType(), DoubleFn, FloatFn,
LongDoubleFn, TheLibFunc);
return emitBinaryFloatFnCallHelper(Op1, Op2, Name, B, Attrs, TLI);
return emitBinaryFloatFnCallHelper(Op1, Op2, TheLibFunc, Name, B, Attrs, TLI);
}
Value *llvm::emitPutChar(Value *Char, IRBuilderBase &B,
const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc_putchar))
Module *M = B.GetInsertBlock()->getModule();
if (!isLibFuncEmittable(M, TLI, LibFunc_putchar))
return nullptr;
Module *M = B.GetInsertBlock()->getModule();
StringRef PutCharName = TLI->getName(LibFunc_putchar);
FunctionCallee PutChar =
M->getOrInsertFunction(PutCharName, B.getInt32Ty(), B.getInt32Ty());
inferLibFuncAttributes(M, PutCharName, *TLI);
FunctionCallee PutChar = getOrInsertLibFunc(M, *TLI, LibFunc_putchar,
B.getInt32Ty(), B.getInt32Ty());
inferNonMandatoryLibFuncAttrs(M, PutCharName, *TLI);
CallInst *CI = B.CreateCall(PutChar,
B.CreateIntCast(Char,
B.getInt32Ty(),
@ -1610,14 +1718,14 @@ Value *llvm::emitPutChar(Value *Char, IRBuilderBase &B,
Value *llvm::emitPutS(Value *Str, IRBuilderBase &B,
const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc_puts))
Module *M = B.GetInsertBlock()->getModule();
if (!isLibFuncEmittable(M, TLI, LibFunc_puts))
return nullptr;
Module *M = B.GetInsertBlock()->getModule();
StringRef PutsName = TLI->getName(LibFunc_puts);
FunctionCallee PutS =
M->getOrInsertFunction(PutsName, B.getInt32Ty(), B.getInt8PtrTy());
inferLibFuncAttributes(M, PutsName, *TLI);
FunctionCallee PutS = getOrInsertLibFunc(M, *TLI, LibFunc_puts, B.getInt32Ty(),
B.getInt8PtrTy());
inferNonMandatoryLibFuncAttrs(M, PutsName, *TLI);
CallInst *CI = B.CreateCall(PutS, castToCStr(Str, B), PutsName);
if (const Function *F =
dyn_cast<Function>(PutS.getCallee()->stripPointerCasts()))
@ -1627,15 +1735,15 @@ Value *llvm::emitPutS(Value *Str, IRBuilderBase &B,
Value *llvm::emitFPutC(Value *Char, Value *File, IRBuilderBase &B,
const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc_fputc))
Module *M = B.GetInsertBlock()->getModule();
if (!isLibFuncEmittable(M, TLI, LibFunc_fputc))
return nullptr;
Module *M = B.GetInsertBlock()->getModule();
StringRef FPutcName = TLI->getName(LibFunc_fputc);
FunctionCallee F = M->getOrInsertFunction(FPutcName, B.getInt32Ty(),
B.getInt32Ty(), File->getType());
FunctionCallee F = getOrInsertLibFunc(M, *TLI, LibFunc_fputc, B.getInt32Ty(),
B.getInt32Ty(), File->getType());
if (File->getType()->isPointerTy())
inferLibFuncAttributes(M, FPutcName, *TLI);
inferNonMandatoryLibFuncAttrs(M, FPutcName, *TLI);
Char = B.CreateIntCast(Char, B.getInt32Ty(), /*isSigned*/true,
"chari");
CallInst *CI = B.CreateCall(F, {Char, File}, FPutcName);
@ -1648,15 +1756,15 @@ Value *llvm::emitFPutC(Value *Char, Value *File, IRBuilderBase &B,
Value *llvm::emitFPutS(Value *Str, Value *File, IRBuilderBase &B,
const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc_fputs))
Module *M = B.GetInsertBlock()->getModule();
if (!isLibFuncEmittable(M, TLI, LibFunc_fputs))
return nullptr;
Module *M = B.GetInsertBlock()->getModule();
StringRef FPutsName = TLI->getName(LibFunc_fputs);
FunctionCallee F = M->getOrInsertFunction(FPutsName, B.getInt32Ty(),
B.getInt8PtrTy(), File->getType());
FunctionCallee F = getOrInsertLibFunc(M, *TLI, LibFunc_fputs, B.getInt32Ty(),
B.getInt8PtrTy(), File->getType());
if (File->getType()->isPointerTy())
inferLibFuncAttributes(M, FPutsName, *TLI);
inferNonMandatoryLibFuncAttrs(M, FPutsName, *TLI);
CallInst *CI = B.CreateCall(F, {castToCStr(Str, B), File}, FPutsName);
if (const Function *Fn =
@ -1667,18 +1775,18 @@ Value *llvm::emitFPutS(Value *Str, Value *File, IRBuilderBase &B,
Value *llvm::emitFWrite(Value *Ptr, Value *Size, Value *File, IRBuilderBase &B,
const DataLayout &DL, const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc_fwrite))
Module *M = B.GetInsertBlock()->getModule();
if (!isLibFuncEmittable(M, TLI, LibFunc_fwrite))
return nullptr;
Module *M = B.GetInsertBlock()->getModule();
LLVMContext &Context = B.GetInsertBlock()->getContext();
StringRef FWriteName = TLI->getName(LibFunc_fwrite);
FunctionCallee F = M->getOrInsertFunction(
FWriteName, DL.getIntPtrType(Context), B.getInt8PtrTy(),
DL.getIntPtrType(Context), DL.getIntPtrType(Context), File->getType());
FunctionCallee F = getOrInsertLibFunc(M, *TLI, LibFunc_fwrite,
DL.getIntPtrType(Context), B.getInt8PtrTy(), DL.getIntPtrType(Context),
DL.getIntPtrType(Context), File->getType());
if (File->getType()->isPointerTy())
inferLibFuncAttributes(M, FWriteName, *TLI);
inferNonMandatoryLibFuncAttrs(M, FWriteName, *TLI);
CallInst *CI =
B.CreateCall(F, {castToCStr(Ptr, B), Size,
ConstantInt::get(DL.getIntPtrType(Context), 1), File});
@ -1691,15 +1799,15 @@ Value *llvm::emitFWrite(Value *Ptr, Value *Size, Value *File, IRBuilderBase &B,
Value *llvm::emitMalloc(Value *Num, IRBuilderBase &B, const DataLayout &DL,
const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc_malloc))
Module *M = B.GetInsertBlock()->getModule();
if (!isLibFuncEmittable(M, TLI, LibFunc_malloc))
return nullptr;
Module *M = B.GetInsertBlock()->getModule();
StringRef MallocName = TLI->getName(LibFunc_malloc);
LLVMContext &Context = B.GetInsertBlock()->getContext();
FunctionCallee Malloc = M->getOrInsertFunction(MallocName, B.getInt8PtrTy(),
DL.getIntPtrType(Context));
inferLibFuncAttributes(M, MallocName, *TLI);
FunctionCallee Malloc = getOrInsertLibFunc(M, *TLI, LibFunc_malloc,
B.getInt8PtrTy(), DL.getIntPtrType(Context));
inferNonMandatoryLibFuncAttrs(M, MallocName, *TLI);
CallInst *CI = B.CreateCall(Malloc, Num, MallocName);
if (const Function *F =
@ -1711,16 +1819,16 @@ Value *llvm::emitMalloc(Value *Num, IRBuilderBase &B, const DataLayout &DL,
Value *llvm::emitCalloc(Value *Num, Value *Size, IRBuilderBase &B,
const TargetLibraryInfo &TLI) {
if (!TLI.has(LibFunc_calloc))
Module *M = B.GetInsertBlock()->getModule();
if (!isLibFuncEmittable(M, &TLI, LibFunc_calloc))
return nullptr;
Module *M = B.GetInsertBlock()->getModule();
StringRef CallocName = TLI.getName(LibFunc_calloc);
const DataLayout &DL = M->getDataLayout();
IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext()));
FunctionCallee Calloc =
M->getOrInsertFunction(CallocName, B.getInt8PtrTy(), PtrType, PtrType);
inferLibFuncAttributes(M, CallocName, TLI);
FunctionCallee Calloc = getOrInsertLibFunc(M, TLI, LibFunc_calloc,
B.getInt8PtrTy(), PtrType, PtrType);
inferNonMandatoryLibFuncAttrs(M, CallocName, TLI);
CallInst *CI = B.CreateCall(Calloc, {Num, Size}, CallocName);
if (const auto *F =

View File

@ -1190,13 +1190,15 @@ Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
}
Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
Module *M = CI->getModule();
if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
return V;
// memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
// bcmp can be more efficient than memcmp because it only has to know that
// there is a difference, not how different one is to the other.
if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) {
if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) &&
isOnlyUsedInZeroEqualityComparison(CI)) {
Value *LHS = CI->getArgOperand(0);
Value *RHS = CI->getArgOperand(1);
Value *Size = CI->getArgOperand(2);
@ -1360,7 +1362,8 @@ static Value *valueHasFloatPrecision(Value *Val) {
/// Shrink double -> float functions.
static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
bool isBinary, bool isPrecise = false) {
bool isBinary, const TargetLibraryInfo *TLI,
bool isPrecise = false) {
Function *CalleeFn = CI->getCalledFunction();
if (!CI->getType()->isDoubleTy() || !CalleeFn)
return nullptr;
@ -1410,22 +1413,25 @@ static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
} else {
AttributeList CalleeAttrs = CalleeFn->getAttributes();
R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs)
: emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs);
R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B,
CalleeAttrs)
: emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs);
}
return B.CreateFPExt(R, B.getDoubleTy());
}
/// Shrink double -> float for unary functions.
static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
const TargetLibraryInfo *TLI,
bool isPrecise = false) {
return optimizeDoubleFP(CI, B, false, isPrecise);
return optimizeDoubleFP(CI, B, false, TLI, isPrecise);
}
/// Shrink double -> float for binary functions.
static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
const TargetLibraryInfo *TLI,
bool isPrecise = false) {
return optimizeDoubleFP(CI, B, true, isPrecise);
return optimizeDoubleFP(CI, B, true, TLI, isPrecise);
}
// cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
@ -1541,6 +1547,7 @@ static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) {
/// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
/// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
Module *M = Pow->getModule();
Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
AttributeList Attrs; // Attributes are only meaningful on the original call
Module *Mod = Pow->getModule();
@ -1568,7 +1575,8 @@ Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
Function *CalleeFn = BaseFn->getCalledFunction();
if (CalleeFn &&
TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
TLI->getLibFunc(CalleeFn->getName(), LibFn) &&
isLibFuncEmittable(M, TLI, LibFn)) {
StringRef ExpName;
Intrinsic::ID ID;
Value *ExpFn;
@ -1620,7 +1628,7 @@ Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
// pow(2.0, itofp(x)) -> ldexp(1.0, x)
if (match(Base, m_SpecificFP(2.0)) &&
(isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
return copyFlags(*Pow,
emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI,
@ -1629,7 +1637,7 @@ Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
}
// pow(2.0 ** n, x) -> exp2(n * x)
if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
APFloat BaseR = APFloat(1.0);
BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
BaseR = BaseR / *BaseF;
@ -1656,7 +1664,7 @@ Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
// pow(10.0, x) -> exp10(x)
// TODO: There is no exp10() intrinsic yet, but some day there shall be one.
if (match(Base, m_SpecificFP(10.0)) &&
hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10,
LibFunc_exp10f, LibFunc_exp10l,
B, Attrs));
@ -1681,7 +1689,8 @@ Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
Mod, Intrinsic::exp2, Ty),
FMul, "exp2"));
else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l))
else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f,
LibFunc_exp2l))
return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
LibFunc_exp2f,
LibFunc_exp2l, B, Attrs));
@ -1702,7 +1711,8 @@ static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
}
// Otherwise, use the libcall for sqrt().
if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf,
LibFunc_sqrtl))
// TODO: We also should check that the target can in fact lower the sqrt()
// libcall. We currently have no way to ask this question, so we ask if
// the target has a sqrt() libcall, which is not exactly the same.
@ -1892,8 +1902,8 @@ Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
// Shrink pow() to powf() if the arguments are single precision,
// unless the result is expected to be double precision.
if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
hasFloatVersion(Name)) {
if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true))
hasFloatVersion(M, Name)) {
if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true))
return Shrunk;
}
@ -1901,13 +1911,14 @@ Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
}
Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
Module *M = CI->getModule();
Function *Callee = CI->getCalledFunction();
AttributeList Attrs; // Attributes are only meaningful on the original call
StringRef Name = Callee->getName();
Value *Ret = nullptr;
if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
hasFloatVersion(Name))
Ret = optimizeUnaryDoubleFP(CI, B, true);
hasFloatVersion(M, Name))
Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
Type *Ty = CI->getType();
Value *Op = CI->getArgOperand(0);
@ -1915,7 +1926,7 @@ Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
// Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize
// Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize
if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize()))
return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
@ -1926,12 +1937,14 @@ Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
}
Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
Module *M = CI->getModule();
// If we can shrink the call to a float function rather than a double
// function, do that first.
Function *Callee = CI->getCalledFunction();
StringRef Name = Callee->getName();
if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name))
if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI))
return Ret;
// The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
@ -1962,8 +1975,8 @@ Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
Type *Ty = Log->getType();
Value *Ret = nullptr;
if (UnsafeFPShrink && hasFloatVersion(LogNm))
Ret = optimizeUnaryDoubleFP(Log, B, true);
if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm))
Ret = optimizeUnaryDoubleFP(Log, B, TLI, true);
// The earlier call must also be 'fast' in order to do these transforms.
CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
@ -2071,7 +2084,7 @@ Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
Log->doesNotAccessMemory()
? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
Arg->getOperand(0), "log")
: emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs);
: emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, Attrs);
Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
// Since pow() may have side effects, e.g. errno,
// dead code elimination may not be trusted to remove it.
@ -2094,7 +2107,7 @@ Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
Value *LogE = Log->doesNotAccessMemory()
? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
Eul, "log")
: emitUnaryFloatFnCall(Eul, LogNm, B, Attrs);
: emitUnaryFloatFnCall(Eul, TLI, LogNm, B, Attrs);
Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
// Since exp() may have side effects, e.g. errno,
// dead code elimination may not be trusted to remove it.
@ -2106,14 +2119,16 @@ Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
}
Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
Module *M = CI->getModule();
Function *Callee = CI->getCalledFunction();
Value *Ret = nullptr;
// TODO: Once we have a way (other than checking for the existince of the
// libcall) to tell whether our target can lower @llvm.sqrt, relax the
// condition below.
if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
Callee->getIntrinsicID() == Intrinsic::sqrt))
Ret = optimizeUnaryDoubleFP(CI, B, true);
if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) &&
(Callee->getName() == "sqrt" ||
Callee->getIntrinsicID() == Intrinsic::sqrt))
Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
if (!CI->isFast())
return Ret;
@ -2158,7 +2173,6 @@ Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
// If we found a repeated factor, hoist it out of the square root and
// replace it with the fabs of that factor.
Module *M = Callee->getParent();
Type *ArgType = I->getType();
Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
@ -2175,11 +2189,12 @@ Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
// TODO: Generalize to handle any trig function and its inverse.
Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
Module *M = CI->getModule();
Function *Callee = CI->getCalledFunction();
Value *Ret = nullptr;
StringRef Name = Callee->getName();
if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
Ret = optimizeUnaryDoubleFP(CI, B, true);
if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(M, Name))
Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
Value *Op1 = CI->getArgOperand(0);
auto *OpC = dyn_cast<CallInst>(Op1);
@ -2195,7 +2210,8 @@ Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
// tanl(atanl(x)) -> x
LibFunc Func;
Function *F = OpC->getCalledFunction();
if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
if (F && TLI->getLibFunc(F->getName(), Func) &&
isLibFuncEmittable(M, TLI, Func) &&
((Func == LibFunc_atan && Callee->getName() == "tan") ||
(Func == LibFunc_atanf && Callee->getName() == "tanf") ||
(Func == LibFunc_atanl && Callee->getName() == "tanl")))
@ -2211,9 +2227,10 @@ static bool isTrigLibCall(CallInst *CI) {
CI->hasFnAttr(Attribute::ReadNone);
}
static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
bool UseFloat, Value *&Sin, Value *&Cos,
Value *&SinCos) {
Value *&SinCos, const TargetLibraryInfo *TLI) {
Module *M = OrigCallee->getParent();
Type *ArgTy = Arg->getType();
Type *ResTy;
StringRef Name;
@ -2233,9 +2250,12 @@ static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
ResTy = StructType::get(ArgTy, ArgTy);
}
Module *M = OrigCallee->getParent();
FunctionCallee Callee =
M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
if (!isLibFuncEmittable(M, TLI, Name))
return false;
LibFunc TheLibFunc;
TLI->getLibFunc(Name, TheLibFunc);
FunctionCallee Callee = getOrInsertLibFunc(
M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy);
if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
// If the argument is an instruction, it must dominate all uses so put our
@ -2259,6 +2279,8 @@ static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
"cospi");
}
return true;
}
Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
@ -2286,7 +2308,9 @@ Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
return nullptr;
Value *Sin, *Cos, *SinCos;
insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
SinCos, TLI))
return nullptr;
auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
Value *Res) {
@ -2307,6 +2331,7 @@ void LibCallSimplifier::classifyArgUse(
SmallVectorImpl<CallInst *> &CosCalls,
SmallVectorImpl<CallInst *> &SinCosCalls) {
CallInst *CI = dyn_cast<CallInst>(Val);
Module *M = CI->getModule();
if (!CI || CI->use_empty())
return;
@ -2317,7 +2342,8 @@ void LibCallSimplifier::classifyArgUse(
Function *Callee = CI->getCalledFunction();
LibFunc Func;
if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
if (!Callee || !TLI->getLibFunc(*Callee, Func) ||
!isLibFuncEmittable(M, TLI, Func) ||
!isTrigLibCall(CI))
return;
@ -2532,6 +2558,7 @@ Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
Module *M = CI->getModule();
Function *Callee = CI->getCalledFunction();
FunctionType *FT = Callee->getFunctionType();
if (Value *V = optimizePrintFString(CI, B)) {
@ -2540,10 +2567,10 @@ Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
// printf(format, ...) -> iprintf(format, ...) if no floating point
// arguments.
if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
Module *M = B.GetInsertBlock()->getParent()->getParent();
FunctionCallee IPrintFFn =
M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) &&
!callHasFloatingPointArgument(CI)) {
FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT,
Callee->getAttributes());
CallInst *New = cast<CallInst>(CI->clone());
New->setCalledFunction(IPrintFFn);
B.Insert(New);
@ -2552,11 +2579,10 @@ Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
// printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
// arguments.
if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
Module *M = B.GetInsertBlock()->getParent()->getParent();
auto SmallPrintFFn =
M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
FT, Callee->getAttributes());
if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) &&
!callHasFP128Argument(CI)) {
auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT,
Callee->getAttributes());
CallInst *New = cast<CallInst>(CI->clone());
New->setCalledFunction(SmallPrintFFn);
B.Insert(New);
@ -2655,6 +2681,7 @@ Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
}
Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
Module *M = CI->getModule();
Function *Callee = CI->getCalledFunction();
FunctionType *FT = Callee->getFunctionType();
if (Value *V = optimizeSPrintFString(CI, B)) {
@ -2663,10 +2690,10 @@ Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
// sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
// point arguments.
if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
Module *M = B.GetInsertBlock()->getParent()->getParent();
FunctionCallee SIPrintFFn =
M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) &&
!callHasFloatingPointArgument(CI)) {
FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf,
FT, Callee->getAttributes());
CallInst *New = cast<CallInst>(CI->clone());
New->setCalledFunction(SIPrintFFn);
B.Insert(New);
@ -2675,11 +2702,10 @@ Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
// sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
// floating point arguments.
if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
Module *M = B.GetInsertBlock()->getParent()->getParent();
auto SmallSPrintFFn =
M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
FT, Callee->getAttributes());
if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) &&
!callHasFP128Argument(CI)) {
auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT,
Callee->getAttributes());
CallInst *New = cast<CallInst>(CI->clone());
New->setCalledFunction(SmallSPrintFFn);
B.Insert(New);
@ -2835,6 +2861,7 @@ Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
}
Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
Module *M = CI->getModule();
Function *Callee = CI->getCalledFunction();
FunctionType *FT = Callee->getFunctionType();
if (Value *V = optimizeFPrintFString(CI, B)) {
@ -2843,10 +2870,10 @@ Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
// fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
// floating point arguments.
if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
Module *M = B.GetInsertBlock()->getParent()->getParent();
FunctionCallee FIPrintFFn =
M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) &&
!callHasFloatingPointArgument(CI)) {
FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf,
FT, Callee->getAttributes());
CallInst *New = cast<CallInst>(CI->clone());
New->setCalledFunction(FIPrintFFn);
B.Insert(New);
@ -2855,11 +2882,11 @@ Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
// fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
// 128-bit floating point arguments.
if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
Module *M = B.GetInsertBlock()->getParent()->getParent();
if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) &&
!callHasFP128Argument(CI)) {
auto SmallFPrintFFn =
M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
FT, Callee->getAttributes());
getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT,
Callee->getAttributes());
CallInst *New = cast<CallInst>(CI->clone());
New->setCalledFunction(SmallFPrintFFn);
B.Insert(New);
@ -2944,21 +2971,19 @@ Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
CI->getArgOperand(2)));
}
bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
LibFunc Func;
bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) {
SmallString<20> FloatFuncName = FuncName;
FloatFuncName += 'f';
if (TLI->getLibFunc(FloatFuncName, Func))
return TLI->has(Func);
return false;
return isLibFuncEmittable(M, TLI, FloatFuncName);
}
Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
IRBuilderBase &Builder) {
Module *M = CI->getModule();
LibFunc Func;
Function *Callee = CI->getCalledFunction();
// Check for string/memory library functions.
if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
// Make sure we never change the calling convention.
assert(
(ignoreCallingConv(Func) ||
@ -3039,6 +3064,8 @@ Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
LibFunc Func,
IRBuilderBase &Builder) {
const Module *M = CI->getModule();
// Don't optimize calls that require strict floating point semantics.
if (CI->isStrictFP())
return nullptr;
@ -3117,12 +3144,12 @@ Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
case LibFunc_sin:
case LibFunc_sinh:
case LibFunc_tanh:
if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
return optimizeUnaryDoubleFP(CI, Builder, true);
if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName()))
return optimizeUnaryDoubleFP(CI, Builder, TLI, true);
return nullptr;
case LibFunc_copysign:
if (hasFloatVersion(CI->getCalledFunction()->getName()))
return optimizeBinaryDoubleFP(CI, Builder);
if (hasFloatVersion(M, CI->getCalledFunction()->getName()))
return optimizeBinaryDoubleFP(CI, Builder, TLI);
return nullptr;
case LibFunc_fminf:
case LibFunc_fmin:
@ -3141,6 +3168,7 @@ Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
}
Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
Module *M = CI->getModule();
assert(!CI->isMustTailCall() && "These transforms aren't musttail safe.");
// TODO: Split out the code below that operates on FP calls so that
@ -3219,7 +3247,7 @@ Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
}
// Then check for known library functions.
if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
// We never change the calling convention.
if (!ignoreCallingConv(Func) && !IsCallingConvC)
return nullptr;

View File

@ -3,7 +3,6 @@
; RUN: opt < %s -mtriple=x86_64-apple-macosx10.8.0 -inferattrs -S | FileCheck --match-full-lines --check-prefixes=CHECK,CHECK-KNOWN,CHECK-NOLINUX,CHECK-OPEN,CHECK-DARWIN %s
; RUN: opt < %s -mtriple=x86_64-unknown-linux-gnu -inferattrs -S | FileCheck --match-full-lines --check-prefixes=CHECK,CHECK-KNOWN,CHECK-LINUX %s
; RUN: opt < %s -mtriple=nvptx -inferattrs -S | FileCheck --match-full-lines --check-prefixes=CHECK-NOLINUX,CHECK-NVPTX %s
; RUN: opt < %s -mtriple=s390x-linux-gnu -inferattrs -S | FileCheck --check-prefixes=CHECK-SYSTEMZ %s
declare i32 @__nvvm_reflect(i8*)
; CHECK-NVPTX: declare noundef i32 @__nvvm_reflect(i8* noundef) [[NOFREE_NOUNWIND_READNONE:#[0-9]+]]
@ -592,11 +591,9 @@ declare i64 @labs(i64)
declare i32 @lchown(i8*, i32, i32)
; CHECK: declare double @ldexp(double, i32) [[NOFREE_WILLRETURN:#[0-9]+]]
; CHECK-SYSTEMZ: declare double @ldexp(double, i32 signext)
declare double @ldexp(double, i32)
; CHECK: declare float @ldexpf(float, i32) [[NOFREE_WILLRETURN]]
; CHECK-SYSTEMZ: declare float @ldexpf(float, i32 signext)
declare float @ldexpf(float, i32)
; CHECK: declare x86_fp80 @ldexpl(x86_fp80, i32) [[NOFREE_WILLRETURN]]
@ -756,12 +753,10 @@ declare i32 @printf(i8*, ...)
declare i32 @putc(i32, %opaque*)
; CHECK: declare noundef i32 @putchar(i32 noundef) [[NOFREE_NOUNWIND]]
; CHECK-SYSTEMZ: declare noundef i32 @putchar(i32 noundef signext)
declare i32 @putchar(i32)
; CHECK-KNOWN: declare noundef i32 @putchar_unlocked(i32 noundef) [[NOFREE_NOUNWIND]]
; CHECK-UNKNOWN: declare i32 @putchar_unlocked(i32){{$}}
; CHECK-SYSTEMZ: declare noundef i32 @putchar_unlocked(i32 noundef signext)
declare i32 @putchar_unlocked(i32)
; CHECK: declare noundef i32 @puts(i8* nocapture noundef readonly) [[NOFREE_NOUNWIND]]

View File

@ -0,0 +1,98 @@
; RUN: opt < %s -passes=instcombine -S -mtriple=systemz-unknown | FileCheck %s
;
; Check that i32 arguments to generated libcalls have the proper extension
; attributes.
declare double @exp2(double)
declare float @exp2f(float)
declare fp128 @exp2l(fp128)
define double @fun1(i32 %x) {
; CHECK-LABEL: @fun1
; CHECK: call double @ldexp
%conv = sitofp i32 %x to double
%ret = call double @exp2(double %conv)
ret double %ret
}
define float @fun2(i32 %x) {
; CHECK-LABEL: @fun2
; CHECK: call float @ldexpf
%conv = sitofp i32 %x to float
%ret = call float @exp2f(float %conv)
ret float %ret
}
define fp128 @fun3(i8 zeroext %x) {
; CHECK-LABEL: @fun3
; CHECK: call fp128 @ldexpl
%conv = uitofp i8 %x to fp128
%ret = call fp128 @exp2l(fp128 %conv)
ret fp128 %ret
}
@a = common global [60 x i8] zeroinitializer, align 1
@b = common global [60 x i8] zeroinitializer, align 1
declare i8* @__memccpy_chk(i8*, i8*, i32, i64, i64)
define i8* @fun4() {
; CHECK-LABEL: @fun4
; CHECK: call i8* @memccpy
%dst = getelementptr inbounds [60 x i8], [60 x i8]* @a, i32 0, i32 0
%src = getelementptr inbounds [60 x i8], [60 x i8]* @b, i32 0, i32 0
%ret = call i8* @__memccpy_chk(i8* %dst, i8* %src, i32 0, i64 60, i64 -1)
ret i8* %ret
}
%FILE = type { }
@A = constant [2 x i8] c"A\00"
declare i32 @fputs(i8*, %FILE*)
define void @fun5(%FILE* %fp) {
; CHECK-LABEL: @fun5
; CHECK: call i32 @fputc
%str = getelementptr [2 x i8], [2 x i8]* @A, i32 0, i32 0
call i32 @fputs(i8* %str, %FILE* %fp)
ret void
}
@empty = constant [1 x i8] zeroinitializer
declare i32 @puts(i8*)
define void @fun6() {
; CHECK-LABEL: @fun6
; CHECK: call i32 @putchar
%str = getelementptr [1 x i8], [1 x i8]* @empty, i32 0, i32 0
call i32 @puts(i8* %str)
ret void
}
@.str1 = private constant [2 x i8] c"a\00"
declare i8* @strstr(i8*, i8*)
define i8* @fun7(i8* %str) {
; CHECK-LABEL: @fun7
; CHECK: call i8* @strchr
%pat = getelementptr inbounds [2 x i8], [2 x i8]* @.str1, i32 0, i32 0
%ret = call i8* @strstr(i8* %str, i8* %pat)
ret i8* %ret
}
; CHECK: declare i8* @strchr(i8*, i32 signext)
@hello = constant [14 x i8] c"hello world\5Cn\00"
@chp = global i8* zeroinitializer
declare i8* @strchr(i8*, i32)
define void @fun8(i32 %chr) {
; CHECK-LABEL: @fun8
; CHECK: call i8* @memchr
%src = getelementptr [14 x i8], [14 x i8]* @hello, i32 0, i32 0
%dst = call i8* @strchr(i8* %src, i32 %chr)
store i8* %dst, i8** @chp
ret void
}
; CHECK: declare double @ldexp(double, i32 signext)
; CHECK: declare float @ldexpf(float, i32 signext)
; CHECK: declare fp128 @ldexpl(fp128, i32 signext)
; CHECK: declare i8* @memccpy(i8* noalias writeonly, i8* noalias nocapture readonly, i32 signext, i64)
; CHECK: declare noundef i32 @fputc(i32 noundef signext, %FILE* nocapture noundef)
; CHECK: declare noundef i32 @putchar(i32 noundef signext)
; CHECK: declare i8* @memchr(i8*, i32 signext, i64)

View File

@ -346,7 +346,7 @@ define float @logb_test1(float %f) {
; LINUX-NEXT: [[LOGBF:%.*]] = call fast float @logbf(float [[F:%.*]])
; LINUX-NEXT: ret float [[LOGBF]]
; MS32: [[POWF:%.*]] = call fast double @logb(double [[F:%.*]])
; MS64-NEXT: [[LOGBF:%.*]] = call fast float @logbf(float [[F:%.*]])
; MS64-NEXT: [[LOGBF:%.*]] = call fast float @_logbf(float [[F:%.*]])
;
%conv = fpext float %f to double
%call = call fast double @logb(double %conv)

View File

@ -1,5 +1,7 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -passes=instcombine -S | FileCheck %s
;
; Check that SimplifyLibCalls do not (crash or) emit a library call if user
; has made a function alias with the same name.
%struct._IO_FILE = type { i32, i8*, i8*, i8*, i8*, i8*, i8*, i8*, i8*, i8*, i8*, i8*, %struct._IO_marker*, %struct._IO_FILE*, i32, i32, i64, i16, i8, [1 x i8], i8*, i64, i8*, i8*, i8*, i8*, i64, i32, [20 x i8] }
%struct._IO_marker = type { %struct._IO_marker*, %struct._IO_FILE*, i32 }
@ -28,10 +30,8 @@ entry:
define void @foo() {
; CHECK-LABEL: @foo(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP0:%.*]] = load %struct._IO_FILE*, %struct._IO_FILE** @stderr, align 8
; CHECK-NEXT: [[TMP1:%.*]] = call i64 @fwrite(i8* getelementptr inbounds ([8 x i8], [8 x i8]* @.str, i64 0, i64 0), i64 7, i64 1, %struct._IO_FILE* [[TMP0]])
; CHECK-NEXT: ret void
; CHECK-NOT: call i64 @fwrite(
; CHECK: call {{.*}} @fprintf(
;
entry:
%retval = alloca i32, align 4

View File

@ -242,5 +242,18 @@ define i4 @strlen(i8* %s) {
ret i4 0
}
; Test emission of stpncpy.
@a = dso_local global [4 x i8] c"123\00"
@b = dso_local global [5 x i8] zeroinitializer
declare i8* @__stpncpy_chk(i8* noundef, i8* noundef, i32 noundef, i32 noundef)
define signext i32 @emit_stpncpy() {
; CHECK-LABEL: @emit_stpncpy(
; CHECK-NEXT: call i8* @stpncpy({{.*}} @b, {{.*}} @a, {{.*}} i32 2)
%call = call i8* @__stpncpy_chk(i8* noundef getelementptr inbounds ([5 x i8], [5 x i8]* @b, i32 0, i32 0),
i8* noundef getelementptr inbounds ([4 x i8], [4 x i8]* @a, i32 0, i32 0),
i32 noundef 2, i32 noundef 5)
ret i32 0
}
attributes #0 = { nobuiltin }
attributes #1 = { builtin }