Update README.md

This commit is contained in:
wyw 2023-05-12 11:49:20 +08:00
parent 8ee29d2652
commit e4b0b04b6f
1 changed files with 50 additions and 0 deletions

View File

@ -1,2 +1,52 @@
# AI-LM
## LLM
大型语言模型(LLM)已经席卷了NLP社区和人工智能社区。下面是一个关于大型语言模型的列表持续更新
| 日期 | 关键词 | 组织 | 文章/博客 | 出版 |
| :-----: | :------------------: | :--------------: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :---------: |
| 2017-06 | Transformers | Google | [Attention Is All You Need](https://arxiv.org/pdf/1706.03762.pdf) | NeurIPS |
| 2018-06 | GPT 1.0 | OpenAI | [Improving Language Understanding by Generative Pre-Training](https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf) | |
| 2018-10 | BERT | Google | [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://aclanthology.org/N19-1423.pdf) | NAACL |
| 2019-02 | GPT 2.0 | OpenAI | [Language Models are Unsupervised Multitask Learners](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) | |
| 2019-09 | Megatron-LM | NVIDIA | [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/pdf/1909.08053.pdf) | |
| 2019-10 | T5 | Google | [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://jmlr.org/papers/v21/20-074.html) | JMLR |
| 2019-10 | ZeRO | Microsoft | [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://arxiv.org/pdf/1910.02054.pdf) | SC |
| 2020-01 | Scaling Law | OpenAI | [Scaling Laws for Neural Language Models](https://arxiv.org/pdf/2001.08361.pdf) | |
| 2020-05 | GPT 3.0 | OpenAI | [Language models are few-shot learners](https://papers.nips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf) | NeurIPS |
| 2021-01 | Switch Transformers | Google | [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/pdf/2101.03961.pdf) | JMLR |
| 2021-08 | Codex | OpenAI | [Evaluating Large Language Models Trained on Code](https://arxiv.org/pdf/2107.03374.pdf) | |
| 2021-08 | Foundation Models | Stanford | [On the Opportunities and Risks of Foundation Models](https://arxiv.org/pdf/2108.07258.pdf) | |
| 2021-09 | FLAN | Google | [Finetuned Language Models are Zero-Shot Learners](https://openreview.net/forum?id=gEZrGCozdqR) | ICLR |
| 2021-10 | T0 | HuggingFace et al. | [Multitask Prompted Training Enables Zero-Shot Task Generalization](https://arxiv.org/abs/2110.08207) | ICLR |
| 2021-12 | GLaM | Google | [GLaM: Efficient Scaling of Language Models with Mixture-of-Experts](https://arxiv.org/pdf/2112.06905.pdf) | ICML |
| 2021-12 | WebGPT | OpenAI | [WebGPT: Improving the Factual Accuracy of Language Models through Web Browsing](https://openai.com/blog/webgpt/) | |
| 2021-12 | Retro | DeepMind | [Improving language models by retrieving from trillions of tokens](https://www.deepmind.com/publications/improving-language-models-by-retrieving-from-trillions-of-tokens) | ICML |
| 2021-12 | Gopher | DeepMind | [Scaling Language Models: Methods, Analysis & Insights from Training Gopher](https://arxiv.org/pdf/2112.11446.pdf) | |
| 2022-01 | COT | Google | [Chain-of-Thought Prompting Elicits Reasoning in Large Language Models](https://arxiv.org/pdf/2201.11903.pdf) | NeurIPS |
| 2022-01 | LaMDA | Google | [LaMDA: Language Models for Dialog Applications](https://arxiv.org/pdf/2201.08239.pdf) | |
| 2022-01 | Minerva | Google | [Solving Quantitative Reasoning Problems with Language Models](https://arxiv.org/abs/2206.14858) | NeurIPS |
| 2022-01 | Megatron-Turing NLG | Microsoft&NVIDIA | [Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model](https://arxiv.org/pdf/2201.11990.pdf) | |
| 2022-03 | InstructGPT | OpenAI | [Training language models to follow instructions with human feedback](https://arxiv.org/pdf/2203.02155.pdf) | |
| 2022-04 | PaLM | Google | [PaLM: Scaling Language Modeling with Pathways](https://arxiv.org/pdf/2204.02311.pdf) | |
| 2022-04 | Chinchilla | DeepMind | [An empirical analysis of compute-optimal large language model training](https://www.deepmind.com/publications/an-empirical-analysis-of-compute-optimal-large-language-model-training) | NeurIPS |
| 2022-05 | OPT | Meta | [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/pdf/2205.01068.pdf) | |
| 2022-05 | UL2 | Google | [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) | |
| 2022-06 | Emergent Abilities | Google | [Emergent Abilities of Large Language Models](https://openreview.net/pdf?id=yzkSU5zdwD) | TMLR |
| 2022-06 | BIG-bench | Google | [Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models](https://github.com/google/BIG-bench) | |
| 2022-06 | METALM | Microsoft | [Language Models are General-Purpose Interfaces](https://arxiv.org/pdf/2206.06336.pdf) | |
| 2022-09 | Sparrow | DeepMind | [Improving alignment of dialogue agents via targeted human judgements](https://arxiv.org/pdf/2209.14375.pdf) | |
| 2022-10 | Flan-T5/PaLM | Google | [Scaling Instruction-Finetuned Language Models](https://arxiv.org/pdf/2210.11416.pdf) | |
| 2022-10 | GLM-130B | Tsinghua | [GLM-130B: An Open Bilingual Pre-trained Model](https://arxiv.org/pdf/2210.02414.pdf) | ICLR |
| 2022-11 | HELM | Stanford | [Holistic Evaluation of Language Models](https://arxiv.org/pdf/2211.09110.pdf) | |
| 2022-11 | BLOOM | BigScience | [BLOOM: A 176B-Parameter Open-Access Multilingual Language Model](https://arxiv.org/pdf/2211.05100.pdf) | |
| 2022-11 | Galactica | Meta | [Galactica: A Large Language Model for Science](https://arxiv.org/pdf/2211.09085.pdf) | |
| 2022-12 | OPT-IML | Meta | [OPT-IML: Scaling Language Model Instruction Meta Learning through the Lens of Generalization](https://arxiv.org/pdf/2212.12017) | |
| 2023-01 | Flan 2022 Collection | Google | [The Flan Collection: Designing Data and Methods for Effective Instruction Tuning](https://arxiv.org/pdf/2301.13688.pdf) | |
| 2023-02 | LLaMA|Meta|[LLaMA: Open and Efficient Foundation Language Models](https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/)||
| 2023-02 | Kosmos-1|Microsoft|[Language Is Not All You Need: Aligning Perception with Language Models](https://arxiv.org/abs/2302.14045)||
| 2023-03 | PaLM-E | Google | [PaLM-E: An Embodied Multimodal Language Model](https://palm-e.github.io)||
| 2023-03 | GPT 4 | OpenAI | [GPT-4 Technical Report](https://openai.com/research/gpt-4)||
| 2023-04 | Pythia | EleutherAI et al. | [Pythia: A Suite for Analyzing Large Language Models Across Training and Scaling](https://arxiv.org/abs/2304.01373)|ICML|
| 2023-05 | Dromedary | CMU et al. | [Principle-Driven Self-Alignment of Language Models from Scratch with Minimal Human Supervision](https://arxiv.org/abs/2305.03047)||
| 2023-05 | PaLM 2 | Google | [PaLM 2 Technical Report](https://ai.google/static/documents/palm2techreport.pdf)||